

### Microwave sintering of Ba<sub>0,6</sub>Sr<sub>0,4</sub>TiO<sub>3</sub> Thick-Films

F. Paul, W. Menesklou, J. R. Binder, G. Link, X. Zhou, J. Haußelt

Laboratory for Materials Processing Institute of Microsystems Engineering - IMTEK University of Freiburg, Germany



Zä

CORE

## Introduction







FREIBURG

### Introduction



BURG

### **Decrease of permittivity**

tunability : decrease of permittivity through external el. field

tunability 
$$\tau(E^*) = \frac{\Delta \mathcal{E}_r(E^*)}{\mathcal{E}_r(E=0)}$$





# Motivation



### functionality

• permittivity of Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub> shows nonlinear tunability under static E-field



cross-section of coplanar waveguide

### application

tunable RF-components

- reconfigurable circuits
- phaseshifters (delay lines)
- electronically steerable oszillators & filters



#### passive phase array antenna



H. Maune et al., Microsystem Technology 17 (2011) 213-224

## Microwave sintering (MWS)



#### conventional



#### heating from "outside" in conventional sintering

inverse heating profile in MWS

#### microwave



- regions with high dielectric loss heat up stronger
- short processing time and high heating rates



## **Microwave sintering (MWS)**



BURG

**N** 



Gaussian m

G. Link, IHM at Karlsruhe Institute of Technology

## **Specimen fabrication**





### Microstructure **SEM cross-sections**





- calcined 700°C, 1h
- sintered conventionally 1200°C, 1h
- Calcined 700°C
- (30 GHz) 1200°C, 20Min.
- calcined 1100°C, 1h
- sintered by microwave
  sintered conventionally 1200°C, 1h

# Microstructure



grain sizes and porosities



| name of film / | mean grain size  | $\sigma_{\!\scriptscriptstyle D}$ (nm) | mode | porosity | thickness |
|----------------|------------------|----------------------------------------|------|----------|-----------|
| sample         | <i>⟨D</i> ⟩ (nm) |                                        | (nm) | (%)      | (µm)      |
| BST-CT700-CS   | 349              | 85                                     | 319  | 41       | 10,5      |
| BST-CT700-MWS  | 438              | 109                                    | 399  | 34       | 15,5      |
| BST-CT1100-CS  | 443              | 116                                    | 399  | 33       | 19        |

UNI FREIBURG

### **Dielectric properties** Permittivity





- Low  $\epsilon_{\rm r}$  compared to bulk ceramics
- Decreased temperature dependence
- Broad phase transition peaks
- High calcination Temp.: increases  $\epsilon_{\rm r}$
- MWS.: increases  $\epsilon_r$
- $T_c$  is shifted to lower temperatures

# **Dielectric properties**



fitted parameters (Vendik model)

|               | <i>T<sub>C</sub></i> / K | ξs       | mean grain size / | porosity / % |
|---------------|--------------------------|----------|-------------------|--------------|
|               | (±3)                     | (±0.005) | nm                |              |
| BST-CT700-CS  | 223                      | 0.13     | 349               | 41           |
| BST-CT700-MWS | 240                      | 0.055    | 438               | 34           |
| BST-CT110-CS  | 230                      | 0.073    | 443               | 33           |
| BST60 ceramic | 270                      | 0.01*    | -                 | _            |

- higher crystal quality after CT= 1100°C and MWS
- more bulky behavior after CT= 1100°C and MWS (T<sub>c</sub>,  $\xi_s$ )
- \*BST60 bulk-ceramics exhibit much lower values of  $\xi_s$  as suggested by Vendik ( $\xi_s$  >0.1)



### **Dielectric properties** tunability





- high tunability due to high calcination temperature and microwave sintering
- increased tunability, compared to bulk ceramics with similar grain size



# Conclusion



- thermal treatment plays a crucial role in processing of BST ceramics and thick films
- Dielectric properties are heavily dependent on microstructure and crystal quality
- porous BST thick films show decreased
  - permittivity
  - Tc
  - temperature dependence
  - cristal quality as bulk ceramics
- MWS is a high impact sintering method, comparable to long lasting conventional heating and sintering





Thank you for collaboration and help:

- Dr. Menesklou, Dr. Binder, Dr. Link, Dr. Zhou, Karlsruhe Institute of Technology
- Prof. R. Jakoby, Dr. H. Maune, Dr. Giere, Microwave Engineering, University of Darmstadt

These results will be published in the Proceedings of ISIF 2012

