

Fabrication of different armour prototype materials by PIM

Activity 1: Armour Materials

WP12-MAT-01-HHFM-01-01/KIT/PS
Reporting period: June 2012 – February 2012
Principal Investigator: Steffen Antusch
Presenter: Michael Rieth
KIT-IAM

Contributions:

David Armstrong, Lorelei Commin, Sergei Dudarev, James Gibson, Jan Hoffmann, Wolfram Knabl, Marcus Müller, Michael Rieth, Steve Roberts, Heinz Walter

Objective

→ Fabrication of a variety of different armour prototype materials by PIM

- (1) Material development
- (2) Producing of PIM plates (incl. heat-treatment process)
- (3) Basic material characterization:
- Microstructure: FIB
- Crystallographic texture: EBSD
- Mechanical testing: 4-Point-Bending-Tests

2013

(5) Characterization after (4)

Cooperation with the colleagues from FZ Jülich and IPP Garching

(1) Material development

Powder particle size (as-delivered):

 $0.7 - 1.7 \, \mu m$

- La_2O_3 1.5 μm - Y_2O_3 2.5 μm

Materials:

- W (pure)
- W-2La₂O₃ (5.7 vol.-% La₂O₃)
- W-2Y₂O₃ (8.1 vol.-% Y₂O₃)

(2) Producing of PIM plates

Heat-treatment (only Sintering):

- 2 hours
- dry H₂ atmosphere
- 2400 °C

Microstructure: FIB

- \rightarrow The embedded particles (La₂O₃, respectively Y₂O₃) are homogeneous around the tungsten grain boundaries and act as grain grow inhibitor.
- → Powder preparing by mixing was successful.

Grain grow in [111]-direction to the free surface → preferred orientation in [111]-direction.

Mechanical testing: 4-Point-Bending-Tests

Polishing

10 µm Notching

Sample geometrie: (12 x 1 x 1) mm Constant strain rate of 0.0330 mm/min

Mechanical testing: 4-Point-Bending-Tests

Mechanical testing: 4-Point-Bending-Tests

Mechanical testing: 4-Point-Bending-Tests

Ductile → brittle transition between 200 °C and 400 °C

Fractography on selected samples @ KIT in progress

The samples break until 380 °C and don't break @ 400 °C

Which kind of effect or mechanism?

Conclusions

Preparing of the materials only by mixing was successful.

A new heat-treatment process with a sintering temperature @ 2400 °C was developed.

Preferred orientation in [111]-direction.

Ductile to brittle transition between 200 °C and 400 °C?

Outlook Work Programme for 2013

HHF tests on samples of WP12 (FZ Jülich and IPP Garching)

Goal 2013: Fabrication and optimization of different W armour materials by PIM (alternatives to the usual W-La₂O₃ and W-Y₂O₃ compositions)

- (1) Development of PIM materials with different chemical compositions
- (2) Production / fabrication of prototype grades via PIM
- (3) Adaptation of the heat-treatment process (in close cooperation with PLANSEE SE)
- (4) Characterization of mechanical and physical properties (in close cooperation with OXFORD Materials)
- (5) HHF testing (in close cooperation with FZ Jülich and IPP Garching) and characterization after testing

13

Thank you very much!

