


16th International Conference On Fusion Reactor Materials October 20-26,2013 Beijing, China

# Fatigue-structure correlation of 13.5%Cr ODS steels at 550°C for fusion application

P. He, M. Klimenkov, A. Möslang, R. Lindau



Karlsruhe Institute of Technology

Institute for Applied Materials Applied Materials Physics (IAM-AWP) Karlsruhe, Germany

National Research Center of the Heimholtz Association

www.kit.edu



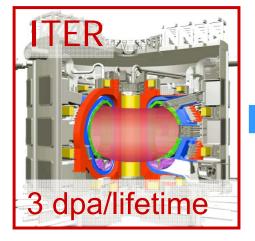
# Outline

### Introduction

- Life-limiting failures of first wall and blanket structures
- Fatigue issue on Reduced-activation F/M steels and ODS varients
- Development of ODS RAF steels

### Experimental

- Fabrication route
- Sample preparation and monitoring


### Fatigue and microstructural results

- S-N curve, hysteresis loops
- Structural results: grain structure, dislocation density, precipitates and ODS particles

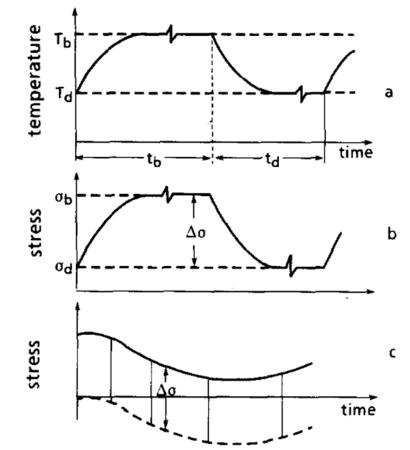
### Summary

# **Materials challenges in fusion reactors**








### Structural components:

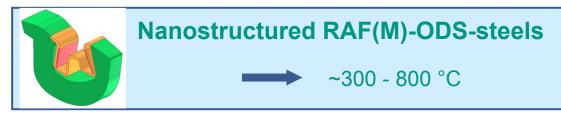
- Fatigue
- Creep
- Creep-fatigue
- Irradiation
- Erosion
- Corrosion

|                                                | First wall in ITER                 | DEMO adv.                           |
|------------------------------------------------|------------------------------------|-------------------------------------|
| Peak surface heat flux<br>[MW/m <sup>2</sup> ] | 0.6                                | 2.5 (blankets)/<br>10-15 (divertor) |
| Number of pulses [×10 <sup>4</sup> ]           | 2-5                                | Pulsed or steady-state operation    |
| Total burn time [h]                            | 10 <sup>4</sup> -3×10 <sup>4</sup> | Open                                |
| Neutron damage [dpa]                           | 12-36                              | ~150                                |

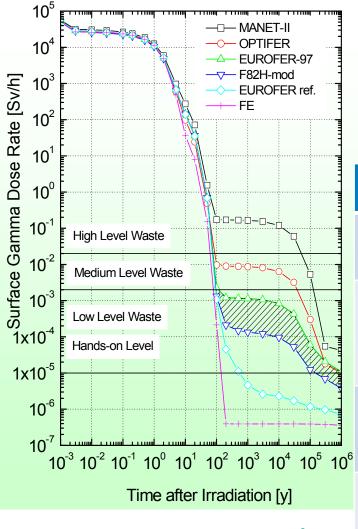

# **Material challenges in Fusion Reactor**






Temperature (a) and stress (b) variation during one burn/dwell cycle and longterm stress variation (c) D. Munz et al., FUSION ENG DES (1991) Structural components:

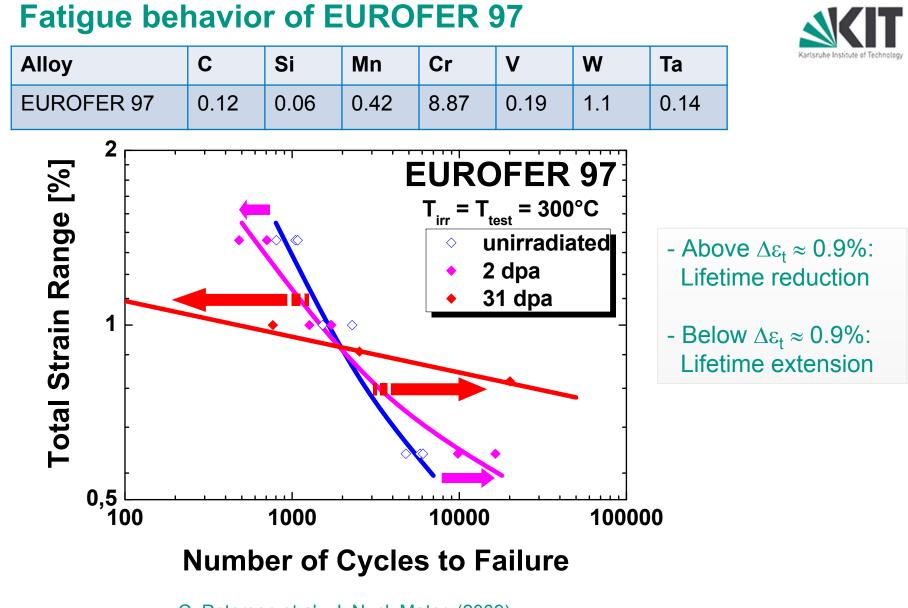
- The lifetime can be limited by different failure modes
- For pulsed tokomaks (ITER), fatigue is the most life-limiting event.
- For steady-state operation, creep-fatigue and irradiation damages are of particular concern.




Blanket: ≤30 dpa/year, 2.5MW/m<sup>2</sup>

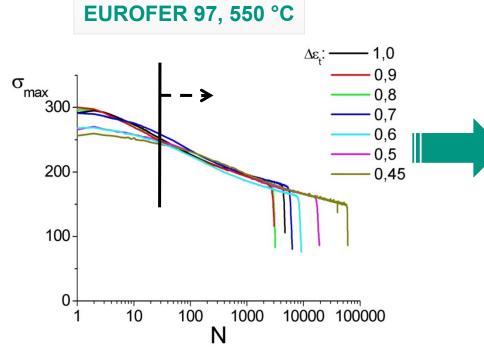
Reduced-activation ferritic-martensitic steels




# **Reduced Activation F/M steels:**

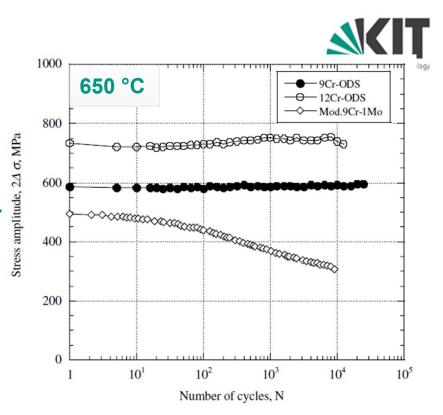


Long term irradiation (12.5 MWa/m<sup>2</sup>) of a DEMO reactor first wall Lindau et al., FUSION ENG DES (2005) The superiority of RAFM steels:


- Low activation capability
- low swelling, high thermal conductivity, low thermal expansion and better liquid-metal compatibility in comparison to austenitic steels.

|   | Materials                               | Fatigue                                                                                       | Торіс                                                                                                                                | Author                                |
|---|-----------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|   | 12Cr steel<br>MANET                     | Strain-controlled<br>isothermal                                                               | Influence of irradiation (T,<br>dose) and He implantination;<br>In-situ and post-irradiation                                         | R. Lindau,<br>J. Bertsch              |
|   | 9Cr<br>F82H mod.                        | Strain-controlled<br>isothermal                                                               | Fatigue behavior and the<br>growth of microcracks after<br>He implantination;<br>Post-neutron irradiation<br>Post-ion implantination | J. Bertsch<br>T. Hirose               |
| 6 | F82H mod.<br>OPTIFIER<br>IV<br>MANET II | Thermal fatigue<br>(TF)                                                                       | Fatigue endurance of RAFM<br>steels under cyclic strains and<br>stresses produced by<br>temperature changes                          | C. Petersen                           |
|   | EUROFER<br>97                           | Isothermal; TF;<br>Multiaxial fatigue;<br>multi-step loading;<br>Fatigue-creep<br>interaction | Cyclic softening;<br>Modelling of high temperature<br>damage under TF loading;<br>Creep-fatigue interaction                          | C. Petersen<br>J. Aktaa<br>C. Vorpahl |




C. Petersen et al., J. Nucl. Mater. (2009)

# **Cyclic softening**



C. Vorpahl et al., J. Nucl. Mater., 2011, p16

- Pronounced cyclic softening (> 100 MPa)
- beyond N~50  $\sigma_{max}$  becomes independent of  $\Delta \epsilon_t$
- → lifetime limiting crack initiation & network formation occurs before 100 cycles



S-N curve for 9Cr–ODS and 12Cr–ODS steels and Mod. 9Cr– 1Mo steel at 0.5% total strain at 923 K Ukai et al., J. Nucl. Mater. (2007)

- No evident cyclic softening for 9Cr-ODS and 12Cr ODS steels.
- Ferritic ODS steels enable higher operational temperature.

# The objective of this work



> Developing RAF ODS steels by optimization of production route

powder metallurgy + thermomechanical processing (TMP)

| No. | Cr   | W   | Ti  | <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | Remarks                 |
|-----|------|-----|-----|---------------------------------------------|-------------------------|
| K9  | 13.5 | 1.1 | 0.3 | 0.3                                         | <b>1 kg</b> , HIP + TMP |
| K14 | 13.5 | 1.1 | 0.3 | 0.0                                         | 1kg, HIP + TMP          |

- Exploring structure-property correlation
  - Strain-controlled low cycle fatigue tests at 550 °C
  - Structure evolution before and after fatigue tests
    - -- grain structure
    - -- precipitates and oxide particles
    - -- dislocation density



# Outline

### Introduction

- Life-limiting failures of first wall and blanket structures
- Fatigue issue on Reduced-activation F/M steels and ODS varients
- Development of ODS RAF steels

### Experimental

- Fabrication route
- Sample preparation and monitoring
- Fatigue and microstructural results
  - S-N curve, hysteresis loops
  - Structural results: grain structure, dislocation density, precipitates and ODS particles

### Summary

# **Fabrication process**



- > MA: under H2, 1000/4'/700/1'/24h, Glove-Box
- ➢ HIP: 1150°C, 100 MPa, 2.5h
- TMP: 3 passes cross rolling at 1100°C +
  Annealing at 1050°C, 2h, Vacuum



### Fatigue sample and Universal testing machine



### **LCF Specimen**

- Deformation volume:
  - Length 7.60 mm
  - Diameter 2.00 mm
- Total specimen length: 27.0 m
- Cylindrical gauge length



 $\epsilon_{t}^{0,5}$  0,0 0 10 20 30 40 50 -0,5 -

### UTM with vacuum furnace T = 550 °C



Institute for Applied Materials Applied materials physics (IAM-AWP)

10 | Pei He | Beijing, China Oct. 20-26, 2013

fatigue

# Fatigue sample geometry and preparation



K9-2 K9-0 **K9-1** Mechanical polishing procedures Abrasive size **Remarks** No. [µm] 18.3 Grinding paper 1 2 15 Thread and diamond paste 20 µm 20 µm 3 9 6 4 K9-4 K9-3 K9-5 **Electro polishing procedure** No. Electrolyte Voltage 20 % H<sub>2</sub>SO<sub>4</sub>+ 5 12 V <u>20 µm</u> 20 µm 20 µm 80 % CH<sub>3</sub>OH

• The surface conditions of fatigue samples are evidently improved.

11 | Pei He | Beijing, China Oct. 20-26, 2013

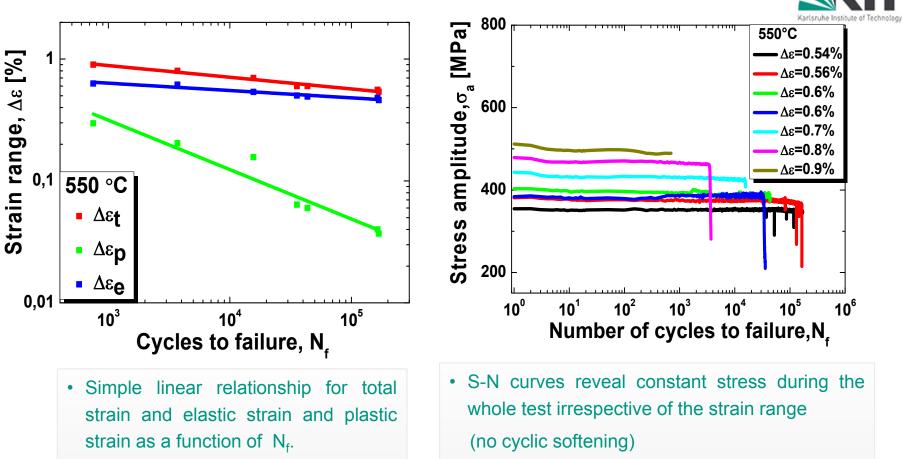


# **Outline**

### Introduction

- Life-limiting failures of first wall and blanket structures
- Fatigue issue on Reduced-activation F/M steels and ODS varients
- Development of ODS RAF steels

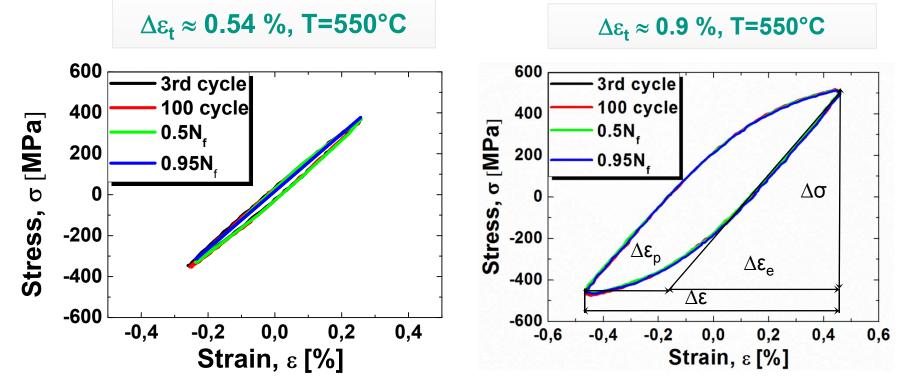
### Experimental


- Fabrication route
- Sample preparation and monitoring

### Fatigue and microstructural results

- S-N curve, hysteresis loops
- Structural results: grain structure, dislocation density, precipitates and ODS particles

### Summary

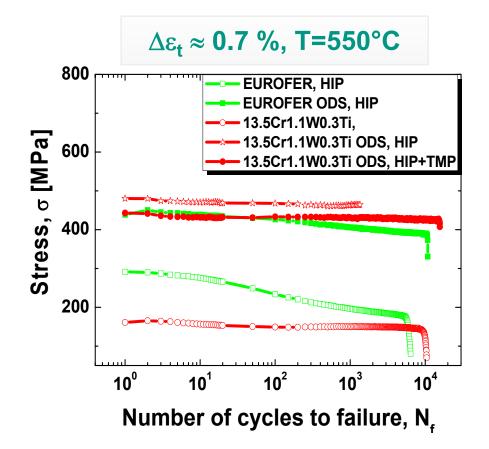

### Fatigue results for 13.5Cr1.1W0.3Ti ODS steel (TMP)



| Δε <sub>t</sub> | σ <sub>a</sub> [MPa] | N <sub>f</sub>      |
|-----------------|----------------------|---------------------|
| 0.54%           | 350                  | 900                 |
| 0.9%            | 520                  | 1.7*10 <sup>5</sup> |

### Fatigue results for 13.5Cr1.1W0.3Ti ODS steel (TMP)





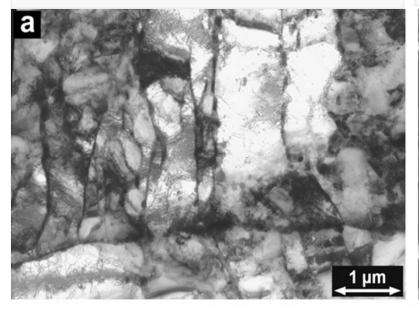

- The stress stability of 13.5Cr1.1W0.3Ti ODS ferritic steel is supported by hysteresis loops.
- · Superposition of hysteresis loops suggest no cyclic softening or hardening
- At  $\Delta \epsilon_t \approx 0.54$  %, slight plastic deformation; at  $\Delta \epsilon_t \approx 0.9$  %, plastic deformation  $\approx 0.3$ %

14 | Pei He | ICFRM-16, Oct. 20-26, 2013, Beijing, China

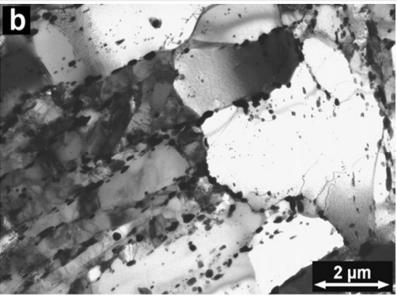







- RAFM steels (EUROFER): pronounced cyclic softening
- 13.5Cr ferritic ODS steel (TMP):
  - outstanding fatigue resistance
  - constant stress




### **Microstructure evolution for EUROFER 97 at 550 °C**



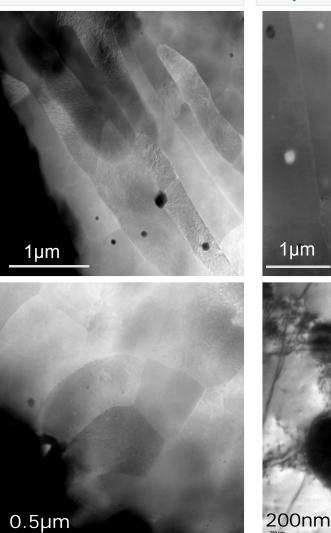
### **As-recieved**



### $\Delta \varepsilon_t$ = 0.45% after 60,850 cycles



C. Vorpahl et al., J. Nucl. Mater., 2011, p16


Cyclic softening (100 MPa) can attributed to

- Formation of coarse precipitates at GB
- Dramatic reduction of dislocation density

### **Microstructure evolution for 13.5Cr ODS steel**



### As recieved





### As received

- Elongated grains retained from TMP
- Nanoscale equiaxed grains
- Random distribution of Ti oxides

### After LCF test

- Stable grain structure
- Multiple dislocationprecipitate (Ti oxide) interaction

Institute for Applied Materials Applied materials physics (IAM-AWP)

17 | Pei He | Beijing, China Oct. 20-26, 2013

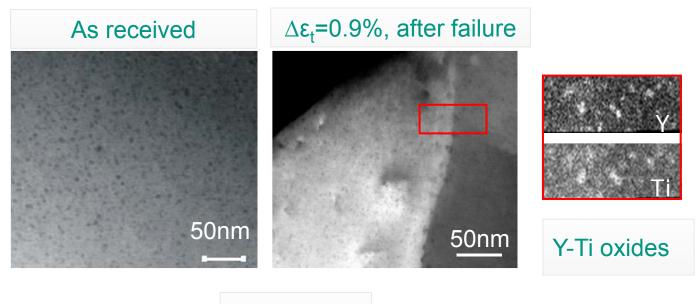
# Dislocation densityAs recieved $\Delta \varepsilon_t = 0.9\%$ after failureParticle-dislocation interaction $\int (t_t) = 0.9\%$ $\int (t_t) = 0.9\%$

| 0 -      | 2n |
|----------|----|
| $\rho =$ | Lt |

n: intersection number of the gridlines and dislocations;

L: length of the gridlines;

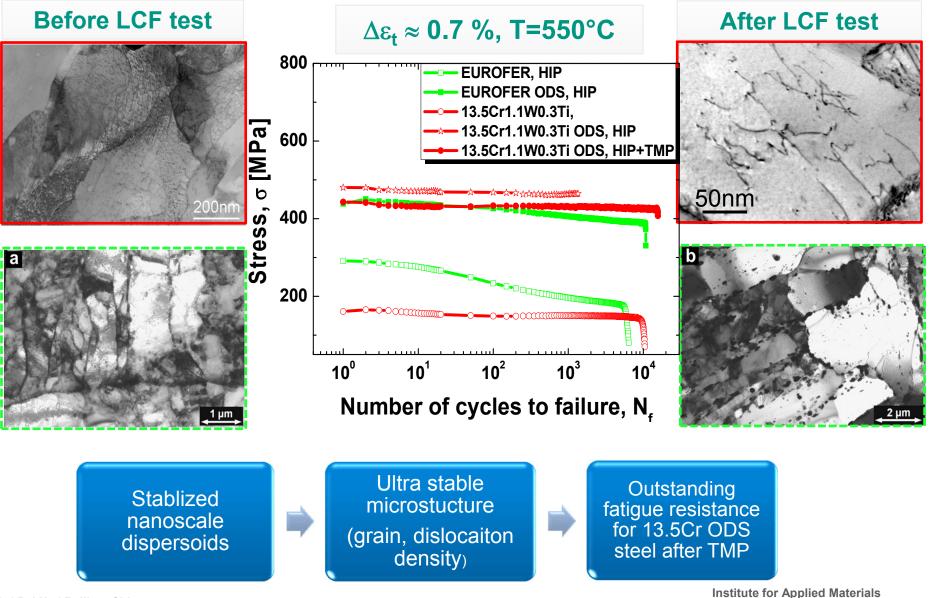
t: thickness of the sample


| Measurement | Dislocation density<br>before LCF [m <sup>-2</sup> ] | Dislocation density<br>after LCF [m <sup>-2</sup> ] |
|-------------|------------------------------------------------------|-----------------------------------------------------|
| 1           | 1.15×10 <sup>15</sup>                                | 7.0×10 <sup>14</sup>                                |
| 2           | 4.21×10 <sup>14</sup>                                | 4.77×10 <sup>14</sup>                               |
| 3           | 7.56×10 <sup>14</sup>                                | 8.05×10 <sup>14</sup>                               |
| Average     | 7.75×10 <sup>14</sup>                                | 6.6×10 <sup>14</sup>                                |

50nm

18 | Pei He | Beijing, China Oct. 20-26, 2013

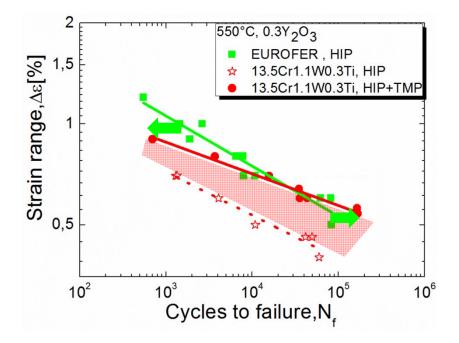
# **ODS** particles



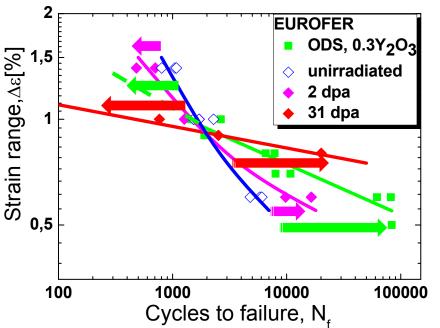



 $d \approx 5 \text{ nm}$ 

### **Fatigue-Microstructure correlation**



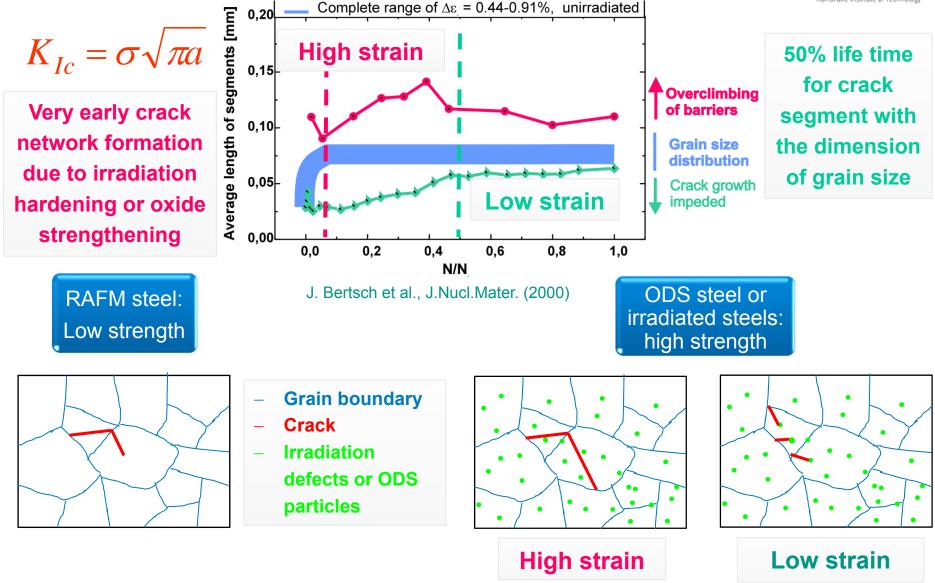




20 | Pei He | Beijing, China Oct. 20-26, 2013

### **Fatigue-Microstructure correlation**






- HIP vs. HIP+TMP
  - -10 time lifetime prolongation at  $\Delta \epsilon$ =0.7% after TMP
- 13.5Cr1.1W ODS (TMP) vs. EUROFER ODS
- Above  $\Delta \epsilon_t \approx$  0.7 %: Lifetime reduction
- Below  $\Delta\epsilon_t\approx 0.7$  %: Lifetime extension
- Critical strain range is dependent on the materials (0.7% or 0.9% ).



- high strain regime, shorter lifetime
- → accelerated crack initiation due to irradiation hardening or oxide dispersion strengthening.
- low strain regime, prolonged lifetime
  - $\rightarrow$  Micro-crack growth impeded by irradiation defects or oxide particles

### **Fatigue-Microstructure correlation**









- > TMP leads to a remarkable lifetime extension for 13.5Cr1.1W ODS steel.
  - → Lifetime extension with a factor of 10 to 20 when  $\Delta \epsilon_t \le 0.7\%$ .
- > EUROFER ODS vs. 13.5Cr1.W ODS steel after TMP
  - $\rightarrow$  dependent on the strain range.
    - $\Delta \epsilon_t > 0.7\%$ , shorter lifetime;  $\Delta \epsilon_t \le 0.7\%$ , prolonged lifetime.
  - → different microstructural barriers (oxide particles, irradiation defects or grain boundaries) and their influence on the crack growth.
- > The constant stress amplitude for 13.5Cr1.1W ODS steel
  - irrespective of strain range
  - $\rightarrow$  stable grain structure, constant dislocation densities of 10<sup>14</sup> m<sup>-2</sup>.
  - $\rightarrow$  highly stabilized nanoscale oxide with an average diameter of 5 nm.



# **Thanks for your attention!**

24 | Pei He | ICFRM-16, Oct. 20-26, 2013, Beijing, China