

Impact of particulate matter sources on air quality of Beijing, China

K. Schäfer¹, R.R. Shen¹, S. Schrader^{1,3}, B. Voge², H. Voge², N. Schleicher^{3, 4}, U. Kramar⁴, S. Norra^{3, 4}, J. Schnelle-Kreis⁵, L.Y. Shao⁶, Y. Hu⁶, J. Wang⁶, J.Y. Wang⁶, K. Cen⁷, G. Tang⁸, Y.S. Wang⁸, P. Suppan¹
 ¹Institute of Meteorology and Climate Research, Department Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
 ²Institute of Meteorology and Climate, Research – Department of Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), 76344
 ²Institute of Meteorology and Geoecology (IGG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
 ³Institute of Mineralogy and Geochemistry (IMG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
 ⁵Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
 ⁶Department of Resources and Earth Sciences, China University of Mining and Technology (CUMTB), 100083 Beijing, P. R. China
 ⁸State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), 100029, Beijing, P. R. China

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, DEPARTMENT OF ATMOSPHERIC ENVIRONMENTAL RESEARCH (IMK-IFU)

- Challenges
- Scientific questions
- Process studies
- Conclusions, outlook

Scientific questions for air quality in Beijing

Aeolian mineral dust originated from West and Northwest during storm events – can carry pollutants and nutrients

Emission reduction measures to improve air quality during the Olympic Summer Games in 2008: cut down coarse particles mainly, still frequent air pollution events

Air quality process studies in Beijing

Daily PM_{2.5} filter sampling by 2 HVS DHA80 06/10 – 06/11 at CUGB, since 04/13 at IAP by KIT/IMK-IFU

Main and trace elements analyzed by PEDXRF (Polarized energy dispersive X-ray fluorescence) from KIT/IMG

10 - 20 m distance to PM_{2.5} weekly MVS and LVS by KIT/IMG and passive sampling by DWD

Meteorological, MLH data: ZBAA, IAP, KIT/IMK-IFU

Urban Environmental Pollution 2013 - Asian Edition 17 - 20 November 2013, Beijing, China

Wind influences in Beijing

Spring: industrial areas; **Summer:** similar, precipitation, large MLH; **Autumn:** low wind speeds; **Winter:** higher wind speeds

Evaluations in Beijing

Higher particulate loads during winds from South-West

Desert dust clouds, winds from West, dry air

MLH > 1000 m: often multiple layering, < 1000 m: often one layer High $PM_{2.5}$ load (40 – 140 µg/m³): MLH much lower than 1000 m

Mixing layer height - air quality

Beijing:

Influence of MLH upon element mass concentrations

If the origin of the elements is

- the soil this source dominates the concentrations (AI, K and Ca no MLH influence),
- the traffic and industry the air transport dominates (no MLH influence in higher altitudes) and
- a widespread area source the MLH dominates (Cu, Zn)

Haze days: high relative humidity/ low wind speed / low mixing layer height

Dust days: high wind speed

Variation of Fe, Ti and Ba in Beijing

Highest in April because of dust storm (originated from Gobi desert) and re-suspended road dust **Dust events: different natural sources**

Variation of Zn, As and Pb in Beijing

Fossil fuel combustion (oil and coal combustion) and waste incineration, lowest in January - Spring Festival holidays **Haze days:** highest PM mass concentration from anthropogenic activities, air pollution event during all seasons

Discussion

- Wind conditions influence urban air quality -> contribution of surrounding emissions: e.g. source apportionment of PM_{2.5}
- MLH influenced by future climate change quality of living in cities
- Only holistic and multidisciplinary approaches provide a deeper understanding -> measurements and modeling

COSMO-ART

Aim: Investigation of impact of gases and aerosols on air quality (continental to local scales)

Gases & Aerosols: 80 gas species, 5 anthropogenic aerosol modes, mineral dust, sea salt, pollen

Feedbacks: meteorology, aerosols, gas phase, dynamics, clouds

Mineral dust:

COSMO-ART

(Consortium for Meso-scale Modeling – Aerosols and Reactive Trace Gases)

- 3 initial dust modes, dust emissions, TSP, PM₁₀, PM_{2.5}, AOD
- Dust emissions: surface properties, friction velocity, soil moisture
- AOD: calculated online as function of extinction coefficients, single scattering albedo derived a priori according to dust size and number concentrations using Mie theory

Data overview

	Parameters and product	AOD wavelength	horizontal resolution	vertical resolution
MODIS	Deep Blue AOD Collection 5.1, Level 2	550 nm	10 x 10 km	-
ΟΜΙ	Near-UV AOD OMAERUVd, Level 3	500 nm	1 x 1°	-
MISR	Green band AOD MIL2ASAE, Collection 11, Level 2	555 nm	0.15 x 0.15°	-
CALIOP	AOD, aerosol types Level 2, data version 3.01	532 nm, 1064 nm	5 x 5 km	333 m
COSMO-ART	AOD, TSP, PM ₁₀ , PM _{2.5} without anthropogenic emissions	555 nm	28 x 28 km	Varying terrain following layers

Study area and dust source regions

Klaus Schäfer Institute of Meteorology and Climate Research (IMK-IFU)

Urban Environmental Pollution 2013 - Asian Edition 17 - 20 November 2013, Beijing, China

Spatio-temporal variability of AOD by passive sensors

Klaus Schäfer Institute of Meteorology and Climate Research (IMK-IFU)

Urban Environmental Pollution 2013 - Asian Edition 17 - 20 November 2013, Beijing, China

Satellite information for air quality modeling - AOD

28.04.2011_07:30 UTC_Taklamakan Desert

Comparison of measured AOD by MODIS and CALIPSO and simulated AOD by COSMO-ART for **model** validation

Impact of mineral dust on air quality – PM_{2.5}

Simulation of local PM_{2.5} mass concentrations

Conclusions

- Dust is present over most of the desert areas
 → main source regions Kumtaq, Taklamakan, Gobi
- Most mineral dust is located near the ground \rightarrow <u>air quality</u>
- Good accordance aerosol by satellites and simulated dust
 Space lider and passive sensors
 - → Space lidar and passive sensors aerosol model validation
- We have to investigate
 - Traffic emissions and its development (e.g. UFP, BC)
 - Feedback mechanisms climate change & air quality
 - Consequences to human health: PM_{2.5}, PSD -> UFP
- Study future developments and recommendations relevant for decision makers and stakeholders to improve air quality and to limit climate change impacts

Acknowledgements

We like to thank for financial support within the frame of two start-up projects KIT centre Climate and Environment as well as State Baden-Württemberg, Helmholtz Graduate School for Climate and Environment (GRACE) at KIT and CSC for fellowships.

Thank you very much for your attention

Impact of mineral dust on air quality – AOD

Comparison of CALIPSO features and feature AOD and simulated COSMO-ART AOD

Klaus Schäfer Institute of Meteorology and Climate Research (IMK-IFU)

Urban Environmental Pollution 2013 - Asian Edition 17 - 20 November 2013, Beijing, China