

GREENHOUSE GAS OBSERVATIONS AT CAPE POINT: CHALLENGES AND RESULTS

E-G. Brunke, C. Labuschagne, B. Parker, T. Mkololo and H.-E. Scheel

GGMT-2011, Wellington, NZ, Oct_2011

Overview

- 1. First results of Picarro G2302 [CO₂ CO H₂O] instrument
- 2. New ANSTO ²²²Rn analyser comparisons with former unit
- 3. N_2O : current analytical data quality
- 4. ICP results: NOAA flask sampling program
- 5. Latest trends for CO₂ and CH₄

First measurements with a Picarro G2302 instrument (since July 2011) Species: CO₂ and CO

- Own sample control system await Picarro unit
- Three whole air standards NOAA standards on order
- Daily target analyses

CO₂ and CO moisture tests done on Picarro (G2302): Aug 2011

- Dry air (constant flow) from cylinder with CO₂ [402.8 ppm] and CO [176 ppb] fed to Picarro via 1.5 m long Dekoron tubing with addition of 0.7 ml H₂O over 2.5 hrs.
- CO₂-dry correction meaningful, but not for CO. Unlike CO₂, CO-wet not provided by G2302, which may impede own correction.

Calculations done by courtesy of WCC-Empa, Switzerland

CO₂ comparison between Picarro and NDIR (URAS 4)

Own moisture correction reduced gap between 2 data sets
NDIR (URAS 4) > Picarro by 0.06 ppm CO₂ on average

Ambient CO₂ (1 min avgs): Picarro and NDIR (URAS 4): Aug 2011

Ambient daily CO₂ averages [ppm]: Picarro minus NDIR (URAS 4)

- 67 % of delta values (Picarro minus NDIR) fall within ± 0.25 ppm CO₂
- NDIR (URAS 4) > Picarro by ~0.06 ppm (± 0.39 ppm)
- Outliers perhaps due to different air inlets (air intake volumes)

CO comparison (dry air): Picarro and RGA: Aug 2011

- Good correlation between instruments under clean-air conditions
- 12min (RGA) vs. 1sec data frequency (Picarro) causes divergence at higher concentrations

Ambient daily CO [ppb] averages (wet air): Picarro minus RGA

- 58 % of delta values (Picarro minus RGA) fall within 1.5 and -5.5 ppb CO
- RGA > Picarro by 3.5 ppb (on average), although standards agree within 1 ppb
- Outliers perhaps due to different air inlets (drying vs. no drying) as well as inadequate moisture correction on Picarro

Gnsto

²²²Rn upgrade (instrument CPT2) and comparison to former system (CPT1)

²²²Rn detector and decay tank

Collaboration partner: ANSTO Institute for Environmental Research Australian Nuclear Science and Technology Organization *S. WHITTLESTONE (CPT1) W. ZAHOROWSKI & S. WERCZYNSKI (CPT2)*

²²²Rn upgrade and comparison to former system: CPT2 versus CPT1

Correlation: CPT2 vs. CPT1 (February 2011 – July 2011)

Dataset	Sub-	Offset	t	slope	r ²
	range	(mBq	-3)		
All data	full	-18	/	1.008	0.9870
Autumn	full	-29		1.002	0.9902
and Winter					
Summer	full	-45		1.171	0.9850
only					

CPT1 and CPT2 background estimate [mBq m⁻³]: April – August 2011

Rn Analyser	Background	Thoron	Estimate
CPT 1	137	38	153
CPT2	73	22	84

Summary:

- Main features recorded by "old" (CPT1) and "new" (CPT2) instruments compare well, thus yielding a homogeneous time series.
- CPT2 provides better data resolution at lower ²²²Rn levels by virtue of its lower background and greater data stability (due to lower temperature fluctuations indoors).

Data supplied by W. Zahorowski

Review of Cape Point N₂O measurements

- The Agilent GC with micro-ECD posed many analytical challenges since its inception during mid-2007: sensitivity variations and data uncertainty.
- At the beginning of 2011 GC reduced to bare essentials: separate solenoids, 6-way Valco valve, carrier gas directly to column, no makeup, no back flush or O₂ removal, column length increased to 8 m.
 - WCC-N₂O audit conducted under these conditions in Feb 2011: acceptable results.

Quality of ambient measurements improved after Aug 2011

SEP 2011	Target gas [ppb]	Ambient [ppb]
Average	318.51	322.42
Std dev	0.32	0.46
RStd dev %	0.10	0.14
Count	25	109

African

Current flask sampling programs: LSCE, NOAA, UEA, RHUL

UEA and RHUL since May 2011

First ICP results of comparison between NOAA co-located flask sample data and Cape Point in-situ results [Feb 2010 – Aug 2011]

Taken from Ken Masarie, NOAA-ESRL Flask Sampling Program, 2011

Preliminary ICP Results: NOAA-ESRL: CO

Taken from Ken Masarie, NOAA-ESRL Flask Sampling Program, 2011

ICP: NOAA-ESRL flask data minus CPT in-situ (February 2010 – August 2011)

Trace gas	Mole fraction	Mole fraction	
species	differences: within	differences: within	
	68 % of data	95 % of data	
[CO]	2.19 ppb	9.14 ppb	
[CH ₄]	6.23 ppb	14.09 ppb	
[CO ₂]	0.76 ppm	1.34 ppm	

Summary:

Observed differences partially explained by:

- Different sampling lines: wet vs. dry
- Difficulty in synchronizing flask sampling event with in-situ
- Flask filling during non-background conditions
- Small systematic differences in scales

Taken from Ken Masarie, NOAA-ESRL Flask Sampling Program, 2011

CO₂ and CH₄ growth rates in non-background air (Bg trend removed)

greater Cape Town metropolitan area over past years.

Both rates are statistically significant
Reason for trend decline since 2008 not known

Summary

- 1. Picarro CO₂ in good agreement with NDIR; CO requires fine-tuning
- 2. New and old ²²²Rn analysers provide compatible results
- 3. N₂O data acceptable after reverting to basic analytical conditions
- 4. ICP: Challenges remain. Await comparisons with Picarro
- 5. Non-bg CO₂ and CH₄ trends related to increasing urbanization

Acknowledgements

University of East Anglia

Royal Holloway University of London

Laboratoire des sciences du climat & de l'environnement

Local authorities: South African National Parks (SANP) Portnet

