

Neutronics Analysis of the IVVS/GDC Plug in ITER

U. Fischer, D. Leichtle, A. Serikov

Association KIT-Euratom, Institute for Neutron Physics and Reactor Technology

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Outline

- Introduction
- Computational approach
- Nuclear responses during operation
- Activation, shutdown nuclear heating and occupational dose rates

Summary

Introduction

- IVVS/GDC plug unit
 - In-Vessel Viewing System (IVVS)
 - Laser based optical system for inspections between plasma pulses or during ITER shut-down
 - Glow Discharge Cleaning Unit (GDC)
 - Cleaning and wall conditioning during intermediate ITER maintenance periods
 - Common port for IVVS/GDC plug assumed in this work
- Neutronics analysis to provide input required for design strategy
 - Operational nuclear loads on GDC electrode head
 - Activation, afterheat and radioactive waste
 - Occuptational radation dose distributions around GDC/IVVS after shutdown

IVVS/GDC plug unit

- IVVS probe
 - Laser-based in-vessel viewing and metrology
- GDC electrode
 - Producing glow discharge in the vacuum vessel
- IVVS deployment system

- GDC deployment system
 - To move the GDC in parked position, shielding and working position
- Housing structure
 - Providing the support/guidance to the deployment systems (rails, racks, stops, ...)
- VV port tube
 - Equipped with end flange and feed-troughs for the various services

Computational Approach

- Neutron transport, activation and decay photon transport calculations
 - Transport calculations: Monte Carlo code MCNP5 using FENDL-2.1 nuclear cross-section data
 - Activation calculations: Inventory code FISPACT using EAF-2007 activation cross-section data
- Shut-down dose rate calculations
 - Rigorous-2-step (R2S) approach of KIT coupling transport and activation calculations through automated interfaces
- Nuclear responses
 - Povided in IVVS/GDC geometry cells, and, on superimposed fine mesh grids

Modelling Approach

- Geometry model based on Alite 4.1 MCNP model, provided by ITER IO
- Preliminary MCNP model of isolated IVVS/GDC plug unit provided by F4E, Barcelona
- IVVS/GDC model corrected, updated, and integrated into full Alite torus sector model (lower port).

Geometry model Alite model with integrated IVVS/GDC plug

U. Fischer et al., Nuclear analysis of IVVS/GDC plug in ITER

ISFNT-10, Portland, USA, September, 12-16, 2011

Calculational Details

- MCNP calculations on HPC-FF/JUROPA at FZ Jülich using parallel MPI communication tchnique
- Mesh-based weight window generator for variance reduction
- Typically 2 10⁹ source neutron histories tracked consuming around 6200 CPUh on 560 CPUs of HPC-FF
- Normalisation to 500 MW fusion power
- SA2 irradiation scenario for activation calculations (20 y ITER operation), cooling times: 0s, 1h, 1d, 12d, 100d

	Neutron wall load MW/m ²	Fusion	Norm. to	Norm. to neutron source	
Duration		power	500 MW	rate at 500 MW	Repetition
2 yr	0.003	2.68	0.00536	1.057E+17	
10 yr	0.0231	20.6	0.0412	8.124E+17	
0.667 yr	0	0	0	0.000E+00	
1.325 yr	0.0465	41.5	0.083	1.637E+18	once
3920 s	0	0	0	0.000E+00	
400 s	0.56	500	1	1.972E+19	17 times
3920 s	0	0	0	0.000E+00	3 times
3920 s	0	0	0	0.000E+00	
400 s	0.784	700	1.4	2.761E+19	3 times

U. Fischer et al., Nuclear analysis of IVVS/GDC plug in ITER

ISFNT-10, Portland, USA, September, 12-16, 2011

9

Operational Nuclear Responses

Neutron flux distribution

- Total neutron flux density from 10¹⁴ (at first wall) to 10⁵ cm²s⁻¹ (at bioshield level) over length of about 11 m
- 10¹³ cm²s⁻¹ at GDC tip

Nuclear heating

- Photon contribution dominant for structural materials (steel, copper)
- Maximum ≈ 0.6 Wcm⁻³ in copper cap of GDC tip
- 3.2 kW total nuclear heating power in GDC electrode (Be, CuCrZr, steel)

ISFNT-10, Portland, USA, September, 12-16, 2011

Activation and waste classification

- Activity inventory
 - Calculated for all IVVS/GDC components 12 days after shutdown assuming full SA2 irradiation scenario.
- Radioactive waste classification
 - According to French radwaste regulations, classification depends on specific nuclide activity, half-life and radiotoxicity
 - LMA (maximal level of activity) discriminates low level active A-type from medium level B-type waste
 - All IVVS/GDC components, except Be protective layer of GDC probe, were shown to be classifiable as low level A-type waste
 - Only Be cover will be medium level B-type waste with specific activity of 3.85 10⁸ Bq/g (LMA limit: 2 10⁵Bq/g) due to tritium accumulation

Shutdown heating and absorbed decay photon radiation dose

- Nuclear heating after shutdown calculated for IVV/GDC material cells and on superimposed mesh assuming SA2 operation of ITER
- Afterheat dominated by decay photon heating
- Maximum is 4mW/cm³ in Cu heat sink of GDC probe, i. e. less than 1% of respective maximum operational heating.
- Decreases to values in the order of 10⁻⁸ W/cm³ at the entrance to the bioshield

Decay photon heating distribution [W/cm³] at shutdown

Shutdown heating and absorbed decay photon radiation dose

Decay photon and operational nuclear heating rates (in Gy/s) at the GDC tip (SA2 20y irradiation scenario)

Material	Operational dose [Gy/s]	Absorbed decay photon radiation dose [Gy/s]		
		0 s	12d after shutdown	
CuCrZr heat sink	67.3	0.47	3.9 10 ⁻³	
Be layer	286	1.4	4.1 10 ⁻³	
SS316 core rod	24.1	0.08	1.2 10 ⁻³	
SS316 shaft	4.5	0.03	6.4 10-4	

- Total absorbed dose during 20 y ITER operation: 1100 MGy in CuCrZr heat sink and 400 MGy in steel core rod.
- At 12 d after shutdown, absorbed decay photon radiation sums up to 0.01 MGy (Cu heat sink) and 0.004 MGy (steel core rod).

Occupational shutdown dose rates

- Assessment of shutdown dose rate distribution in and around IVVS/GDC plug using R2S approach
- Required to ensure safe handling of activated plug during maintenance periods including extraction and transport to Hot Cell
- Dose rate dominated by heavily activated GDC head with peaking values around 5 Sv/h
- 1.5 m behind GDC head doserate falls below 50 mSv/h
- Further downstream, doserate is less than 5 mSv/h
- Recommendation to facilitate maintenance: separation of GDC head from other parts of the system

Shutdown dose rate distribution [Sv/h] 12d after shutdown following 20y SA2 ITER operation

Summary

- Detailed neutronics analysis performed to provide input to design process of IVVS/GDC system.
- Focus on operational loads, activation, and decay photon radiation doses.
- GDC head gets heavily activated and dominates decay gamma activity of the entire plug and the resulting shutdown dose rate around the plug.
- It is recommended to separate GDC head from the system prior to further operations in Hot Cell.
- All IVVS/GDC components, except Be protective layer, were shown to be classifiable as low level radwaste of A-type according to French regulations.

Acknowledgement

- The work leading to this publication has been partially funded by the European Joint Undertaking for ITER and the Development of Fusion Energy (Fusion for Energy) under contract No. F4E-OPE-144. The views and opinions expressed herein reflect only the author's views. Fusion for Energy is not liable for any use that may be made of the information contained therein.
- The analyses made use of an adaptation of the Alite MCNP model which was developed as a collaborative effort between the FDS team of ASIPP China, ENEA Frascati, JAEA Naka, and the ITER Organization.