

Selected divertor studies and experiments

J. Reiser¹, M. Rieth¹, B. Dafferner¹, A. Hoffmann² ¹ Karlsruhe Institute of Technology, Institute for Applied Materials, Germany ² PLANSEE SE, Reutte, Austria

20th European fusion physics workshop, 3-5 December 2012, Portugal

INSTITUTE FOR APPLIED MATERIALS, APPLIED MATERIALS PHYSICS

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Aims

- Aim of our work:
 - DEMO divertor: What is the right combination of (i) coolant, and (ii) structural material?
- Aim of this presentation:
 - Presentation of the results of 2 major experiments.

Content

- Introduction
- Experiment 1: HHF tests, austenitic steel, water
- Experiment 2: Burst test, Charpy impact tests on W-laminate pipes
- Appendix (material issues)

Introduction

thermal conductivity, operation window, and heat transfer coefficient

Introduction: matrix of coolant and material

Content

- Introduction
- Experiment 1: HHF tests, austenitic steel, water
 - Mockup, tests, results
 - 10 MW/m² and austenitic steel?
 - Austenitic steel and water at 250°C
 - Remarks on thermal stresses
- Experiment 2: Burst test, Charpy impact tests on W-laminate pipes

- Mockup, tests, results
 - pipe: austenitic steel (316Ti, 1.4571)
 - coolant: water, 20°C, 10 bar, 10 m/s, 1.13 l/s
 - beam: 20 s on, 40 s off

- Mockup, tests, results
 - results: 100 cycles, 6 MW/m², no residual damage

W-laminate as a transition piece

non-destructive testing, PLANSEE SE

MB 2

GLADIS, IPP, Garching

T. Huber, A. Zabernig H. Greuner, B. Böswirth Test: 100 Zyklen, 6 MW/m²

30 mm

H. Greuner, B. Böswirth

10 MW/m² and austenitic steel?

10 MW/m² and austenitic steel?

picture: PLANSEE SE

Austenitic steel and water at 250°C?

Austenitic steel and water at 250°C?

picture: PLANSEE SE

- Remarks on thermal stresses:
 - minimum bearing \rightarrow no thermal stresses
- Radial: W-laminateAxial: lamellar monoblocks

Content

- Introduction
- Experiment 1: HHF tests, austenitic steel, water
- Experiment 2: Burst test, Charpy impact tests on W-laminate pipes
 - The tungsten laminate project
 - Test results
 - Proposal: He-cooled divertor made of a W-laminate pipe

The W-laminate project: Is it possible to expand the ductile properties of a W foil to the bulk?

- The W-laminate project: Charpy impact tests
 - as-received condition: improvement of 300°C

W-laminate made of Cu-alloy

16 05.12.2012 J. Reiser, IAM-AWP, KIT

The W-laminate project: W-laminate pipes

Test results

Charpy impact tests at 300°C

Burst test at RT, 1000 bar, no residual damage (in cooperation with PLANSEE SE, T. Huber, A. Zabernig)

W pipe made of foil

Proposal: He-cooled divertor made of a W-laminate pipe

Outlook (I/II)

- KIT-CCFE cooperation:
 - E. Surrey, T. Barrett, W. Timmis, C. Waldon, M. Porton,...
- Workshop on water cooled divertors:
 - Mai 2012: CCFE
 - August 2012: KIT
 - next: March 2013: CCFE
- Plans and ideas: e.g. double-walled pipes

Summary

Experiment 1: austenitic steel, water:

- 6 MW/m² have been tested in HHF tests (*H. Greuner, GLADIS, IPP*)
- 10 MW/m² will be tested next (H. Greuner, GLADIS, IPP)
- Use water at RT, not at 250°C
- Realize a minimum bearing
- \rightarrow Calculation using design rules required

Experiment 2: W-laminate pipes:

- Charpy impact tests look promising
- Burst test looks promising (PLANSEE SE, T. Huber, A. Zabernig)
- → Irradiation data required (Y. Katoh, L. Snead, Oak Ridge National Laboratory)

Thank you for your attention

The authors are grateful to:

Plansee Metall GmbH, University of Oxford, Culham Centre for Fusion Energy, Oak Ridge National Laboratory, IPP in Garching, and our colleagues from IAM (KIT).

Appendix

Appendix

- CuCrZr (precipitation hardened: Cu, 0.5 1.2 wt.% Cr and 0.03 0.3 wt.% Zr):
 - k_{RT} = 305 [W/(m*K)]
 - operation window: 180°C 280°C

S.A. Fabritsiev, A.S. Pokrovsky, Fusion Engineering and Design 73 (2005) 19–34

- CuCrZr (precipitation hardened: Cu, 0.5 1.2 wt.% Cr and 0.03 0.3 wt.% Zr):
 - k_{RT} = 305 [W/(m*K)]
 - operation window: 180°C 280°C

S. A. Fabritsiev, S. J. Zinkle and B. Singh J. Nucl. Mat. (1996)

- CuCrZr (precipitation hardened: Cu, 0.5 1.2 wt.% Cr and 0.03 0.3 wt.% Zr):
 - k_{RT} = 305 [W/(m*K)]
 - operation window: 180°C 280°C

S. A. Fabritsiev, S. J. Zinkle and B. Singh J. Nucl. Mat. (1996)

- CuCrZr (precipitation hardened: Cu, 0.5 1.2 wt.% Cr and 0.03 0.3 wt.% Zr):
 - k_{RT} = 305 [W/(m*K)]
 - operation window: 180°C 280°C

S. A. Fabritsiev, S. J. Zinkle and B. Singh J. Nucl. Mat. (1996)

Appendix

316Ti, austenitic steel

29 05.12.2012 J. Reiser, IAM-AWP, KIT

austenitic steel (e.g. 316):

k_{RT} = 15 [W/(m*K)]

operation window: up to 250°C and from 400°C – 600°C

- austenitic steel (e.g. 316):
 - k_{RT} = 15 [W/(m*K)]
 - operation window: up to 250°C and from 400°C 600°C

Appendix

RAFN, Eurofer

- RAFM steel e.g. Eurofer, F82H,
 - k 500°C = 30 [W/(m*K)]
 - operation window: 350°C 550°C (Eurofer)
 - operation window: 350°C 650°C (Eurofer ODS)

E. Gaganidze et al., KIT

Appendix

Tungsten

34 05.12.2012 J. Reiser, IAM-AWP, KIT

tungsten:

- k 180°C = 180 [W/(m*K)]
- optimistic operation window: 600°C 1200°C (no neutrons)
- conservative operation window: 900°C 1100°C (pure W, no neutrons)

M. Rieth, A. Hoffmann, Adv. Mater. Res. 59 (2009) 101.

Appendix

W-laminate

tungsten:

- k 180°C = 235 [W/(m*K)]
- optimistic operation window: xxx (no neutrons)
- conservative operation window: xxx (pure W, no neutrons)

