

A service-oriented approach for multiscale materials modelling

Ivan Kondov, Stefan Bozic, Velimir Meded and Wolfgang Wenzel

STEINBUCH CENTRE FOR COMPUTING - SCC

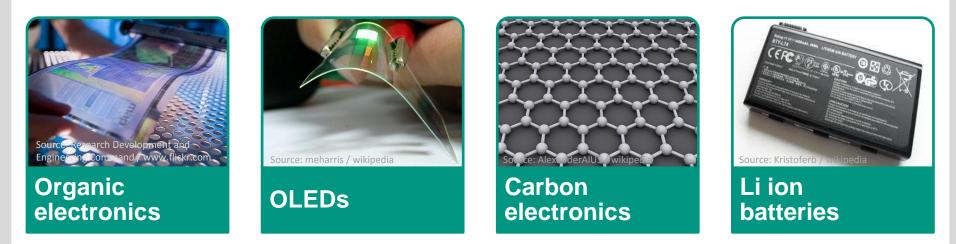
Outline

2

Introduction

- Application area and importance
- Challenges
- Service Oriented Architecture
- Solution strategies

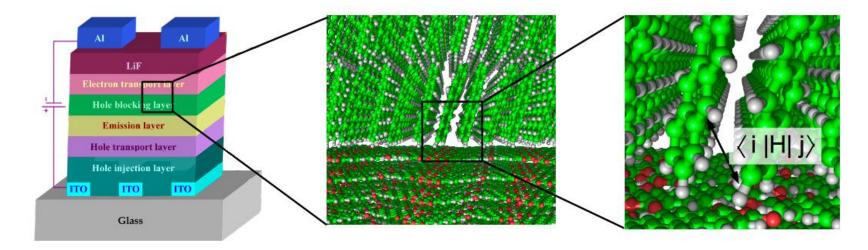
Implementation


- Implementation strategies
- Methodology technologies used

Discussion

- Key results: Proof of principle
- Conclusions and outlook

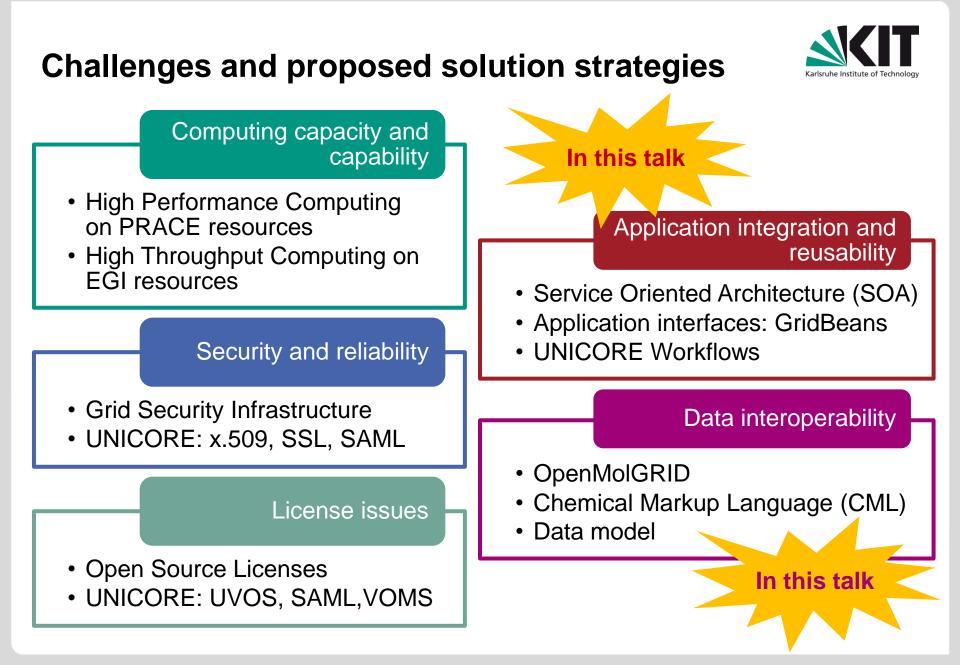
Application area and importance



- Modelling and computer simulation essential
 - Reduce time-to-market
 - Reduce product development costs
 - Increase agility of industrial R&D
- Very complex models and environments for simulation
 - Accessible only for few experts
 - Low effectiveness and general applicability

3

Example: Multiscale modelling of OLEDs



macroscopic scale ~ 10^{-6} m

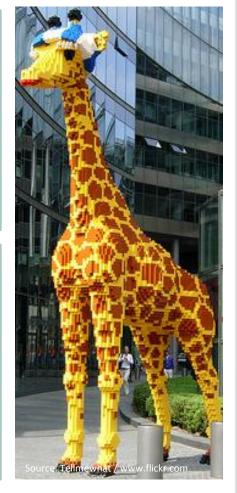
molecular scale ~ 10⁻⁸ m

electronic scale ~ 10⁻¹⁰ m

Continuum model (FEA)	Coarse-grained model (CG)	Atomistic model (MM)	Quantum mechanical model (QM)
Elmer	ToFeT (KMC)	DEPOSIT	MOPAC
FEAP	End-bridging MC	DL_POLY	TURBOMOLE
	Transporter	LAMMPS	BigDFT

Service Oriented Architecture (SOA)

"A set of components which can be invoked, and whose interface descriptions can be published and discovered" (W3C)



High reuse, no customization!

- Low effort to create new "ad hoc" composite applications from existing services
- Low effort for changing application

SOA principles: standardized service contract, loose coupling, abstraction, reusability, autonomy, statelessness, discoverability and composability

- Standards for **SOA implementation:** Web Services
 - WSDL or WADL for describing the service
 - SOAP or REST for messaging

Implementation strategies

Application integration and reusability

UNICORE middleware

Application interfaces with GridBeans

Application wrappers with OpenMolGRID

Sequential modelling with UNICORE workflows

Data interoperability

Pre- & post-processing with OpenMolGRID

Data exchange with CML

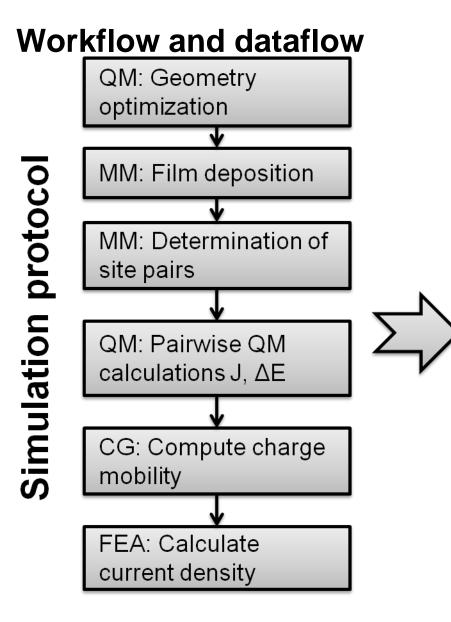
Data model

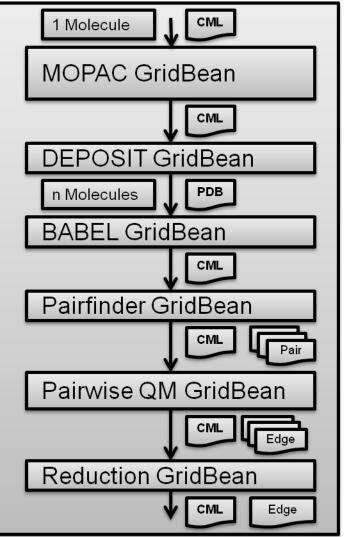
Dataflow management

UNICORE

- UNICORE: UNiform Interface to COmputing REsources
- Grid computing technology supported by the European Middleware Initiative (EMI)
- Seamless, secure and intuitive access to distributed grid resources
- Used in daily production at numerous supercomputer centres worldwide (for example in PRACE)
- Open source under BSD license
- Implements SOA using standards from the Open Grid Forum (OGF), W3C and OASIS

A. Streit et al., UNICORE 6 - Recent and Future Advancements Annals of Telecommunications 65 (11-12), 757-762 (2010).


Chemical Markup Language (CML)



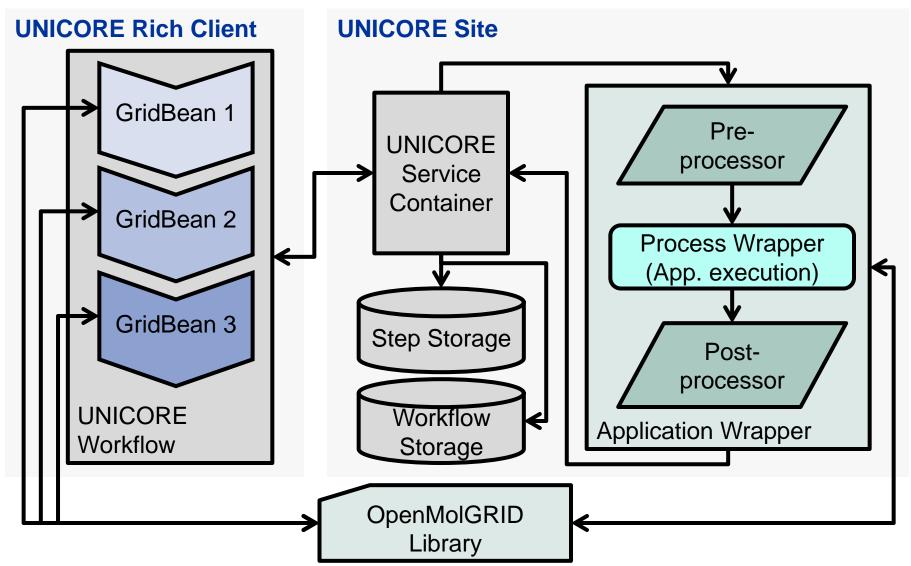
- Website: www.xml-cml.org
- Developed by Peter Murray-Rust and Henry Rzepa since 1995
- Provides semantics for molecules, compounds, reactions, spectra, crystals and computational chemistry
- Infrastructure includes legacy converters, dictionaries and conventions

```
t dictRef="compchem:basisSetContractions" id="basisSetContractions">
      <scalar dataType="xsd:string" id="atomType" dictRef="compchem:atomType">h1</scalar>
      <scalar dataType="xsd:string" id="elementType" dictRef="compchem:elementType">H</scalar>
      <scalar dataType="xsd:string" id="basisSetType" dictRef="compchem:basis set type">orbital</scalar>
      <scalar dataType="xsd:string" id="basisSetLabel" dictRef="compchem:basisSetLabel">cc-pvdz</scalar>
      <scalar dataType="xsd:string" id="basisSetHarmonicType" dictRef="compchem:basisSetHarmonicType">cartesian</scalar>
      <list dictRef="compchem:basisSetContraction" id="basisSetContraction">
        <scalar dataType="xsd:string" dictRef="compchem:basisSetShell">s</scalar>
       <array size="3" dataType="fpx:real" dictRef="compchem:basisSetExponent">1.301000000000e1 1.96200000000000
4.44600000000e-1</array>
       <array size="3" dataType="fpx:real" dictRef="compchem:basisSetCoefficient">1.968500000000e-2 1.379770000000e-1
4.78148000000e-1</array>
      </list>
      <list dictRef="compchem:basisSetContraction" id="basisSetContraction">
       <scalar dataType="xsd:string" dictRef="compchem:basisSetShell">s</scalar>
        <array size="1" dataType="fpx:real" dictRef="compchem:basisSetExponent">1.22000000000e-1</array>
        <array size="1" dataType="fpx:real" dictRef="compchem:basisSetCoefficient">1.00000000000000</array>
      </list>
      <list dictRef="compchem:basisSetContraction" id="basisSetContraction">
        <scalar dataType="xsd:string" dictRef="compchem:basisSetShell">p</scalar>
        <array size="1" dataType="fpx:real" dictRef="compchem:basisSetExponent">7.27000000000e-1</array>
        <array size="1" dataType="fpx:real" dictRef="compchem:basisSetCoefficient">1.00000000000000<0</array>
</list>
```

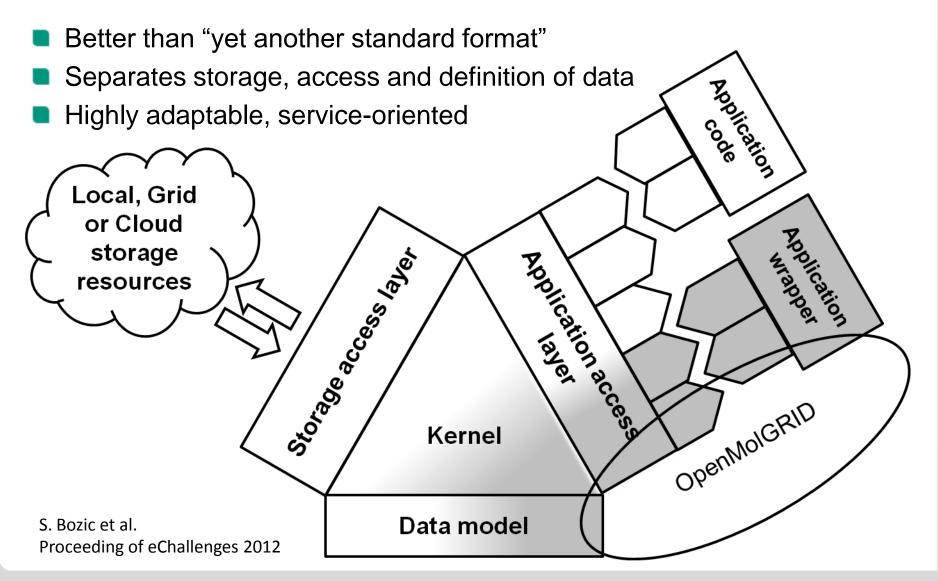

Workflow JNICORE

OpenMolGRID library

- The OpenMolGRID project (http://www.openmolgrid.org) has provided solutions for
 - Chemical data management and process automation
 - Automatic QSAR and molecular engineering
- Our developments:
 - Data model implemented on top of OpenMolGRID library
 - Extension with classes in the process and format packages
 - Access classes written for different individual applications
 - Classes for CML as storage backend developed


Supported application or format	Class name	
CML	CMLReader, CMLWriter	
PDB	PDBReader	
MOPAC	MOPAC2009Parser, MOPACInputWriter	
ToFeT	ToFeTXyzWriter	

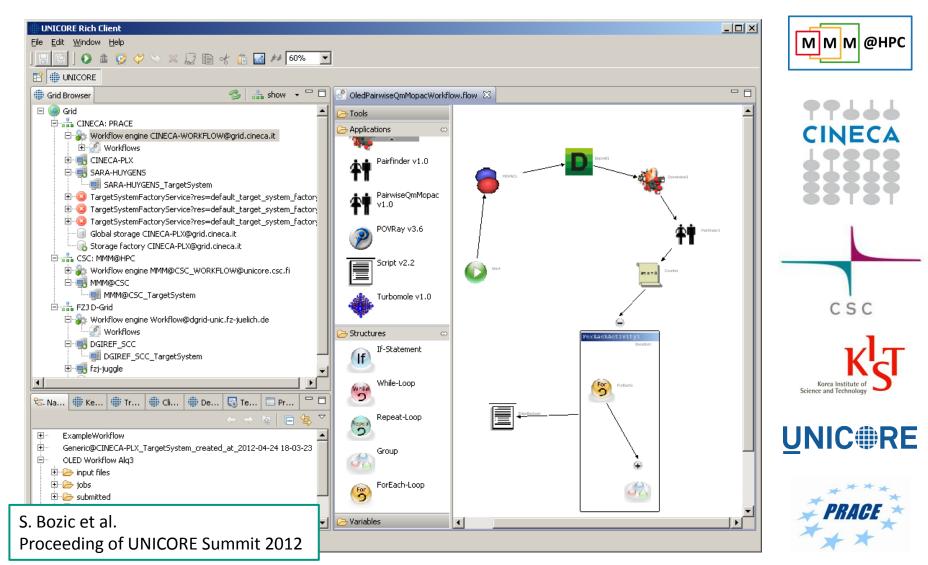
Platform Architecture



12 12.11.2012

Ivan Kondov – Workshop on Multiscale Modelling of Materials for Energy Conversion Applications – Athens, 8 November 2012 Steinbuch Centre for Computing Simulation Lab NanoMicro

Data model driven approach



13 12.11.2012

Ivan Kondov – Workshop on Multiscale Modelling of Materials for Energy Conversion Applications – Athens, 8 November 2012 Steinbuch Centre for Computing Simulation Lab NanoMicro

Proof of principle: OLED workflow

14 12.11.2012

Conclusion and outlook

- SOA based platform for multiscale materials modelling
- Proof of Principle: OLED workflow and simulation
- Data model driven dataflow management
- Adopted the CML standard
- Workflows using standard components require common data model
- Solution distributed as a software bundle and deployed as a service

- Realize workflows for further multiscale materials modelling applications
- Extend the CML compchem dictionary
- Implement the remaining part of the dataflow manager
- Create cross-links between communities of scientists, industrial customers, software engineers and resource providers and support their collaboration
- Make communities familiar with the solution to increase its acceptance and enable adoption

Acknowledgement

All consortium partners in MMM@HPC
 Funding from the EC

 $N(\dot{H})$

The project MMM@HPC is funded by the 7th Framework Programme of the European Commission within the Research Infrastructures with grant agreement number RI-261594.

Partner projects, supporting infrastructures and software providers

This work is licensed under Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) License http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode Copyright © 2012 Karlsruhe Institute of Technology (KIT)

16 12.11.2012

Ivan Kondov – Workshop on Multiscale Modelling of Materials for Energy Conversion Applications – Athens, 8 November 2012 Steinbuch Centre for Computing Simulation Lab NanoMicro

