

GPU-based data processing for ultrafast X-ray imaging — KSETA Plenary Workshop 2014

Matthias Vogelgesang

Institute for Data Processing and Electronics

www.kit.edu

Motivation

Synchrotron radiation from ANKA

- X-ray source producing beam with broad spectrum and high brilliance
- X-ray scattering and diffraction, high-resolution and high-speed radiography, tomography and laminography
- New IMAGE beamline used to investigate fast processes in life and material sciences

Figure: Floor plan of ANKA electron ring with 16 tangential *beamlines*

Beamline

50 to 150 motors

2

2

Convert X-ray photons into visible light, magnify and detect them with CCD or CMOS.

Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging — KSETA Plenary Workshop 2014

2

Institute for Data Processing and Electronics

Challenges

3

Fast, high volume acquisition

- Up to hundreds of samples per experiment
- Many thousand frames per second per sample
- Up to eight mega pixels at 16 bit per frame

Challenges

3

Fast, high volume acquisition

- Up to hundreds of samples per experiment
- Many thousand frames per second per sample
- Up to eight mega pixels at 16 bit per frame

Efficient, fast data processing

- On-site data processing for visual quality assurance
- Use reconstructed data for early feedback
- Use existing computing infrastructure

Tomographic reconstruction

Problem

4

From a series of projections ...

Tomographic reconstruction

Problem

4

From a series of projections ... reconstruct unknown slice information

Tomographic reconstruction

Problem

From a series of projections ... reconstruct *unknown* slice information

Solutions

- Solve analytically using the Fourier-slice theorem (DFI)
- Filter projections and smear back into empty volume (FBP)
- Model detection as a linear system and solve algebraically (ART)

Improving reconstruction

There is no "one-size-fits-all" solution

- Quality: DFI < FBP < ART</p>
- Speed: DFI > FBP > ART¹

CPUs are still too slow

- Up to hours for very large data sets
- On-line and on-site inspection assessment inconvenient
- Fast feeback impossible

 $^{1}O(n \log n) \subset O(n^{3}) \subseteq O(cn^{3})$

5

Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging — KSETA Plenary Workshop 2014 Why GPUs?

A superficial comparison

Processor	Purpose	Cores	Performance	Bandwidth	Price
CPU	General	12	0.5 TFLOPs	60 GB/s	>€2200
GPU	Graphics	2880	5.0 TFLOPs	336 GB/s	€430

But ...

6

- Work differently than a CPU
- Cover restricted problem domains

Heterogeneous computing

 Systems with different processors and topologies (CPUs, GPUs, FPGAs)

7

Heterogeneous computing

- Systems with different processors and topologies (CPUs, GPUs, FPGAs)
- Needs precise scheduling and resource allocation as well as architecture-specific code
- Avoid unnecessary copies between devices

Heterogeneous computing

- Systems with different processors and topologies (CPUs, GPUs, FPGAs)
- Needs precise scheduling and resource allocation as well as architecture-specific code
- Avoid unnecessary copies between devices

Heterogeneous computing

- Systems with different processors and topologies (CPUs, GPUs, FPGAs)
- Needs precise scheduling and resource allocation as well as architecture-specific code
- Avoid unnecessary copies between devices

Data streaming

- Common in trigger systems
- Low latency and high throughput desirable
- Must consider clusters

Basic approach

 Define algorithmic computation and data flow as a directed graph

8

- Define algorithmic computation and data flow as a directed graph
- Determine local system of CPUs and GPUs

8

8

Define algorithmic computation and data flow as a directed graph

Basic approach

- Determine local system of CPUs and GPUs
- Transform graph to accomodate for additional processors

8 Feb 25th 2014 M Vogelgesang - GPU-based data processing for ultrafast

Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging — KSETA Plenary Workshop 2014

Basic approach

- Define algorithmic computation and data flow as a directed graph
- Determine local system of CPUs and GPUs
- Transform graph to accomodate for additional processors
- Assign tasks to GPUs

Basic approach

- Define algorithmic computation and data flow as a directed graph
- Determine local system of CPUs and GPUs
- Transform graph to accomodate for additional processors
- Assign tasks to GPUs and CPUs

8

Basic approach

- Define algorithmic computation and data flow as a directed graph
- Determine local system of CPUs and GPUs
- Transform graph to accomodate for additional processors
- Assign tasks to GPUs and CPUs

9 Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging – KSETA Plenary Workshop 2014

Institute for Data Processing and Electronics

Scaling to clusters

9 Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging – KSETA Plenary Workshop 2014

Scaling to clusters

- Use algorithmic description
- Replicate sub-graph

9 Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging – KSETA Plenary Workshop 2014

Scaling to clusters

- Use algorithmic description
- Replicate sub-graph
- Instatiate tasks on remote nodes

t₃

 t_4

Local master

Remote slave

Scaling to clusters

- Replicate sub-graph
- Instatiate tasks on remote nodes
- Forward data and receive results

Local master

Remote slave

Improvements

Single node multi-GPU

Good scalability with near linear speed-up for up to 6 NVIDIA GTX 580's.

11 Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging – KSETA Plenary Workshop 2014 Multi node cluster

Network Compute Runtime (s) Runtime (s) High network overhead Almost linear speedup

FBP

FBP + NLM

Let's do better

Improving user experience

Performance problems but ...

- Yet another compute language
- Hardware knowledge required for best performance
 - Work group layout,
 - Memory access patterns
 - Cache hierarchies etc. pp. ...

Improving user experience

Performance problems but ...

- Yet another compute language
- Hardware knowledge required for best performance
 - Work group layout,
 - Memory access patterns
 - Cache hierarchies etc. pp. ...

GPU programming is hard!

Improving user experience

Performance problems but ...

- Yet another compute language
- Hardware knowledge required for best performance
 - Work group layout,
 - Memory access patterns
 - Cache hierarchies etc. pp. ...

GPU programming is hard!

Use Python instead

- Straightforward: Use NumPy's vectorized expressions
- Clever: Run the same code on GPU/CPU/FPGA

 Python interprets statements on an abstract virtual CPU

- Python interprets statements on an abstract virtual CPU
- Parse Python code into syntax tree

- Python interprets statements on an abstract virtual CPU
- Parse Python code into syntax tree
- Optimize tree according to environment

- Python interprets statements on an abstract virtual CPU
- Parse Python code into syntax tree
- Optimize tree according to environment
- Generate OpenCL C code

- Python interprets statements on an abstract virtual CPU
- Parse Python code into syntax tree
- Optimize tree according to environment
- Generate OpenCL C code
- Run generated code on GPU(s)

Benefits

Non-invasive changes

```
def calc(x, y):
    return np.cos(x) + np.sin(y)
```

becomes

```
@jit
def calc(x, y):
    return np.cos(x) + np.sin(y)
```

Additional optimization opportunities

Speedup compared to NumPy

17 Feb. 25th, 2014 M. Vogelgesang - GPU-based data processing for ultrafast X-ray imaging – KSETA Plenary Workshop 2014 Institute for Data Processing and Electronics

Heterogeneous systems can be utilized for streamed data

- Heterogeneous systems can be utilized for streamed data
- Scaling out to clusters works well

Conclusion

- Heterogeneous systems can be utilized for streamed data
- Scaling out to clusters works well
- No one needs to write GPU kernels

Thank you. Any questions?