

Simulation of Biogenic VOC Conversion with CACHE

Renate Forkel (renate.forkel@kit.edu)

Karlsruher Institut für Technologie Institut für Meteorologie und Klimaforschung IMK-IFU Kreuzeckbahnstr. 19 Garmisch-Partenkirchen Germany

www.kit.edu

CACHE: Canopy Atmospheric CHemistry Emission model

- How are BVOC emitted by trees processed within the forest canopy?
- What is the effect of in-canopy chemistry on fluxes above the canopy?

Prognostic one-dimesional canopy-chemistry-PBL model
Validated for different boreal and mediterranean forests

CACHE's Origin

Developed at IMK-IFU (Fraunhofer Institute für Atmosphärische Environmental Research at that time) within a project coordinated by Rainer Steinbrecher by myself with contributions by Bill Stockwell

IMK-IFU (~ 80 persons) is part of KIT (~ 8000 employees).

Research topics at IMK-IFU are

biogenic C and N cycles, hydrology, GHG trends, air quality

Besides my work with CACHE my current research topics are mostly related to regional air quality modelling with MCCM or WRF/Chem (working group 'Regional Coupling of Ecosystem-Atmosphere Processes', <u>http://imk-ifu/air_quality.php</u>, head P. Suppan).

CACHE includes significant parts of CUPID by John Norman (<u>http://www.soils.wisc.edu/~norman/cupid</u>)

As part of the working group's activities CACHE is currently implemented into MoBiLE (Modular Biosphere Simulation Environment - a framework to link 1-dimensional biosphere models)

CANOPEE Kickoff-Meeting, OHP, 9.-10, 5, 2011

Renate Forkel, IMK-IFU Garmisch-Partenkirchen renate.forkel@kit.edu

Features of CACHE

- Vertical Extension typically –2 to 3000 m, variable number of model layers
- Vertical transport of heat, moisture, and chemical compounds in
- Gas phase chemical transformations (RACM or RACM-MIM)
- Leaf and surface energy balance
- BVOC emission (currently emission factors for 8 plant species)
- Simple NO emission from soil
- Deposition
- Soil temperature and moisture
- External forcings (e.g. clouds)

Reference: Forkel et al, 2006: Trace gas exchange and gas phase chemistry in a Norway spruce forest: A study with a coupled 1-dimensional canopy atmospheric chemistry emission model, Atmos. Environ., 40, S1, S28-S42.

CACHE Input

Canopy information

- LAI
- Height dependence of incremental LAI
- Canopy height, trunk space height
- Plant species (if tree is already implemented)
- If plant is not yet implemented: BVOC emission factors

Meteorological, geographical, and soil information

- Solar radiation at canopy to (or alternatively latitude, longitude, julian day plus cloud information)
- Initial profiles for atmospheric temperature, humidity, wind
- Soil temperature and moisture

Chemistry information

- Initial concentration profiles (as many compounds as available

Information about advection

- Source term

CACHE application

Ratio of effective to potential fluxes at canopy top

Ratio depends on a) BVOC reactivity, b) residence time, c) chemical conditions

CACHE application

MACR production rate at noon

Oak ridge forest (height 20 m)

CACHE Evaluation

- BVOC fluxes
- Temporal courses and profiles of temperature and humidity
- Temporal courses and profiles of chemical compounds

Waldstein, spruce forest

Outlook

- Application of CACHE within CANOPEE
 - Adaptation of CACHE to OHP site
 - CANOPEE case studies
 - Further development (include particulate matter)
- Finalize implementation into MoBiLE

