

Regional Climate and Hydrology Research at KIT/IMK-IFU

Patrick Laux

IINSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, GARMISCH-PARTENKIRCHEN, GERMANY

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

The IMK-IFU Institute

... is a remote lab of KIT
MK-IFU: Amospheric Environmental Research
Around 100 employees

- Research focus on Biosphere-Hydrosphere-Atmosphere Interactions
- Further labs on Mount Zugspitze (atmospheric sounding)
- Setup and operation of TERENO prealpine observatory
- High performance computing: e.g. regional climate & hydrological simulations
- Employees & students from all continents (except Antarctica)
- Budget of ≈ 5+2.5 Mio €/a (based funds + third party funding)

Regional Climate and Water Research

Specific Research Questions

- Closing the regional water cycle: development of *fully coupled atmosphere-hydrosphere model systems*
- Observation & distributed modeling of *joint water and energy fluxes* in complex terrain
- Quantification of spatio-temporal precipitation variability in complex terrain and poorly gauged regions
- Experimental hydrological process analysis using microwave devices (precipitation analysis) and stable isotopes (water origin and process separation)

Regional Climate and Water Research

Methods: Modeling Approaches

- **Dynamical Downscaling** of global meteorological fields (reanalyses, forecasts, climate scenarios): *WRF, COSMO-CLM*
- **Statistical Downscaling**: Copula-based multivariate methods, Canonical Correlation Analysis, Circulation Pattern Analyses
- Distributed water- and energy flux modeling: WaSIM-ETH, NDHMS, GEOtop
- Coupled Atmospheric-Hydrological Model Systems: WRF-Hydro, WRF-NoahLSM-HMS

Regional Climate and Water Research

Methods: Measurement Techniques

- Water and energy fluxes via TERENO infrastructure: EC-Flux stations, climate stations, lysimeters
- Precipitation-Radar: DWD Hohenpeissenberg & TERENO
- **Microwave links**: from *commercial cell phone companies (Ericsson)* & *own fully polarimetric phase coherent devices*
- Stable water isotopes: *Picarro Analyser for* δ 180 and δ D

Active in climate and water sensitive regions worldwide

Recent Third-Party Funded Projects

DFG-NSFC: "Long Term Land Use - Precipitation Feedbacks in the Hai River and Poyang Lake Regions" (PreFeed), 2010-2013

DFG-Priority Programme 1257, "The Global Continental Water Balance Using GRACE Spaceborn Gravimetry and High Resolution Consistent Geodetic-Hydrometeorological Data Analysis", 2007-2013

Helmholtz Gemeinschaft, Virtual Institute: "Regional Precipitation Observation by Cellular Network Microwave Attenuation and Application to Water Resources Management", 2008-2012

Helmholtz Gemeinschaft: "Regionale Klimainitiative" (REKLIM), 2010-2013

BMBF: "West African Science Service Centre for Climate Change and Adapted Land Use" (WASCAL), 2010-2014

BMBF: "Decadal Prediction of African Rainfall and Atlantic Hurricane Activity", 2011-2015

BMBF: "Food Security in Eastern Africa: Steering Rice Production towards Climate Resilience" (RICE-EA), Demonstration Project, 2012

BMBF: "Landuse and Climate Change Interactions in Central Vietnam" (LUCCi), 2010-2014

BMBF: "GLOWA-Jordan River: An International Study of the Future of the Water Scarce Jordan River Basin under the Impact of Climate and Global Change", 2006-2011

StMUG & Nationalparkverwaltung Berchtesgaden: "Water Balance and Physically Based Snow Modeling for the National Park Berchtesgaden", 2008-2012

CEDIM: "Flood Hazards in a Changing Climate", 2008-2011

KfW: "Impact of Climate Change on the Figeh-Spring, Damascus/Syria", 2010-2012

Case study: Climate simulations for Central Vietnam

- LUCCi Project
- WP3: Climate simulations
- Further activities

Land Use and Climate Change interactions in Central Vietnam (LUCCi)

Project duration: July 2010 – July 2015

2010-2013: Research phase 2013-2015: Implementation phase

Coordination:

Institute for Technology and Resources Management in the Tropics and Subtropics, ITT, at the Cologne University of Applied Sciences

Main German partners of the consortium:

- Department for Remote Sensing, Friedrich-Schiller University of Jena
- Department of Geoinformatics, Hydrology and Modelling, Friedrich-Schiller-University of Jena
- Institute of Environmental Engineering and Ecology, Ruhr University Bochum
- Karlsruhe Institute of Technology (KIT, IMK-IFU)
- Secretariat for the International Hydrological Programme (IHP) of UNESCO and the Hydrology and Water Resources Programme (HWRP)

Main Vietnamese partners:

- Vietnam Academy for Water Resources, Centre for Training and International Cooperation
- Hue University of Agriculture and Forestry
- Ministry of Agriculture and Rural Development (MARD)
- Ministry of Natural Resources and Environment (MONRE)
- Ministry of Science and Technology (MOST)

International institutions:

- International Rice Research Institute, IRRI, CGIAR
- UN REDD, Hanoi at MARD
- UNDP Disaster Risk Management Programme

LUCCi objective

WP3 activities: Analysis of observation data

Historical trend analysis (P, T_{min}, T_{max}, R)

$$\rightarrow$$
 Significant increase of P

- → Magnitude higher at coasts
- \rightarrow Signal dominant in winter (DJF)

 \rightarrow Variability highest during winter (DJF) and Spring (MAA)

Decadal trend analysis

ID	Station	Sen's slope [mm/year]		
		1980-1989	1990-1999	2000-2009
1	AiNghia	-127*	117	116
2	CauLau	-73	64	98
3	GiaoThuy	-103	14	54
4	HoiAn	-59	49	19
5	TamKy	-116	203*	77
6	CamLe	-121+	145	NA
7	QueSon	-115	82*	-219
8	NongSon	-148*	175*	35
9	HoiKhach	-114*	NA	60
10	DaNang	-101	59+	32
11	ThanhMy	-103*	189*	4
12	SonTan	-128+	129+	79
13	TienPhuoc	-69	166*	NA
14	TraMy	-126	112	111
15	KhamDuc	-200	140	190
16	Hien (Trao)	-286**	34	146

 \rightarrow Decadal differences:

Decrease in 1980s High increase in 1990s Increase in 2000s (n.s.)

significant at p=0.10 (+), p=0.05 (*), and p=0.01 (**)

Motivation: why do we need process-based RCM simulations?

- Sparse observation network of hydrometeorological data
 - Few hydrometeorological stations (located in lowlands)
 - Low sampling rates (daily)
- Stakeholders demand delineation of climate change adaptation strategies
 - Flood protection measures (adaptation of infrastructure)
 - Future hydropower potential (low flows)
 - > Water availability for agriculture
- → High resolution representation of hydrometeororological variables (P, T, etc.) for past and future

WRF (Weather Research and Forecast Model)

Atmospheric compartment

Horizontal exchange Next generation atmospheric modeling system between columns of momentum, heat **Developed at NCAR** and moisture Non-hydrostatic Successor of the Mesoscale Model 5 (MM5) Vertical exchange Various applications: between layers ✓ Weather forecasts ✓ (Long-term) climate simulations ✓ Different scales Atmospheric and (sub)surface compartments:

Atmosphere – explicit calculation of

WRF – (sub)surface compartment

Surface and subsurface compartment Unified Noah Land Surface Model \triangleright Lower boundary: SVAT-model for (Pan and Mahrt, 1987; Chen et al., 1997; Chen and Dudhia, 2001, Ek et al., 2003) surface and subsurface water budgets Canopy Water Transpiration Evaporation Turbulent Heat Flux to/from Snowpack/Soil/Plant Canopy Joint atmospheric-terrestrial water \succ Precipitation Condensation 011 budget calculations Deposition/ vegetation Sublimation Direct Soil to/from Evaporation snowpack Evaporation from Open Water Runoff on bare Snowmelt soil $\Delta Z = 10$ cm Soil Heat Flux Soil Moisture $\Delta Z = 30 \text{ cm}$ Flux Soil Ice & Frozen Soil Processes Internal Soil Internal Soil $\Delta Z = 60 \text{ cm}$ Interflow Heat Flux Moisture Flux $\Delta Z = 100 \text{ cm}$ Gravitational Flow

Model Equations NOAH LSM

Institute of Meteorology and Climate Research

WRF Setup

Domain1:

- horizontal: 99 x 99 grid points with a resolution of **45 km**
- vertical: 50 layers up to 5000 Pa
- time step: 180 s

Domain2:

- horizontal: 142 x 145 grid points with a resolution of **15 km**
- vertical: 50 layers up to 5000 Pa
- time step: 120 s

Domain3:

- horizontal: 66 x 75 grid points with a resolution of **5 km**
- vertical: 50 layers up to 5000 Pa
- time step: 40 s

Transient WRF simulation from 1960 - 2050 WRF results strongly depend on subgridscale parameterizations

Comparison Parameterization Runs: P

Systematic WRF Experiments: Focus on P

- 12 Combinations using 3 MP, 2 PBL and 2 CU schemes
- 2 Combinations using NCEP & ERA40 Reanalyses
- \rightarrow 2 x 12 = 24 WRF simulation for 2000

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
I	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
К	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

Validation ERA40-WRF 2000 Experiments: P

Validation NCEP-WRF 2000 Experiments: P

Institute of Meteorology and Climate Research

Validation WRF 2000 Experiments: T2

0.8

0

0.9

0.95

b.99

Final Decision (based on simulated T, P)

ERA40 Reanalysis

- Lower bias in T
- Higher pattern correlation of P (summer)

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
Κ	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

P. T2)

ERA40-WRF vs. OBSERVATIONS DOM2 (P, T2)

Different Reference Datasets: P

LUCCi Progress Report of WP3

- Collection of hydrometeorological observation data
- Plausibility analysis and correction of data
- Statistical analysis
- Transient climate simulations in three nesting steps with resolutions of 45 km, 15 km and 5 km
 - Preliminary work: computing and storage facilities, experimental simulations, final setup of WRF
 - WRF Simulations: 10 out of 90 years

Future activities of WP3 Climate Modeling

- 04/2012 PhD thesis (IHP & KIT): Impact of LUC on climate and vice versa (Mrs. Nguyen Phuong)
- 09/2012 PhD DAAD scholarship (KIT): Impact of CC on terrestrial water balance as well as flood and drought characteristics (Mr. Dang Thinh)
- Statistical Downscaling & Bias Correction: Estimation of GCM and scenario inherent uncertainties

Potential collaborations with HMO-VNU

- Aggregation of available CC information for Vietnam to allow for improved uncertainty estimation (PDFs)
 - Multi-model multi-scenario (different GCMs, emission scenarios)
 - Different RCMs (PRECIS, RegCM3, WRF)
- Validation strategies (methodologies, data sources, etc.)
- Extreme value analysis based on EV theory
 - Assessment of future climate indices
 - Return periods of floods and droughts
- Joint scientific publications

Thank you for your attention

Preparation RCM Simulations: HPC Environment

- Peak performance using 128 CPUs
- Depends on CPUs, Compiler (options), but also WRF setup

Motivation: why do we need RCM simulations?

JAN 1960

D02

D03

How to derive Regional Climate Projections?

WP3: Climate modeling (Project LUCCi)

- Analysis of observation data
- Process-based RCM simulations
- Progress Report of WP3 "Climate Modeling"
- Further activities of WP3 "Climate Modeling"

WRF Modeling System

