

# Phase-field modeling of ferroelectric materials in the context of a multiscale simulation chain

Benjamin Völker, Magalie Huttin and Marc Kamlah

SMASIS10, Sept. 29<sup>th</sup>, 2010 Philadelphia, PA

Institute for Materials Research (IMF II)



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

## Motivation: virtual material development for ferroelectrics





2



## ➔ need for multiscale-approach

## → BMBF-Project COMFEM:

<u>Computer based multiscale modeling for</u> virtual development of polycrystalline <u>ferroelectric materials (esp. PZT)</u>

#### Project partners:

- Fraunhofer IWM Freiburg (FhG-IWM)
- Robert Bosch GmbH (RB)
- Siemens AG (SAG)
- PI Ceramic AG (PIC)
- CeramTec AG (CT)
- TU Hamburg-Harburg (TUHH)

## <u>Our aim:</u>

- development of two interfaces in simulation chain
- B. Völker, M. Huttin and M. Kamlah Phase-field modeling for ferroelectric materials in the context of a multiscale simulation chain SMASIS 2010

## Thermodynamically motivated phase-field theory

Aim: calculation of ferroelectric domain patterns on meso-scale

➔ Helmholtz free energy function contains all crystallographic and boundary information

$$\psi(P_i, P_{i,j}, \epsilon_{ij}, D_i)$$



-1.×10<sup>6</sup> -2.×10<sup>6</sup> -3.×10<sup>6</sup>

 temporal and spatial evolution of polarization (order parameter): time-dependent Ginzburg-Landau-equation → state variables: partial derivatives with respect to natural variables

$$\sigma_{ji} = \frac{\partial \psi}{\partial \epsilon_{ij}} \qquad E_i = \frac{\partial \psi}{\partial D_i}$$

➔ domain switching caused by minimization of free energy

$$\left(\frac{\partial\psi}{\partial P_{i,j}}\right)_{,j} - \frac{\partial\psi}{\partial P_i} = \beta_{ij}\dot{P}_j$$



## Formulation of the phase-field model's free energy



6<sup>th</sup> order free energy

 $\psi = \frac{1}{2} G_{ijkl} P_{i,j} P_{k,l}$ 

$$+\frac{1}{2}\alpha_{ij}P_iP_j + \frac{1}{2}\alpha_{ijkl}P_iP_jP_kP_l + \frac{1}{6}\alpha_{ijklmn}P_iP_jP_kP_lP_mP_n$$
$$+q_{ijkl}\epsilon_{ij}P_kP_l + \frac{1}{2}c_{ijkl}\epsilon_{ij}\epsilon_{kl}$$
$$+\frac{1}{2\kappa_0}(D_i - P_i)(D_i - P_i)$$

Main parts of energy function:

- gradient term
- Landau energy
- electromechanical coupling term
- elastic energy term
- electric field energy



#### Interface ab-initio / phase field modeling: Adjustment of parameters

→ ab-initio: piezoelectric coefficients

 (input)
 dielectric permittivity
 elastic stiffness
 spontaneous strain
 spontaneous polarization
 domain wall energy (90°/180°)
 domain wall thickness (90°/180°)



Ginzburg-Landau-theory: 15 parameters (6<sup>th</sup> order)



$$\psi = \frac{1}{2}G_{ijkl}P_{i,j}P_{k,l}$$

$$+ \frac{1}{2}\alpha_{ij}P_iP_j + \frac{1}{2}\alpha_{ijkl}P_iP_jP_kP_l + \frac{1}{6}\alpha_{ijklmn}P_iP_jP_kP_lP_mP_n$$

$$+ q_{ijkl}\epsilon_{ij}P_kP_l + \frac{1}{2}c_{ijkl}\epsilon_{ij}\epsilon_{kl}$$

$$+ \frac{1}{2\kappa_0}(D_i - P_i)(D_i - P_i)$$

5

- adjustment method has been developed
- applied to PTO and PZT

B. Völker, P. Marton, C. Elsässer, M. Kamlah: *"Multiscale Modeling of ferroelectric materials: a transition from the atomic level to phase-field modeling"*. Continuum Mechanics and Thermodynamics, submitted on Sept. 3<sup>rd</sup>, 2010

#### Adjustment of 6<sup>th</sup> order free energy: Results for PTO and PZT



|          |                            |            | РТО                               |                         | PZT                          |                         |  |
|----------|----------------------------|------------|-----------------------------------|-------------------------|------------------------------|-------------------------|--|
|          |                            | unit       | first-principles data             | phase-field model       | first-principles data        | phase-field model       |  |
|          | _                          |            | (input)                           | (adjusted)              | (input)                      | (aujusteu)              |  |
| <b>f</b> | $P_0$                      | $[C/m^2]$  | 0.88                              | 0.88                    | 0.58                         | 0.58                    |  |
|          | $e_{\parallel}$            | <u>^</u>   | 0.04209*                          | 0.04209                 | 0.012039*                    | 0.012039                |  |
|          | $e_{\perp}$                |            | $-0.007388^{*}$                   | -0.007388               | $-0.0017946^{*}$             | -0.0017946              |  |
|          | $\kappa_{33}$              |            | $17\kappa_0$                      | $17\kappa_0$            | $18\kappa_0$                 | $18\kappa_0$            |  |
|          | $\kappa_{11}$              |            | $54\kappa_0$                      | $54\kappa_0$            | $76\kappa_0$                 | $76\kappa_0$            |  |
|          | $C_{11}$                   | [Pa]       | $342 \times 10^{9}$               | $342 \times 10^{9}$     | $\overline{361 \times 10^9}$ | $361 \times 10^{9}$     |  |
|          | $C_{12}$                   | [Pa]       | $131 	imes 10^9$                  | $131 	imes 10^9$        | $115 	imes 10^9$             | $115 \times 10^{9}$     |  |
| DFT      | $C_{44}$                   | [Pa]       | $108 	imes 10^9$                  | $108 \times 10^9$       | $91 \times 10^9$             | $91 \times 10^9$        |  |
|          | $d_{33}$                   | [C/m]      | $\overline{2.46 \times 10^{-11}}$ | $1.42 \times 10^{-11}$  | $1.57 \times 10^{-11}$       | $6.58 \times 10^{-12}$  |  |
|          | $d_{31}$                   | [C/m]      | $-8.04 \times 10^{-12}$           | $-2.52 \times 10^{-12}$ | $-4.32 \times 10^{-12}$      | $-9.87 \times 10^{-13}$ |  |
|          | $d_{15}$                   | [C/m]      | $1.72 \times 10^{-11}$            | $1.72 \times 10^{-11}$  | $1.53 \times 10^{-12}$       | $1.53 \times 10^{-12}$  |  |
|          | $\gamma_{ m DFT,180}$      | $[mJ/m^2]$ | 112                               | 173                     | 96                           | 96                      |  |
|          | $\gamma_{ m DFT,90}$       | $[mJ/m^2]$ | 24                                | 71                      | -                            | -                       |  |
|          | $\xi_{\text{DFT},180}$     | [m]        | $4.5 \times 10^{-10}$             | $4.5 \times 10^{-10}$   | $6.7 \times 10^{-10}$        | $6.7 	imes 10^{-10}$    |  |
| Ļ        | $\xi_{\text{DFT},90}$      | [m]        | $5.4 \times 10^{-10}$             | $5.4 \times 10^{-10}$   | -                            | -                       |  |
| <b>A</b> | $\gamma_{ m SMP,180}$      | $[mJ/m^2]$ | 156                               | 156                     | -                            | -                       |  |
|          | $\gamma_{\mathrm{SMP},90}$ | $[mJ/m^2]$ | 64                                | 64                      | 36                           | 36                      |  |
| SMP<br>↓ | $\xi_{\text{SMP},180}$     | [m]        | $3.9 \times 10^{-10}$             | $3.9 	imes 10^{-10}$    | -                            | -                       |  |
|          | $\xi_{\text{SMP},90}$      | [m]        | $4.9 \times 10^{-10}$             | $4.9 \times 10^{-10}$   | $6.6 \times 10^{-10}$        | $6.6 	imes 10^{-10}$    |  |

#### atomistic input:

DFT: density functional theory SMP: shell-model potential (P. Marton and C. Elsässer, IWM Freiburg) generally good agreement, but:

- not enough degrees of freedom for piezoelectric coefficients
- · only cubic elastic behavior taken into account

## Formulation of the phase-field model's free energy



6<sup>th</sup> order free energy additional terms  $\psi = \frac{1}{2}G_{ijkl}P_{i,j}P_{k,l}$  $+\frac{1}{2}\alpha_{ij}P_iP_j + \frac{1}{2}\alpha_{ijkl}P_iP_jP_kP_l + \frac{1}{6}\alpha_{ijklmn}P_iP_jP_kP_lP_mP_n$  $+q_{ijkl}\epsilon_{ij}P_kP_l + \frac{1}{2}c_{ijkl}\epsilon_{ij}\epsilon_{kl}$  $+ \frac{f_{ijklmn}\epsilon_{ij}\epsilon_{kl}P_mP_n}{f_{ijklmn}\epsilon_{ij}P_kP_lP_mP_n}$ [Su,Landis2007], for BaTiO<sub>3</sub>  $+\frac{1}{2\kappa_0}(D_i-P_i)(D_i-P_i)$ benefit of additional terms: Main parts of energy function: gradient term Landau energy more degrees of freedom electromechanical coupling term for adjustment process: elastic energy term → f-term: tetragonal elastic behavior electric field energy → g-term: independent adjustment of d<sub>iik</sub>

Y. Su, C. M. Landis: "Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning". Journal of the Mechanics and Physics of Solids, 55 (2007), 280–305

7





 $\rightarrow$  works fine for BaTiO<sub>3</sub>, but problematic for DFT predictions of PbTiO<sub>3</sub> and PZT



B. Völker, M. Huttin and M. Kamlah – Phase-field modeling for ferroelectric materials in the context of a multiscale simulation chain SMASIS 2010

8

#### Improvement of adjustment process – additional energy terms



Suggestion: additional elastic energy term

9

$$\psi_{\mathsf{elast}}(\epsilon_{ij}, P_i) = \frac{c_{ijkl}\epsilon_{ij}\epsilon_{kl} + f_{ijklmn}\epsilon_{ij}\epsilon_{kl}P_mP_n + h_{ijklmnrs}\epsilon_{ij}\epsilon_{kl}P_mP_nP_rP_s}{\epsilon_{ij}\epsilon_{kl}P_mP_nP_rP_s}$$



#### **Extended free energy**

 $\psi$ 



$$= \frac{1}{2}G_{ijkl}P_{i,j}P_{k,l}$$

$$+ \frac{1}{2}\alpha_{ij}P_iP_j + \frac{1}{2}\alpha_{ijkl}P_iP_jP_kP_l + \frac{1}{6}\alpha_{ijklmn}P_iP_jP_kP_lP_mP_n + \frac{1}{8}\alpha_{ijklmnrs}P_iP_jP_kP_lP_mP_nP_rP_s$$

$$+ q_{ijkl}\epsilon_{ij}P_kP_l + \frac{1}{2}c_{ijkl}\epsilon_{ij}\epsilon_{kl} + f_{ijklmn}\epsilon_{ij}\epsilon_{kl}P_mP_n + g_{ijklmn}\epsilon_{ij}P_kP_lP_mP_n$$

$$[Su,Landis2007]$$

$$+ \frac{1}{2\kappa_0}(D_i - P_i)(D_i - P_i) + h_{ijklmnrs}\epsilon_{ij}\epsilon_{kl}P_mP_nP_rP_s$$

#### Additional free energy terms:

| Landau energy:   | P <sup>8</sup> -term<br>P <sub>i</sub> <sup>4</sup> P <sub>j</sub> <sup>4</sup> -term | 180° domain wall adjustment<br>90° domain wall adjustment                       |
|------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Elastic energy:  | f-term<br>h-term                                                                      | tetragonal elastic behavior<br>necessary if C <sup>cub</sup> >C <sup>tetr</sup> |
| coupling energy: | g-term                                                                                | piezoelectric coefficients                                                      |

## **Results: Adjustment of 8<sup>th</sup> order free energy + additional terms**



|                                   |                      | РТО                    |                        | PZT                               |                        |         |                                                                  |
|-----------------------------------|----------------------|------------------------|------------------------|-----------------------------------|------------------------|---------|------------------------------------------------------------------|
|                                   | unit                 | first-principles data  | phase-field model      | first-principles data             | phase-field model      | 1.0     | [100] plane _                                                    |
|                                   |                      | (input)                | (adjusted)             | (input)                           | (adjusted)             | -       |                                                                  |
| $P_0$                             | [C/m <sup>2</sup> ]  | 0.88                   | 0.88                   | 0.58                              | 0.58                   | 0.5     |                                                                  |
| $e_{\parallel}$                   |                      | 0.04209                | 0.04209                | 0.012039                          | 0.012039               | Ξ       |                                                                  |
| $e_{\perp}^{"}$                   |                      | -0.007388              | -0.007388              | -0.0017946                        | -0.0017946             | - 0.0 - |                                                                  |
| к <sub>33</sub>                   |                      | $17\kappa_0$           | $17 \kappa_0$          | 18ĸ <sub>0</sub>                  | $18 \kappa_0$          | 0.5     |                                                                  |
| $\kappa_{11}$                     |                      | 54κ <sub>0</sub>       | $54 \kappa_0$          | 76κ <sub>0</sub>                  | 76κ <sub>0</sub>       | -0.5    |                                                                  |
| $C_{11}^{\mathrm{cub}}$           | [Pa]                 | $342 	imes 10^9$       | $342 	imes 10^9$       | $361 \times 10^{9}$               | $361	imes10^9$         | -1.0    |                                                                  |
| $C_{12}^{cub}$                    | [Pa]                 | $131	imes10^9$         | $131	imes10^9$         | $115 \times 10^{9}$               | $115	imes10^9$         |         | · · · · · · · · · · · · · · · · · · ·                            |
| $C_{44}^{cub}$                    | [Pa]                 | $108	imes10^9$         | $108	imes10^9$         | $91 \times 10^{9}$                | $91	imes 10^9$         |         | -1.0 -0.5 0.0 0.5 1.0                                            |
| $C_{11}^{\text{tetr}}$            | [Pa]                 | $285 	imes 10^9$       | $285	imes10^9$         | $327 \times 10^{9}$               | $327	imes10^9$         | E.      | ······································                           |
| $C_{33}^{\overline{\text{tetr}}}$ | [Pa]                 | $91 	imes 10^9$        | $91	imes 10^9$         | $178 \times 10^{9}$               | $178	imes10^9$         | 1.0     | [110] plane _                                                    |
| $C_{12}^{\text{tetr}}$            | [Pa]                 | $119	imes10^9$         | $119	imes10^9$         | $110 \times 10^{9}$               | $110	imes10^{9}$       | Ę       |                                                                  |
| $C_{13}^{\overline{\text{tetr}}}$ | [Pa]                 | $88 	imes 10^9$        | $88 	imes 10^9$        | $107 \times 10^{9}$               | $107	imes10^9$         | 0.5     |                                                                  |
| $C_{44}^{	ext{tetr}}$             | [Pa]                 | $65 	imes 10^9$        | $65 	imes 10^9$        | $73 \times 10^{9}$                | $73	imes10^9$          |         | 1                                                                |
| $C_{66}^{\text{tetr}}$            | [Pa]                 | $108	imes10^9$         | $108	imes10^9$         | $92 \times 10^{9}$                | $92	imes10^9$          | 0.0     |                                                                  |
| d <sub>33</sub>                   | [C/m]                | $2.46 	imes 10^{-11}$  | $2.46 	imes 10^{-11}$  | $1.57 \times 10^{-11}$            | $1.57	imes10^{-11}$    | ۵.<br>۲ |                                                                  |
| $d_{31}$                          | [C/m]                | $-8.04 	imes 10^{-12}$ | $-8.04 	imes 10^{-12}$ | $-4.32 \times 10^{-12}$           | $-4.32 	imes 10^{-12}$ | -0.5    |                                                                  |
| $d_{15}$                          | [C/m]                | $1.72 \times 10^{-11}$ | $1.72	imes10^{-11}$    | $1.53 \times 10^{-12}$            | $1.53 	imes 10^{-12}$  | -       |                                                                  |
| <b>Y</b> 180                      | [mJ/m <sup>2</sup> ] | 112                    | 208                    | 96                                | 96                     | -1.0    |                                                                  |
| <b>}</b> 90                       | $[mJ/m^2]$           | 24                     | 24                     | (36)†                             | 36                     |         | -1.0 -0.5 0.0 0.5 1.0                                            |
| ξ <sub>180</sub>                  | [m]                  | $4.5 	imes 10^{-10}$   | $4.5 	imes 10^{-10}$   | $6.7 \times 10^{-10}$             | $6.7 	imes 10^{-10}$   |         | $\left(\frac{P_1}{\sqrt{m}} + \frac{P_2}{\sqrt{m}}\right)$ [C/m] |
| ξ90                               | [m]                  | $5.4 	imes 10^{-10}$   | $5.4 	imes 10^{-10}$   | $(4.9 \times 10^{-10})^{\dagger}$ | $4.9 	imes 10^{-10}$   |         | √2 √2                                                            |

PZT: complete agreement between atomistic input and adjusted phase-field model PTO: only 180° domain wall energy too high, otherwise complete agreement

## Second interface: phase-field - micromechanics





#### Input for micromechanical model:

- domain effective material parameters:

$$d^{eff}_{ijk} = C^{eff}_{ijkl} = \kappa^{eff}_{ij}$$

irreversible switching behavior

FE-Implementation:

#### [Su,Landis2007]

degrees of freedom per node:  $u_i, P_i, \phi \Rightarrow$  independent variables  $\epsilon_{ij}, P_i, P_{i,j}, E_i$ 

Neak form: 
$$\int_{V} \left( \sigma_{ji} \delta \epsilon_{ij} - D_i \delta E_i + \eta_i \delta P_i + \xi_{ji} \delta P_{i,j} \right) dV = \int_{S} \left( t_i \delta u_i - \omega \delta \phi \right) dS$$
subdomain (volume) terms boundary terms

→ direct implementation of weak form in COMSOL Multiphysics

## Aim: investigation of typical bulk domain structures

## How to obtain typical domain configurations?

Simulation of a whole grain (Ø~µm): not possible!



real domain structure: no knowledge about pinning, boundaries, ...

bulk behavior: periodic boundary conditions required
 stabilize configuration: apply global strain

- → investigate "typical" domain structures:
  - monodomain
  - ideal 90° domain stack
  - defect-free bulk domain structures
  - influence of charge defects and grain boundaries

#### FE-model:

- 2D
- DOF: P<sub>x</sub>, P<sub>y</sub>, P<sub>z</sub>, u<sub>x</sub>, u<sub>y</sub>, u<sub>z</sub>,Φ
- x/y: periodic boundary conditions (P<sub>i</sub>, u<sub>i</sub>, Φ)
- z-direction: plain strain
- reasonable mesh density:
  5-6 nodes / nm





## **Example 1: Investigation of 90° domain stacks**



From PFM-experiments: typical domain width ~100-200 nm [Fernandéz/Schneider,TUHH]



## **Example 2: Influence of grain boundaries**



#### Motivation: Influence of polarization orientation mismatch at grain boundaries on domain structure



- allows for different
- polarization directions
- can be continued periodically

- $\rightarrow$  4 "grains" rotated between 0° and 45° around (001)-axis
- $\rightarrow$  a<sub>0</sub> = 10nm

## **Reversible DW motion and irreversible switching**



## **Summary & Outlook**





#### Interface ab-initio / phase-field

- new approach for adjustment of energy function parameters solely based on results of atomistic calculations
- additional energy term introduced enabling tetragonal elastic behavior in PTO and PZT
  - successfully applied to PTO and PZT

#### Interface phase-field / micromechanics

- ➔ FE-implementation in COMSOL Multiphysics, including periodic boundary conditions
- ➔ intensive investigation of typical bulk domain structures
- computation of small signal parameters, can be transferred to micromechanical model









# Thanks for your attention!





#### <u>Literature:</u>

[Su,Landis2007]

[Devonshire1954] [Cao,Cross1991] Yu Su, Chad M. Landis: "Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning". Journal of the Mechanics and Physics of Solids, 55 (2007), 280–305 A.F. Devonshire: "Theory of Barium Titanate". Philos. Mag. 40, 1040-1079 (1949) W. Cao, L.E. Cross: "Theory of tetragonal twin structures in ferroelectric perovskites with a first-order

phase transition". Physical Review B, 44(1), 5-12 (1991)