

Inkjet printing of tunable microwave devices

A. Friederich^{1,2}, C. Kohler^{1,2}, M. Nikfalazar², M. Sazegar², R. Jakoby², J.R. Binder¹, W. Bauer¹

¹ Institute for Applied Materials (IAM-WPT), Karlsruhe Institute of Technology, Germany

² Institute for Microwave Engineering and Photonics (IMP), Technische Universität Darmstadt, Germany

Institute for Applied Materials (IAM-WPT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- Introduction
 - Barium Strontium Titanate
 - Applications
- Development of an inkjet printing process chain
 - ink preparation
 - ink development
- Preparation of tunable microwave devices
 - selective printed devices
 - fully printed devices

Barium Strontium Titanate

- $Ba_xSr_{1-x}TiO_3$ (BST)
 - Solid solution
 - Perovskite structure
 - Ferroelectric, $T_{Curie} = f(x)$
- Material characteristics
 - Dependency of permittivity on electrical field strength, i.e. tunability

$$\tau = \frac{\varepsilon_r(E=0) - \varepsilon_r(E)}{\varepsilon_r(E=0)}$$

Low dielectric losses for $T > T_{Curie}$

$$\tan \delta = \tan \delta(f, T, E, \dots)$$

electric field strength

Barium Strontium Titanate

- How can we use it?
 - Capacitor with adjustable capacitance
 - \rightarrow Adjustable phase shift of AC current
 - \rightarrow Adjustable resonance frequency of antennas
 - \rightarrow Adjustable frequency filters

Two stage serial varactor, Maune et al., *Microsyst. Technol.* 17 (2011)

Phased array antenna on BST thick-film, Sazegar et al., *IEEE Trans. Microw. Theory Tech.* 59 (2011)

Already prepared devices:

- Tunable antennas (swivelling / frequency agile)
- Phase shifters
- High frequency filters

Institute for Applied Materials (IAM–WPT)

Requirements for tunable microwave devices

Inkjet printing of BST thick-films

- To establish an inkjet printing process the requirements for inkjet printing must be fulfilled
 - Particle size
 - Viscosity / surface tension
 - Stability

Adapt powder and ink preparation

Ink and process conditions must be optimised to obtain homogeneous structures suitable for microwave devices

Institute for Applied Materials (IAM-WPT)

Ink properties

Particle size: d₅₀ ≈ 150 nm d₁₀₀ < 1 µm</p>

Dilution to 5 vol.% solid content:

Viscosity: $\eta = 8.4 \text{ mPas}$

(@
$$T = 20^{\circ}$$
C, $\gamma' = 1000 \text{ s}^{-1}$

Surface tension: $\sigma = 29.9 \text{ mN/m}$ (@ $\tau = 20^{\circ}\text{C}$)

$$Oh = \frac{\sqrt{We}}{Re} = \frac{\eta}{(\gamma \rho a)^{1/2}} = 0.14$$

7 06/02/13 A. Friederich et al.

Institute for Applied Materials (IAM–WPT)

Printed topography (ink A)

- Printing of lines and drops
- Variation of the drying temperature

Severe coffee staining in all cases and crater-like structures for large drops

Ink development

Detailed information available in: **'J. Am. Ceram. Soc.'** DOI: 10.1111/jace.12385

9 06/02/13 A. Friederich et al.

10th Pacific Rim Conference on Ceramic and Glass Technology, June 2-7, 2013, San Diego, CA

Institute for Applied Materials (IAM–WPT)

Topography thick-films printed with the optimized ink composition (ink D)

Institute for Applied Materials (IAM-WPT)

Why does ink D show a better drying behavior?

Fast viscosity increase in a very short time

 $V = 10 \ \mu l \ (approx. 20,000 \ drops), T = 60^{\circ}C$

Institute for Applied Materials (IAM-WPT)

BST ink printable ✓ – What's next ?

combine printing with other techniques

,selective printing⁺ + lithographic metallisation

use the high vertical resolution for new device layouts

,fully printed'

Inkjet printed BST lines

Material characterisation

	Measured values	Literature*
Relative permittivity	270 ± 20	285
Dielectric loss	0.09 ± 0.02	0.07
Tunability (@ <i>E</i> = 6.7 V/µm)	25 ± 1 %	27 %

similar properties to conventional screen printed thick-films

All values at f = 10 GHz

*Literature values: screen printed BST thick-films; Zhou et al., J Electroceram. 24 (2010)

First high frequency phase shifters on inkjet printed BST thick-films

Device characteristics:

Phase shift: $\Delta \varphi = 170^{\circ}$ Figure of Merit. $FoM = 20^{\circ}/dB$

@ 10 GHz

Institute for Applied Materials (IAM-WPT)

Fully printed devices?

First lower the sintering temperature!

Sintering behaviour of BST pellets

Microstructure of BST thick-films

Detailed information available: Int. J. Appl. Ceram. Technol. DOI: 10.1111/ijac.12116

Low temperature sintered BST thick-films

Outlook

- Further investigations on printing and co-firing of BST with metal electrodes
- MIM test structures and components
- Thick-film preparation on different substrates, e.g. LTCC
- Printing of tailored material compositions, e.g. through in-situ mixing

Thank you for your attention!