LUCC Land Use and Climate Change Interactions in Central Vietnam

High-resolution climate information of SE Asia: Data for impacts modelers and decision makers

Patrick Laux Karlsruhe Institute of Technology (KIT)

Institute of Meteorology and Climate Research Department of Atmospheric Environmental Research (IMK-IFU)

Outline

- Background & Motivation
 - LUCCi Project
 - Study Region
 - Dynamical Downscaling
- Regional Climate Simulations
 - WRF Parameterization Experiments
 - Long-term Simulations: Trends and Expected Climate Change
- Summary & Outlook

SUSTAINABLE LAND MANAGEMENT

BMBF Project LUCCi

Problem: Data availability

Souvignet et al., 2013

Data availability in VGTB basin

- Sparse observation network of hydro-meteorological data
 - Few hydrometeorological stations (located in lowlands)
 - Low sampling rates (daily)
- Stakeholders demand for scientific sound CC adaptation strategies, e.g.:
 - Flood protection measures (adaptation of infrastructure)
 - Future hydropower potential (low flows)
 - Water availability for agriculture
- → High-resolution hydro-meteorological data (past and future) required to feed hydrological and agricultural impact models!

Dynamical Downscaling

ΌΝΑ

<u>Weather Research and Forecast Model (WRF)</u>

- Next generation atmospheric modeling system
- Developed at NCAR
- Successor of the Mesoscale Model 5 (MM5)
- Various applications at different scales:
 - Weather forecasts
 - (Long-term) climate simulations
- Atmospheric and (sub)surface compartments:

Atmospheric compartment

LUCC

Atmosphere – Explicit Calculation of ...

(Sub)surface Compartment

ONA

Land (sub)surface – Model Equations

WRF Setup

ONA

- Domain D01
 - horizontal: 99 x 99 grid points with a resolution of 45 km
 - vertical: 50 layers up to 50 hPa
 - time step: 180 s
- Domain D02
 - horizontal: 142 x 145 grid points with a resolution of 15 km
 - vertical: 50 layers up to 50 hPa
 - time step: 120 s
- Domain D03
 - horizontal: 66 x 75 grid points with a resolution of **5 km**
 - vertical: 50 layers up to 5000 Pa
 - time step: 30 s

→ GOAL: Transient WRF simulation from 1960 - 2050

Outline

- Background & Motivation
 - LUCCi Project
 - Study Region
 - Dynamical Downscaling
- Regional Climate Simulations
 - WRF Parameterization Experiments
 - Long-term Simulations: Trends and Expected Climate Change
- Summary & Outlook

Parameterization Experiments

- 12 Combinations using 3 MP, 2 PBL and 2 CU schemes
- 2 Combinations using NCEP & ERA40 Reanalyses
- \rightarrow 2 x 12 = 24 WRF simulation for 2000 performed

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
I	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
К	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

WRF Parameterization Experiments:

Simulated annual precipitation for 2000

ONA

Validation ERA40-WRF: Daily Precipitation

A: APHRODITE data = Reference

Pearson Correlation Coefficient Root Mean Squared Error Standard Deviation

ONA

LUCC

Final Decision (simulated T, P)

ERA40 Reanalysis

- Lower **bias** in T
- Higher **pattern correlation** of P (summer)

(Laux et al., 2013)

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
I	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
К	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

ERA40-WRF vs. Obs (DOM2): P, T2

ONA

RUB Karava helike of Hardinery Aground and

Outline

- Background & Motivation
 - LUCCi Project
 - Study Region
 - Dynamical Downscaling
- Regional Climate Simulations
 - WRF Parameterization Experiments
 - Long-term Simulations: Trends, Expected Climate Change
- Summary & Outlook

Past Climate: Annual trends WRF-ERA40

T2 (1971-2000)

P(1971-2000)

Significant at α =0.05

Not significant at α =0.05

Past Climate: Seasonal trends WRF-ERA40

FONA

Expected Climate Change: WRF-ECHAM5

Tailor-made Information for Stakeholders

Change of **Precipitation Extremes** (P95) A1B: (2021-2050) *minus* (1971-2000)

Tailor-made Information for Stakeholders

Change of mean **Wind Speed** A1B: (2021-2050) *minus* (1971-2000)

ONA

Tailor-made Information for Stakeholders

Change of **Growing Days of 2nd cropping cycle (Rice)** A1B: (2021-2050) *minus* (1971-2000)

Growing days = Number days after 1 July between the first occurrence of > 6 consecutive days with T2 > 20 °C and > 6 consec. days with T2 < 20 °C

Summary & Outlook

- High-resolution and reliable climate information (~1 Mio CPU hours): WRF-ECHAM5 (1961-2050) for A1B <u>and</u> B1, WRF-ERA40 (1971-2000)
 - Past: T2 increased up ~1.2° C & P increased ~300 mm (1971-2000), but: strong spatio-temporal differences
 - Future: CC is expected to increase (decrease) water availability for B1 (A1B) scenario, increase of precipitation extremes expected
- Addressing stakeholder's needs and providing tailor-made information for different sectors (agriculture, hydrology, energy, etc.) → please contact me
- Further Research:
 - Analysis of occurrence probabilities & return intervals of rare events (Extremes Value Theory)
 - Uncertainty estimation coming from forcing GCMs (Statistical Downscaling)

Acknowledgments

Donors of LUCCi Project

Organization Team

Computing Resources and Support

Contact: patrick.laux@kit.edu

Open question: Bias correction? Mean daily precipitation bias WRF-ERA40 (1971-2000)

Real bias of WRF simulations or **artifacts in gridded rainfall products** induced by interpolation of sparse hydro-meteorological observations and lack of data in high elevations?

Validation WRF: T2 (Year 2000)

MI

Pearson Correlation Coefficient Root Mean Squared Error Standard Deviation

ONA

Validation NCEP-WRF: Daily Precipitation

LUCC

A: APHRODITE data = Reference data

Pearson Correlation Coefficient Root Mean Squared Error Standard Deviation

ONA

Expected Climate Change: WRF-ECHAM5

LUCC

WRF Modeling System

WRF Modeling System Flow Chart

Technical details: building and running WRF at XC4000 (KIT, SCC)

- Building
 - WRF written in Fortran90
 - MPI interface and programs for file parsing written in C
 - WRF build relies on Perl version 5 or later and standard UNIX utilities
 - Modules used
 - intel/12.0.5/default
 - gcc/4.6.0/default
 - hp-mpi/2.3.1/default (distributed memory)
 - External libraries
 - netCDF library
- Running
 - Job chains
 - 1 simulation year per job
 - Restart run performed for each month

Performance of WRF at XC4000 (KIT, SCC)

ONA

Further technical details:

- CPU resources (for 1 year simulation)
 - Number of CPUs: 128
 - Sum of CPU-time over all processors: 182-16:30:02
 - Elapsed time: 1-11:39:26
 - Maximum virtual memory by any process: 701.62M
 - Maximum number of minor page faults for any process: 40663916
 - Total number of voluntary context switches for all processes: 418026354
- Approved computation time: 69125d 0h 0m 0s
 Already used: 28343d 5h 4m 38s (41.00%)

Reference Data

ONA

КП

Trends Precip annual ERA40

ONA

