

Integration of remote sensing methods for continuous determination of mixing layer height

*R. Friedl*¹, *M. Höß*¹, *K. Schäfer*¹, *S. Emeis*¹, *C. Münkel*², *S. Schrader*¹, *C. Jahn*¹, *J. Jacobeit*³, *P.Suppan*¹

Institut für Meteorologie und Klimatologie (IMK-IFU)

¹Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (KIT/IMK-IFU

²Vaisala GmbH, Schnackenburgallee 41d, 22525 Hamburg, Germany

³University of Augsburg, Chair of Physical Geography and Quantitative Methods, Universitätsstraße 10, 86135 Augsburg, Germany

Karlsruher Institut für Technologie

Gliederung:

- Die Mischungsschichthöhe (MLH)
- Messanordnung
- Daten
 - Vorhandene Daten / Datengrundlage
 - Datenbearbeitung
- Ergebnisse
 - Vergleich der Messsysteme
 - Räumliche Variation der MLH
 - Analyse von Zeitreihen
- Zusammenfassung

Die Mischungsschichthöhe / MLH

Mischungsschichthöhe:

Definition:

"the height of the layer adjacent to the ground over which pollutants or any constituents emitted within the layer or entrained into it become vertically dispersed by convection or mechanical turbulence within a time scale of about an hour." (SEIBERT 1999)

Quelle: HUPFER/KUTTLER 2006

Die Mischungsschichthöhe / MLH

- Tagesgang der MLH:
 - Nach Sonnenaufgang Aufbau der MLH
 - Maximale Ausdehnung am späten Nachmittag
 - **Bodennahe Inversion** nach Sonnenuntergang darüber Restschicht
- Die vertikale Ausdehnung variiert
- Dies beeinflusst Partikelund Spurengaskonzentrationen

Messanordnung

• Augsburg Nord AVA:

- SODAR/RASS (METEK),
- Ceilometer CL31 (Vaisala)
- Augsburg Nord BlfA:
 - Schadstoffmessungen
- Augsburg Zentrum (FH):
 - Ceilometer CL31 (Vaisala)

Karlsruher Institut für Technologi

Messanordnung

22.09.2010 R. Friedl, M. Höß, K. Schäfer, S. Emeis, C. Münkel, S. Schrader, C. Jahn, J. Jacobeit, P.Suppan

6

Daten Vorhandene Daten / Datengrundlage

- Bearbeiteter Zeitraum: 01.12.2008 bis 28.02.2010
- Nahezu kontinuierliche Messung
- Messintervalle 10 Minuten
- Höhenbereiche:
 - CL31: 40 bis 2000 m (vertikale Auflösung 20 m)
 - SODAR/RASS: 30 bis 550 m (vertikale Auflösung 20 m)

Daten Datenbearbeitung

Emeis, S., Schäfer, K., Münkel, C.: Surface-based remote sensing of the mixing-layer height – a review. Meteorologische Zeitschrift 15, 5, 621-630 (2008).

9 22.09.2010 R. Friedl, M. Höß, K. Schäfer, S. Emeis, C. Münkel, S. Schrader, C. Jahn, J. Jacobeit, P.Suppan

Ergebnisse Vergleich der Messsysteme

Ergebnisse räumliche Variation der MLH

MLH Augsburg-Nord höher als Zentrum vom Ceilometer angezeigt

Augsburg FH \log_{10} of backscatter on 27.11.2009 in 10^{-9} m⁻¹ sr⁻¹

konstante Strukturen erkannt werden. MeHs.der Ceilometer können

anhand der SODAR/RASS Profile verifiziert werden.

erganzen sich gut.

Ergebnisse Vergleich der Messsysteme

Ergebnisse Analyse von Zeitreihen

 Vergleich der MLHs aus den verschiedenen Messmethoden anhand von mittleren Tagesgängen

Zusammenfassung

- SODAR/RASS und Ceilometer ergänzen sich gegenseitig sehr gut.
 - Ceilometer-Plots können mit Daten aus SODAR und RASS-Profilmessungen gut erklärt werden.

Informationsplus durch meteorologische Parameter.

- SODAR und RASS erkennen Strukturen, die vom Ceilometer nicht erfasst werden.
- Nachteil: begrenzte Reichweite von SODAR/RASS
- Anhand langer Zeitreihen lassen sich bestimmte Strukturen erkennen. (Stadt-Umland-Effekte, konstante Niveaus)
 - Tagesgang der MLH (nicht nur Momentaufnahmen, Bsp. Aug. 2009)
 - Konstante Niveaus (URL, SBL)
 - Wärmeinseleffekte (Städtische Überhöhung der MLH)

Zusammenfassung

 Ausblick: Relevanz für Belastungssituationen

Vielen Dank für die Aufmerksamkeit!

Fragen?