

State-of-the-art in climate modelling and CC impact analysis in EA

Patrick Laux

IINSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, GARMISCH-PARTENKIRCHEN, GERMANY

www.kit.edu

Patrick Laux

Post-Doc Position

KIT, IMK-IFU Department *Regional Climate Systems* at IMK-IFU

Academic background

MSc. (Diploma) in *Applied Environmental Sciences* PhD at KIT, IMK-IFU, Garmisch-Partenkirchen

Research interests

Statistical and Dynamical Downscaling of GCMs Bias correction of precipitation Hydrometeorology: Precipitation variability in complex terrain and data poor regions Agricultural impact studies

• Geographical Focus: Alpine Space, Africa, South East Asia

Why do we need climate change information?

Food safety and quality

management on fa

Food production

Stability of Food Security

Emergency and disaster planning e.g. management of pest and disease outbreaks

Stability of Food Security

Bio-physical factors such as climate, biology, hydrology,

Good conditions for production: Water supply

Good conditions for production: Weather

... but also: socio-economic aspects

Emergency and disaster planning e.g. flood and drought mitigation

Emergency and disaster planning e.g. management of pest and disease outbreaks

Main drivers for Food Insecurity in EA

Economy (e.g. GDP) mainly depends on agricultural sector (highly vulnerable to climate, CC and CV)

- Limited agricultural productivity (low soil fertility, pest, crop diseases, lack of fertilizers)
- Climate:
 - → **Agriculture:** High rainfall variability on different scales (Hulme et al., 2005)
 - \rightarrow Health:
 - Droughts/Floods contribute to diseases such as diarrhoe, cholera (Few et al., 2004) through poor nutrition
 - Diseases such as Malaria spreads into new areas such as highlands of Central Kenya (Chen et al., 2006; Pascual et al., 2006)

Early warning system: Level Food Security for 04/2012

Source: FEWS-NET

Impacts of CC/CV

Climate Change is expected to aggravate the situation in EA

Source: IPCC AR4, 2007

Water availability Health Agricultural productivity Biodiversity

... but:

Little information about recent climate and expected future climate available!

Rice Production in EA

RICE-EA workshop, Nairobi, Kenya 17.04. – 19.04.2012

9

20.02.2012

PRESENT CLIMATIC CONDITIONS IN EA

Climate in EA

- Arid to humid conditions
- Rainfall is limited to seasons with mono- to bimodal distribution
- High spatial and temporal rainfall variability on different scales
- Alternating wet & dry periods: wet 1960s and dry 1980s

High spatio-temporal rainfall variability (Kenya)

OND rainfall amount [mm/m] (1961-1990)

Source: Schreck & Semazzi, 2004

Past Climatic Trends in EA

Temperature:

- T_{min} increased faster than T_{max} and T_{mean} (e.g. Conway et al., 2004)
- Decreasing temperature trends at coastal (also inland lakes) stations from 1960-2000 (King'uyu et al., 2000)

Rainfall:

- La Nina years tend to become drier and El Nino years tend towards average in MAM season (Funk, 2010) induced by shift of large scale circulation (warming western Indian Ocean)
- EA has experienced intensifying dipole character on decadal scale: increasing (decreasing) patterns over northern (southern) sector (Schreck and Semazzi, 2004)

FUTURE CLIMATE CHANGE PROJECTIONS

GCM PROJECTIONS

Projected Temperature Anomalies (2001-2100)

Source: IPCC AR4, 2007

AOGCM Projections

ΔT (2080-2099 - 1980-1999): 21 AOGCMs & A1B

Source: IPCC AR4, 2007

CC signal: approx. +3°C by end of 21th century (highly certain)

Signal relatively homogeneous in space and time

ΔP (2080-2099 - 1980-1999): 21 AOGCMs & A1B

Tendency of increased rainfall (highly certain for DJF)

$\Delta T \& \Delta P$: 21 AOGCM & A1B

EA	Ten	Temperature Response [°C]				Precipitation Response [%]				* Extreme Seasons [%]			
	Min	25	50	75	Max	Min	25	50	75	Max	Warm	Wet	Dry
DJF	2	2.6	3.1	3.4	4.2	-3	6	13	16	33	100	25	1
МАМ	1.7	2.7	3.2	3.5	4.5	-9	2	6	9	20	100	25	4
ALL	1.6	2.7	3.4	3.6	4.7	-18	-2	4	7	16	100		
SON	1.9	2.6	3.1	3.6	4.3	-10	3	7	13	38	100	21	3
Annual	1.8	2.5	3.2	3.4	4.3	-3	2	7	11	25	100	30	1

modified from IPCC AR4, 2007

* Values shown if at least 14 out of 21 agree on increase/decrease in extremes. A value of $\leq 5\%$ indicates no change (nominal value for control period by construction)

18

FUTURE CLIMATE CHANGE PROJECTIONS

RCM PROJECTIONS

Regional Rainfall Anomalies

Ensemble of 8 dynamically downscaled AOGCMs

KIT, Institute of Meteorology and Climate Research

RICE-EA workshop, Nairobi, Kenya 17.04. – 19.04.2012

Regional Rainfall Anomalies

Summary: CC Simulations for EA

- Regional projections generally agree with AOGCM projections
 - Past rainfall variability could be reproduced using RCMs (except for Northern Kenya in MAM)
 - Weak increase at coast, high increase in northern regions (OND)
- Warming larger than global mean (all seasons) with drier subtropical regions warming more than moister tropics (very likely)
 - Middle distribution indicates +2.5°C to +3.4°C (annual avg)
 - Slightly higher increase in boreal summer than winter
- Increase in annual rainfall, more pronounced in boreal winter (likely)
 - Significant increase in rainfall of 10% 30%, confirmed by Hulme et al.(2001) & Ruosteenoja et al. (2003)
 - Higher tails: +38% for SON
 - Extremely wet seasons increased (about 4 times)

Research Gaps: Climate Modeling

- GCM projections too coarse to capture regional/local climate variations
- \rightarrow RCM at scale meaningful for decision makers/stakeholders
- \rightarrow Bias correction methodologies
- Limited research on changes in extreme events
- \rightarrow Extreme Value Theory
- Future shifts of climate regimes
- \rightarrow Improved analysis of ENSO
- Impact of LUC on climate and vice versa
- \rightarrow Including dynamic vegetation models and feedbacks from aerosols in climate models
- \rightarrow "What-if" LUC scenarios

Research Gaps: Climate Modeling (cont'd)

- Seasonal Climate Prediction
- → Quantitative assessment for decision makers/stakeholders
- \rightarrow Role of teleconnections (ENSO, etc.)

source: International Research Institute (IRI), 2012

CLIMATE CHANGE IMPACT STUDIES

CC Impact Studies

- Many studies dealing with impact of climate change on crop productivity on different scales (e.g. Mati, 2000, Lobel, 2008, Laux et al., 2010)
 - \rightarrow low number of studies for Africa and EA
- Rare number of studies accounting for additional factors such as changes in supply patterns under different trade scenarios (Lotze-Campen et al., 2010), consumption, prices, and trade (Nelson et al., 2009)
- Missing studies accounting additionally for regional and local supplyand-demand projections

Agricultural Impact Studies for Africa

150 agricultural productivity [%] 100 sub-region pixel statistical Africa Expected change of econometric process-based 50 0 Tho10 Seo08 Mue09 Tho09 Pae08 Liu08 Seo08 Tho09 Tho10 Seo08 Ben08 Wal08 50 Sch10 Lob08 Tan10 Sch10 Tho10 = Seo09 -100 Nel09 Ben08 2080s^{Cli07} 2050s 2020s 2030s 2060s 2100s

Source: Müller, 2011

Agricultural Impact Studies for Africa (cont'd)

- By 2100, large parts of Africa may undergo negative changes: parts of Sahara have to expect losses of 2-7% of GDP, Western and Central Africa 2-4% of GDP (Mendelsohn et al., 2000)
- SRES B1: Marginal areas will become more marginal, especially in context of rainfall seasonality such as onset & intensity of rains (e.g. Jones & Thornton, 2003; Huntingford et al., 2005; Thornton et al., 2006)

Karlsruher Institut für Technologie

Agricultural Impact Studies for EA

Maize productivity (2050-2059 - 2000-2009)

Moore et al., 2012

Agricultural Impact Studies for EA

20% - 30%

- Heterogeneous responses in climate can result from homogeneous climate drivers
- Effects of LUC/LCC can significantly influence crop yields (similar order than GHG effects)
- Process-based fine resolution framework needed to capture this variability
 - Regional variability may be masked at large scale (food production risk mainly associated to extreme events)
 - In agreement with Jones and Thornton, 2003; Thornton et al., 2009

(c) Combined Effects

GHG dominant

Moore et al., 2012

Agricultural Impacts in EA

- Growing season e.g. in Ethiopian highlands may lengthen (Thornton, 2006)
- By the 2080s, a significant decrease in suitable rainfed land extent and production potential for cereals is expected (Fischer et al., 2005)
 - Semi-arid to arid could increase by 5-8% (60-90 million ha)
 - Wheat production is likely to disappear
- By end of 2030, Kenyan maize yields are predicted to increase / decrease depending on the location, yields changes relatively low <500 kg/ha (Mati, 2000)

ΔProduction (2020-2039 – 1980-1999)

Lobell, 2008

20 GCM projections, 3 scenarios and statistical crop models

Hunger importance ranking (HIR):

Red: more important Orange: important Yellow: less important

Research Gaps: Agricultural Impact Modeling

- Number of model applications for rice in EA
- Model implementation:
 - Plant pests/diseases (type and prevalence of pests)
 - Extremes: temperature thresholds
 - Parameterization of new varieties (NERICA)
 - Improved (adapted) management options (Planting date, SRI)

Lack of coupled approaches for adaption / risk reduction:

- → Integrated climate-water-crop-economic approach accounting for global, regional, and local projections
- Discrepancies field experiments and model results (e.g. CO₂ fertilization effect)

Research Gaps: Impact Modeling (cont.'d)

*Or "water-limited yield potential" in the case of rainfed systems

What is the potential yield in EA under present and future conditions?
Identification of reasons for YG_M to improve the models, but also to improve the yields of the farmers

Motivation RICE-EA cont.

Source: IPCC AR4, 2007

Motivation RICE-EA

- Poor rains in last two seasons have led to one of most severe droughts in EA (food insecurity across Kenya, Ethiopia, Somalia, Uganda, Djibuti)
- Climate plays crucial role in day-to-day economic development of Africa particularly for agricultural and water resources sector at different scales (regional, local, household)
- Agricultural productivity, one of most important factors for food security, strongly linked to climatological conditions in EA (mostly seasonal rainfall amount, but also intraseasonal distribution of rainfall)
- Agriculture already challenging under present climatic conditions: Impact of climate change?

Motivation RICE-EA cont.

- Many studies dealing with impact of climate change on crop productivity on different scales (e.g. Lobel, 2008, Laux et al., 2010)
- Rare number of studies accounting for additional factors such as changes in supply patterns under different trade scenarios (Lotze-Campen et al., 2010), consumption, prices, and trade (Nelson et al., 2009)
- Missing studies accounting additionally for regional and local supplyand-demand projections

Agricultural facts ...

		Popula	tion	A	rea	GDP		
	Total	Density	Active in Agriculture	Total	Cultivated	Per Capita	Agric. Fraction	
	(1000 inh.)	(inh./km²)	(%)	(1000 ha)	(%)	(US\$)	(%)	
Europe	732,396	32	6	2,300,711	13	29,026	2	
Africa	981,127	33	54	3,004,568	8	1,592	16	
SSA	817,158	34	59	2,429,279	9	1,222	18	
EA	211,414	72	77	292,718	14	481	33	

Source: FAO-AQUASTAT, 2010

	Area irriga	equippe tion (mi	ed for io ha)	Irrigated land (% of cultivated land)				
	1970	1990	2009	1970	1990	2009		
Europe	15.1	25.7	22.7	4.6	8	7.7		
Africa	8.4	11	13.6	4.7	5.4	5.4		
SSA	4.1	5.9	7.2	2.6	3.3	3.2		
EA	0.2	0.4	0.6	0.7	1	1.5		

Source: FAO-AQUASTAT, 2010

Agricultural facts ... cont.

Lack of Information for (East) Africa

Climate: Impacts on human Health

- Drouhts/Floods contribute to deseases such as diarrhoea, cholera (Few et al., 2004) through poor nutrition
- Malaria is spreading into new areas such as highlands of Central Kenya (Chen et al., 2006; Pascual et al., 2006)

Increased Vulnerability EA

Malaria transmission:

- Increased temperature and rainfall in Northern sector (during SON) will increase malaria transmission by reduction in larval development length
- LUC: swamp reclamation for agricultural use, deforestation in highland of western Kenya (Munga et al., 2006; Afrane et al., 2005)

Complementary material to RCM simulations by KMNI

Health Aspects

Source: IPCC AR4, 2007

