

HELMHOLTZ

A scheme for assessment of quality and uncertainty for long-term eddy-covariance measurements

Clemens Drüe³, M. Mauder¹, M. Cuntz², A. Graf⁴, C. Rebmann², H. P. Schmid¹, M. Schmidt⁴, and R. Steinbrecher¹

- ¹ Institute for Meteorology and Climatology Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- ² UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany
- ³ Trier University, Environmental Meteorology, Trier, Germany
- ⁴ Forschungszentrum Jülich, Institute for Bio- and Geosciences Agrosphere, Jülich, Germany

Introduction – Motivation

→ Goal: measure transports / fluxes between ecosystem and atmosphere

>TERENO Project produces extensive amount of data

- → 10+ sites running for 10+ years
- → Data rate 20 Hz: 1.89216 x 10¹⁰ lines per year

→ Requirements:

- Automatically provide usable output
- → Yield comparable flux data
- Provide simple quality flags & quantitative error estimates

Comprehensive quality assessment scheme

→ detect instrumental failure

Umweltmeteorologie

Environmental

- check validity of assumptions for EC method
- quantify errors / uncertainty of flux values
- Assess representativeness

Second second

- → Simple flag system: good (0) / moderate (1) / bad (2)
 - → Used by Vickers&Mahrt (1994) and CarboEurope-IP project
 - → "moderate" data: not good for turbulence research, but ok for long-term observation

Universität Trier

Universität Trier

→ Tests on high-frequency data

Umweltmeteorologie

Environmental Met

- → Diagnostic values from instruments
- → Spike removal using MAD
- → Plausibility screening vs. instrumental / physical limits
- → Rejected data replaced by NaN

→ Calculation of fluxes etc.

- Jusing well established corrections
- → Schotanus, WPL, ...

Quality control (2/2)

Universität Trier

Tests on statistics (per averaging period)

- → 90% high frequency data available (per avg. period)
- → Assumptions of the EC method (after Foken&Wichura,1996)
 - → Stationarity of the means

Umweltmeteorologie

Environmental

- Integral turbulence characteristic (well-developed turbulence)
- → Zero mean vertical wind

One flag per flux / averaging period

- → Account for interdependence of conversions & corrections
 - → by mutually increasing flag values

Errors and uncertainty – Overview

Instrumental noise 1)

Universität Trier Umweltmeteorologie Environmental Meteorology

Random error

3) Systematic error

Random Error

Representativity – Source area 4)

Errors and uncertainty (1/2)

Environmental Meteorolog

Umweltmeteorologie

Instrumental noise

- → Only present in 1st term of auto-covariance
- → Non-correlated across time series ⇒ error propagation

→ Random error

Universität Trier

- → generally ~ $1/\sqrt{\#}$ independent obs
- → What is independent ? Integral length scale ?
- → Scheme after Finkelstein&Sims (2001)
 - variance of a covariance as function of its auto-covariances and cross-covariance
 - -> calculated from detrended (copy of) dataset

6

3

2

1

5

auto-co-variance

Linear (step 1-4)

10

noise 1

-5

-10

Environmental Meteorolog

Umweltmeteorologie

→ Covariance does not represent total surface flux

- → in presence of large eddies (e.g. "attached" to surface)
- → Indirect estimation by energy balance ratio EBR

$$\begin{split} & EBR = \sum_{i=1}^{K} (H_i + \lambda E_i) \middle/ \sum_{i=1}^{K} (R_{n,i} - G_i - J_i) \\ & \sigma_F^{Sys} = F \cdot \left(\frac{1}{EBR} - 1\right) \qquad R_g > 20 \text{ W m}^{-2} \end{split}$$

→ Representativity – Source area

- → Footprint-Model by Kormann&Meixner (2001)
 - → Analytical, robust and fast
- → Output fraction from area of interest

Universität Trier

Test data sets

Site	Ecosystem	Sensor height	Sensors	Data period (approx)	
Fendt	grassland, pre-alpine	3.5 m	CSAT3 & LI-7500	Aug 2010	
Graswang	grassland, pre-alpine	3.5 m	CSAT3 & LI-7500	Aug 2010	
Lackenberg	Wind throw, low mountain range	9.0 m	CSAT3 & LI-7500	Aug 2010	
Wetzstein	spruce forest, low mountain range	30.0 m	Solent-R3 & LI-6262	Jul 2006	
Selhausen	Farmland, Lowlands	2.5 m	CSAT3 & LI-7500	Jun 2011	

Universität Trier

→ Example: F_{CO2} at Graswang

Umweltmeteorologie

Environmental Meteorology

→ Flagging accords with visual inspection

→ Typical flagging:

Results – Errors

Universität Trier

Umweltmeteorologie

- → Noise errors on average << 1%</p>
 - → maximum relative noise error 9% (!)
- → Relative random error
 - → associated to quality flag
- → Systematic errors
 - → Lackenberg small ↔ most homogeneous

20BLT Boston, 09-13 Jul 2012

Universität Trier Umweltmeteorologie Environmental Meteorology

- → Comparison to MAD-based outlier test (Papale et al. 2006)
 - number of detected values/available data after QC
 - → total 1440 data were available per data set

	Fendt	Graswang	Lackenberg	Selhausen	Wetz-stein
τ	1/1277	5/1348	0/1044	1/1383	2/1395
н	1/916	7/1121	21/882	9/1262	19/1153
λΕ	2/820	5/850	7/762	13/1127	18/1059
F _{co2}	3/757	9/888	8/765	7/1113	2/1064

Universität Trier

Umweltmeteorologie

The quality assessment scheme presented is

- → effective automatic for long-term EC measurements
- combination of methods is improved compared to established ones
- → will become standard in then TERENO project
- → further development possible if science advances

→ Regular visual inspection of data still required

Subset Series Series

Thank you !

Universität Trier Umweltmeteorologie Environmental Meteorology

PS: Where can I get it ?

- Publication in review at Agricultural and Forest Meteorology.
- is available in software TK3.1 (Bayreuth University, KIT: matthias.mauder(§)kit.edu),
- Extension ECFrame (Trier University) for ECPACK (Wageningen University) is in beta state,
- ✓ will be available as part of EddySoft (Max Planck Institute for Biogeochemistry, Jena)

20BLT Boston, 09-13 Jul 2012

Clemens Drüe e al. -- A scheme for assessment of quality and uncertainty for long-term eddy-covariance measurements