

Fatigue of nanostructured materials

Matthias Funk, Christoph Eberl Karlsruhe Institute of Technology, Germany Seminarvortrag, 18./19.07.2011

Institute of Applied Materials, KIT

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

- Fatigue of nc-Ni: investigation of deformation mechanisms
- <u>In-situ tests on nc-Cu:</u> to observe microstructure during fatigue (with A. Castrup, INT, A. Minor, LBNL, Berkeley, USA)
- <u>Nanotwinned (nt)-Cu</u>: determination of tensile and fatigue properties (with T. Kennerknecht, KIT, Xingjang Chang, Texas, USA)
- Fourier Transform (FT) analysis of fatigue data: tool to quantify nonlinearity and inelasticity (with V. Baroso, J. Höpfner, M. Wilhelm, Polymer Chemistry, KIT)

Grain size > 100 nm

Grain size < 100 nm

$$\sigma = \sigma_0 + \frac{k_{\rm y}}{\sqrt{D}}$$

Properties:

- Enhanced properties following the Hall-Petch relation (strength, hardness, wear resistance)
- Enhanced fatigue properties in HCF
- Reduced ductility due to reduced dislocation activity

[Padilla & Boyce, *Exp Mech,* 2006] [Kumar et al., *Acta Mater,* 2003]

Interests:

- Different deformation mechanisms as in cg materials
- Size / scaling effects
- \succ Grain coarsening \leftrightarrow crack initiation

[Furuya et al., *Scr. Mat.*, 2008] [Simons et al., *Mater Sci Eng A*, 2006]

fatigue of nanocrystalline materials

Fatigue of nc materials

[Mughrabi & Höppel, MRS, 2000]

Fatigue of nc materials

Fatigue of nanocrystalline metals - Motivation

In-situ fatigue of nc-Cu

In-situ TEM

WHAT??? In-situ tests (tensional monotonic and cyclic) in the TEM with nc-Cu

WHY???

- To "see" processes that dominate deformation in nc metals
- To test small sample volumes

8

Samples – preparation and testing

9

Stress-Strain Curve

Fatigue of a notched sample

After 8th cycle

Afeth Strcleycle

Grain coarsening during fatigue

Nanotwinned Copper

Mechanical testing: No necking / necking

[Tests done by T. Kennerknecht]

Karlsruhe Institute of Technology

Fatigued nt Cu

Institute for Applied Materials, KIT

Fourier Transform (FT) analysis

Motivation

+ Quantitative evaluation of nonlinear fraction of fatigue signals (fingerprint)

+ Applicable for any kind of response signal e.g. torsion, bending, tensile...

+ Contactless analysis of fatigue signals (valuable especially for nc and nt materials)

FT-Analysis of fatigue-signals

Fouriertransform-rheology with polymers – harmonics are proportional to nonlinear fraction (Wilhelm)

[Wilhelm et al., Rheol Acta, 1998]

FT- Analysis: setup, parmeters, samples

GABO – Eplexor 150 N

Acquisition parameter

Scan rate: 50 kHz

Box-oversampling: 250 pts.

 \rightarrow Effective sampling rate: 200 Hz

Acquisition time of segments: 60 s

Intent

Correlation: degradation **Ansatz** nonlinearity

Materials & samples

Nanocrystalline Ni (grain size < 100 nm)

Coarse grained Ni (conventional and MSG)

Cross section: ~ 0.056 mm²

Cycling parameter

- 10 Hz

- F_{stat} = 20 50 N and F_{dyn} = up to 23 N
- T = RT (-150 500 °C possible)

FT-Analysis of fatigue test with nc-Ni

- Fatigue of nc-Ni: higher stress amplitudes between 10⁴ and 10⁷ cycles compared to cg-Ni
- <u>TEM in-situ tensile and fatigue testing of nc-Cu</u>: local strain of ~ 9 % and ultimate strength of ~ 2 GPa - grain coarsening in fatigue
- <u>nt-Cu</u>: multiple slip \rightarrow necking. Detwinning in 2 µm around the slip band
- <u>Analysis of fatigue signals with FT:</u> increase of nonlinearity at the end of fatigue life could be used for lifetime prediction (fatigue criteria)

Acknowledgement

- Claire Cishholm, John Turner, Hua Guo for their help at the NCEM
- Tobias Kennerknecht, Ewald Ernst for their help with the bending setup

Thank you for your attention!

Cutting the Film

Off sample: 10 kx (reduced window), 1 - 3 nA Close to sample: 15 kx (round pattern), 50 - 100 pA

nt Cu 11

TEM Lamella with the shearband in the middle

Multiple shear - necking

possible project – nanoporous materials

Nanoporous Co_3O_4 and ordered silicate hard template materials have promising properties for applications in kathalysis industry, to investigate their mechanics:

- in-situ compression tests in the SEM
- ex-situ compression tests in the nanoindenter

FT and peaks of 5 harmonics

Frequency oszillations of 0.1 %, 0.05 Hz are normal (RWE)

Nonlinearity parameter

Loading curves

titute for Applied Materials, KIT

results

0

Grain coarsening Pos 1

Grain coarsening

Fracture Morphology nc-Cu

Transcrystalline cracking in big grains (ufg); d > 100 nm **Intercrystalline** cracking in smaller grains (nc); d < 100 nm

MSG - Motivation

Conventional electrodepositing

MSG - method

Comparison of surface quality

EDM-sample

Electrodeposited Ni-5 at% W (LIGA) [Jürgen Prokop]

Benefit: Less defects in surface No surface layer (oxides, hydroxides) No heat affected zone

Grain coarsening - coalescence

Grain coarsening could be necessary to enable dislocation structures, which leads to failure

Grain rotation could lead to coalescence (grain coarsening).

[Meyers Progr Mater Sci 2006]