

Workflows for the Simulation of Organic Light-Emitting Diodes

Stefan Bozic

Ivan Kondov, Velimir Meded and Wolfgang Wenzel Karlsruhe Institute of Technology, Germany

The project MMM@HPC is funded by the 7th Framework Programme of the European Commission within the Research Infrastructures with grant agreement number RI-261594.

Outline

- Project MMM@HPC overview
- The Challenges
- Approach based on UNICORE middleware
 - GridBeans
 - Workflows
 - Application and data flow
- OpenMolGRID
- Simulation of Organic Light Emitting Diodes (OLEDs)
- OLED workflow architecture
- Conclusions and outlook

MMM@HPC project overview

www.multiscale-modelling.eu

- HPC centres: CINECA, CSC, KIT and KIST (Korea)
- Modelling and code developing groups: University Mons, CEA, CSC, STFC, University Patras, KIT
- Industrial partners and users: CEA, SONY, KIT, project MINOTOR
- Cooperating projects: PRACE, MINOTOR, D-Grid and NGI-DE

Korea Institute o

The challenges

Can we meet these challenges?

Reusability	GridBeansUNICORE Workflows	
Data complexity	 Chemical Mark-up Language (CML) OpenMolGRID 	
Solution for licensing issues	UNICORE: UVOS/SAML/VOMSOpen Source Licenses	ES!
Security & Reliability	UNICOREGrid Security Infrastructure (GSI)	
Capacity & Capability	 High Performance Computing (PRACE) Distributed resources (D-Grid, EGI) 	

- UNICORE: UNiform Interface to COmputing Resources
- Grid computing technology (grid middleware) supported by EMI
- Seamless, secure, and intuitive access to distributed grid resources
- Used in daily production at several supercomputer centres worldwide
- Open source under BSD license
- Implements standards from the Open Grid Forum (OGF)

A. Streit et al., UNICORE 6 - Recent and Future Advancements Annals of Telecommunications 65 (11-12), 757-762 (2010).

UNICORE three-layer architecture

http://www.unicore.eu/unicore/architecture.php

Integration Concept: UNICORE

- Provision of simulation tools and services that can be combined in many different application workflows
- Adaptable, reusable and extendable interfaces & workflows based on UNICORE
- Access to distributed HPC/HTC resources via UNICORE services

Application interfaces: GridBeans

- Provides a way to use scientific application on HPC resources (even by non experts)
- Designed to decouple scientific applications from the underlying (changing) grid protocols (UNICORE, Globus, Portals)
- Different simulation workflows can re-use the same GridBean
- Different GridBeans can be employed for the same workflow step

R. Ratering et al., "GridBeans: Support e-Science and Grid Applications", Proceedings of the Second IEEE International Conference on e-Science and Grid Computing (e-Science'06), p. 45, IEEE 2006

Grid Browser	MopacDepositWorkflow.flow	💠 deposit 🛛	- 6
Property	Job Preparation for Deposit Param Job name: deposit Input file: input.slf Deposit Parameters Structurer (Misc Box PorceField Sim Coulomb Sp 20.0 Surface F 10.0 U Cutoff 20.0	s	

The GUI of DEPOSIT GridBean developed in MMM@HPC

UNICORE Rich Client and Workflows

UNICORE Client layer

Application flow: Example

Data flow: Example

UNICORE Rich Client		_
e Edit Window Help		
뒤 🔄 🚺 🌢 🤣 🗸 📎 🗶 📄 🤯 👔 🛃 💭 🖊 100% 🔽		
INICORE		
Grid Browser	OLED workflow.flow 🔀	
E 🔘 Grid	C⇒ Tools ⇔	
Eneca	N Select	
🖻 🗞 Workflow engine CINECA-WORKFLOW@grid.cineca.it		
Workflows	Control Flow	
	Data Flow	
	Files Strings	L.* <u>A</u>
CINECA-SP6		
Storage factory CINECA-SP6@grid.cineca.it		Turbomole1
	Applications 🔅	
🗄 🚵 Workflow engine Workflow@dgrid-unic.fz-juelich.de	Blender v0.3	
庄 📲 🛃 fzj-juggle	Deposit v1.0	stderr
🗄 📲 fzk-opus		
Image: TargetSystemFactoryService?res=default_target_system_factory	Ceneric v2.2	.* .slf <u>*</u>
🔤 Global storage fzj-juggle@dgrid-unic.fz-juelich.de		
Erriana Gridka		Denocit1
	C→ Structures ↔	Deposici
Em Darker_Suc	If-Statement	
	While-Loop	errorlog last.pdb output.slf stderr stdou
5 Navi 🌐 Keys 🌐 Trust 🌐 Clien 🌐 Secu 🌐 Details 🖾 🗔 Term 🖵 🗖	While Loop	
Name Workflows	Repeat-Loop	
State Ready		
Type Enumeration	variables 🔅	POVRay1
UK1 TRUPS///gno.cine.co.it/9111/CINECA-WOKKELOW/Services/WORKIOWFactory/res=default_Workfit		
	/ Modifier	*.png [stderr] [stdout]
	<u>[] [] [] [] [] [] [] [] [] [] [] [] [] [</u>	•
Details Low Level Information	📃 Terminal View 🛛	-

Data exchange and licensing issues

- Structure Data exchange format: Chemical Markup Language (CML)
- Data flow management with the OpenMolGRID library
 S. Sild et al., LNCS 3470, 464, Springer (2005); S. Sild et al., J. Chem. Inf. Model., 46, 953 (2006).
 - Read, write and convert chemical file format
 - Provides a data model for molecular information
 - Application Wrapper API
- License management
 - OpenSource and Commercial applications in simulations
 - VOMS with UNICORE (UVOS and SAML) is being evaluated

Application Wrapper: OpenMolGRID

Application Wrapper Lifecycle

- 1. Preprocessing: Validation of App. Parameter, Generation of App. specific Input Files
- 2. Execution: Run App(s) in seperate Process(es), Monitoring of stdout/stderr (allows interaction with the application)
- 3. Postprocessing: Error Handling, Parsing App Output, Creation of Workflow Data

OLED: Simulation protocol

continuum model (FEA)	coarse-grained model (CG)	Atomistic model (MM)	QM model (QM)
Elmer	ToFeT (KMC)	DEPOSIT	MOPAC
FEAP	End-bridging MC	LAMMPS	TURBOMOLE
	Transporter	DL_POLY	BigDFT

OLED: charge transport in Alq3 disordered films

J. J. Kwiatkowski, J. Nelson, H. Li, J. L. Bredas, W. Wenzel, and C. Lennartz, Phys. Chem. Chem. Phys., 2008, 10, 1852–1858.

- Film deposition (or MD)
 - Generate disordered film morphologies
- QM calculations of hopping sites
 - Calculate HOMO, LUMO, LUMO+1 etc energies.
 - Electronic couplings reorganization energies
 - Calculate charge hopping rates
- Kinetic Monte Carlo (KMC)
 - Calculate charge (electron-hole) mobility
 - Calculate current density

OLED workflow: architecture

28/03/2012 Stefan Bozic – EGI Community Forum Munich-Garching, 28 March 2012

Calculation of Hopping Sites

A deposition film has **1.000 - 100.000** Hopping Site candidates (Site Pairs) Each Hopping Site needs 3 QM calculations (2 Monomers and 1 Dimer)

QM-Batch Jobs

- Short QM calculations (~ 0.5 5 min)
- Each Job: n * 3 QM calculations
- Less Jobs: Minimize service overhead
- Needs a special GridBean and Wrapper

QM-Single Jobs

- Long QM calculation (30 min +)
- Each Job: one QM calculation
- Many Jobs > large service overhead
- Needs a special Reducer

Realization: GridBeans and Workflow

Conclusions and Outlook

- With UNICORE we provide an optimal low-effort/low-cost solution for multiscale modelling
- GridBeans → App Interfaces
- Workflows → Simulation protocol
- Data Exchange in WFs between applications handled with CML and OpenMolGRID
- Proof of Principle: Workflow for simulation of OLEDs

Current work

- Integration of the CG and FEA steps into the OLED workflow
- Elmer, DL_POLY and BigDFT GridBeans
- Simulation of whole OLED devices
- Deployment and test operation of the workflow

Acknowledgments

- All consortium partners in MMM@HPC
- Funding from the EC

Partner projects, supporting infrastructures and software

