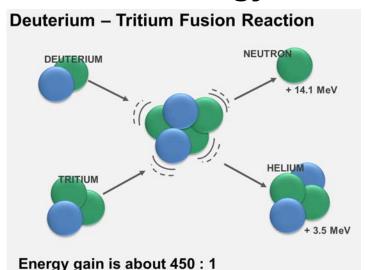


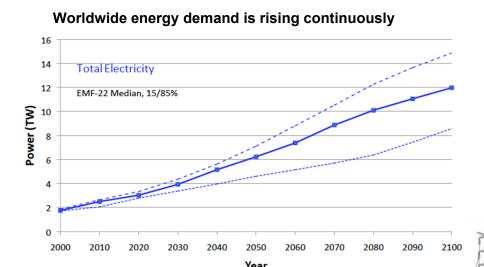

### **Evaluation of Coating Processes for the Development of Aluminum-based Barriers for Fusion Applications**

**Juergen Konys** 



### Advanced processes for T-permeation and corrosion barriers





#### **Outline**

- Applications for Nuclear Fusion
  - T-permeation and/or anti-corrosion barriers for liquid breeder blanket concepts in ITER and future Fusion Power Reactors
  - Why Al-based barriers?
- Overview of previous coating activities → Hot-dip-aluminization process
- New electrochemical Al coating processes
  - Al deposition from organic aprotic electrolytes (ECA)
  - Al deposition from ionic liquids + metal salt (ECX)
- Conclusions

# Nuclear Fusion as an long-term Option for the Worldwide Energy Demand







Development of a new primary energy source on the basis of a magnetically confined fusion plasma

Favorable environmental and safety properties

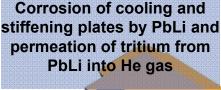
- Unit size 2 5 GWth / 1 2 GWe
  - Size of present base load power plants
- Potential fusion applications
  - Base load for large cities
  - Energy intensive industries
  - High temperature process heat in a renewable economy

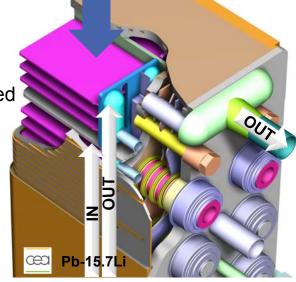
# The He-PbLi blanket concept for ITER: Application of T-permeation and/or anti-corrosion barriers



Deuterium (D) is highly available, e. g. in sea water

Tritium (T) is naturally "not really" available, but

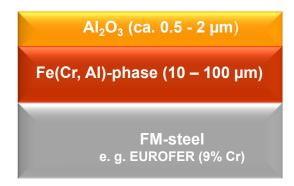

**produced** in CANDU reactors by  $(n, \gamma)$  reaction on deuterium


and bred by nuclear reactions from Lithium

 $^{6}$ Li (8%) + n  $\rightarrow$  T + He + 4.8 MeV  $\rightarrow$  enrichment is needed

 $^{7}$ Li (92%) + n → T + He - 2.87 MeV

- Worldwide, many fusion reactor concepts are designed to use lithium in different chemical form
  - as solid breeder, e.g. Li<sub>4</sub>SO<sub>4</sub>, Li<sub>2</sub>O
  - as liquid metal, e.g. pure Li or Pb-15.7Li (T<sub>m</sub> = 235°C)

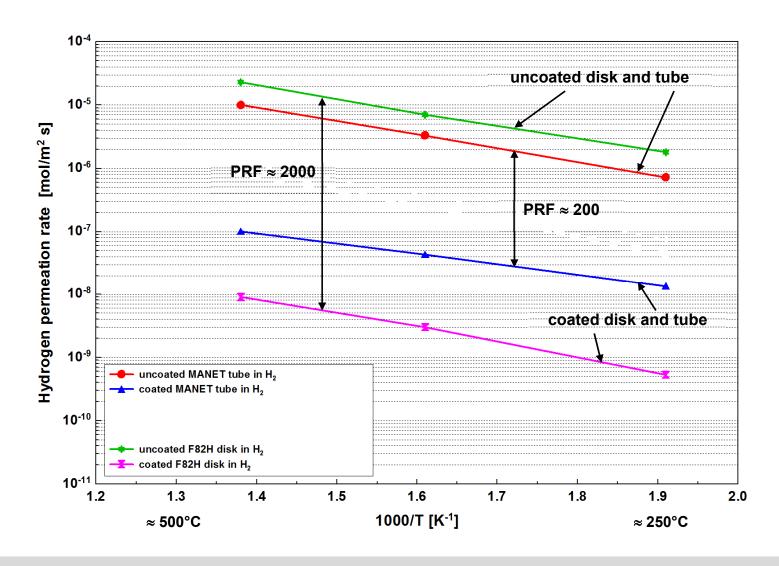






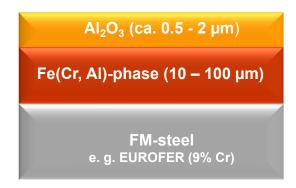

### Structure and technical requirements for an Albased T-permeation and/or corrosion barrier






#### Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)</p>
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- High content of low activation elements
- No negative influence on mechanical properties of the steel due to the coating process
- The coating process must be of industrial relevance

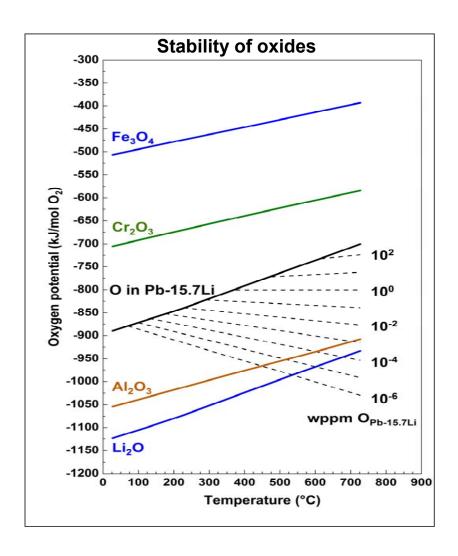

### Permeation data of Al-coated FM-steels in H<sub>2</sub>





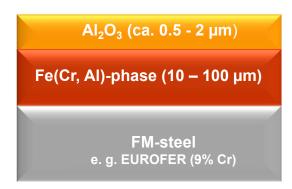
### Structure and technical requirements for an Albased T-permeation and/or corrosion barrier






#### Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)</li>
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- High content of low activation elements
- No negative influence on mechanical properties of the steel due to the coating process
- The coating process must be of industrial relevance


# Thermodynamics of Al/Al<sub>2</sub>O<sub>3</sub>-based T-permeation barriers

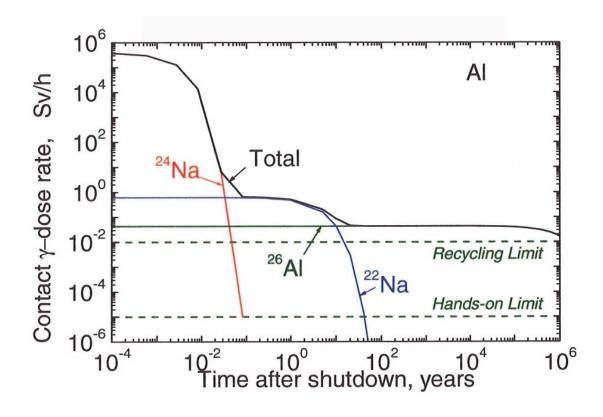




### Structure and technical requirements for an Al-based T-permeation and/or corrosion barrier

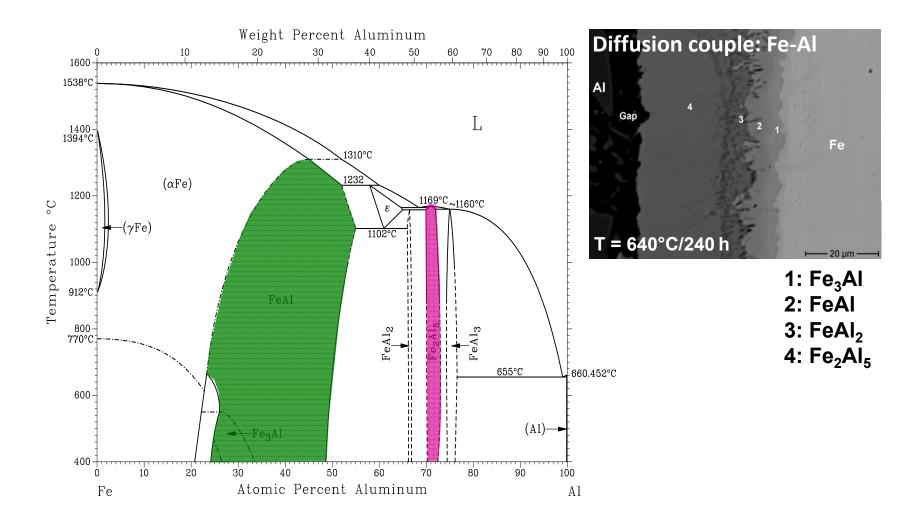





#### Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- High content of low activation elements
- No negative influence on mechanical properties of the steel due to the coating process
- The coating process must be of industrial relevance

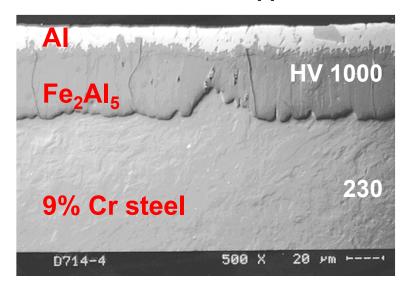
### Activation of AI for AI-based barriers in a "fusion irradiation environment"




#### **Aluminium irradiation for 2 years**



### Al-based coatings: The Fe-Al phase diagram

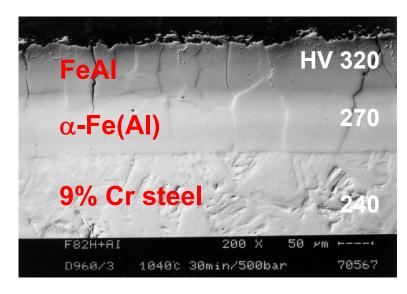





### **Hot-Dip aluminizing process** Parameters for hot dipping are: Temperature $T_{dip} = 700$ °C, dipping time of 30 s in Ar-5%H<sub>2</sub>



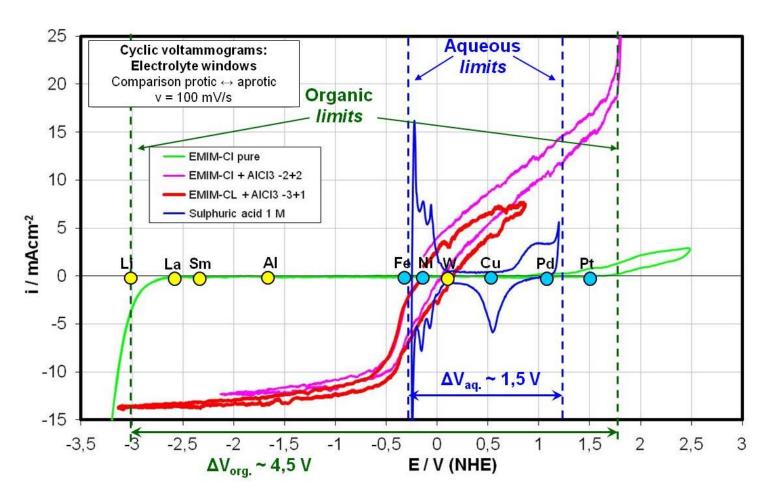
#### Microstructure of hot dipped surface




The alloyed surface layer consists of brittle Fe<sub>2</sub>Al<sub>5</sub>, covered by solidified Al



Al-enriched layer is too thick → too much AI in the near-surface region


#### Microstructure after heat treatment



Heat treatment at 980°C / 0.5 h + 760°C / 1.5 h and an applied pressure of >250 bar (HIPing) reduces porosity and transforms the brittle Fe<sub>2</sub>Al<sub>5</sub>-phase into the more ductile phases FeAI and α-Fe(AI)

### **Electrochemistry for coating application**





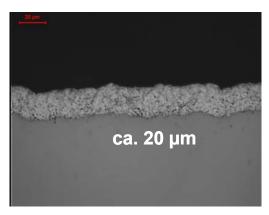
EC measurements of protic and aprotic metal deposition systems

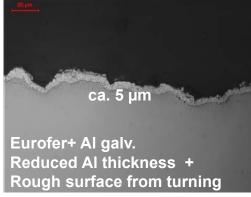
### Electrochemical deposition for barriers/coatings - advantages of galvanic coatings -

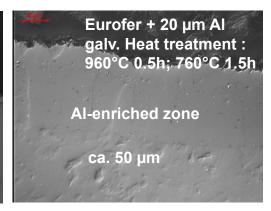




- By **anodic** dissolution, metal removal takes place without any mechanical stresses and at "low" temperatures
- No gradients ΔT, Δp (and resulting forces) between
  - electrolyte medium and metal surface
  - metal surface and metal bulk
- ▶ no local heating as in EDM working
- no mechanical load (no residual stresses)


### **Electrochemical aluminium deposition** - properties of organic aprotic electrolyte systems - Karlsruhe Institut





| Solvens                     |             | Toluol, Xylol<br>Diisopropylether                           |                   | Quarternay Amin salts e. g. Ethylmidazolium chloride |  |  |
|-----------------------------|-------------|-------------------------------------------------------------|-------------------|------------------------------------------------------|--|--|
| Ionic solubility of solvens |             | No                                                          |                   | Yes                                                  |  |  |
| Al-carrier system           |             | $KF \cdot 2AI(R)_3$<br>R = $C_nH_{2n+1}$ mit n= 2-6         | 6                 | AICI <sub>3</sub>                                    |  |  |
| Temperature                 |             | 100°C                                                       |                   | RT 200°C                                             |  |  |
|                             | Water       | extremly high                                               |                   | modest                                               |  |  |
| Reactivity                  | Air         | extremly high                                               |                   | low                                                  |  |  |
|                             | Temperature | modest                                                      |                   | Stable up to 300°C                                   |  |  |
| Toxicology   biodegrability |             | Aromates: ++/                                               |                   | Amines: -/+                                          |  |  |
| Max. conductivity [mS/cm]   |             | 19,5                                                        |                   | 22,0                                                 |  |  |
|                             |             | ECA                                                         |                   | ECX                                                  |  |  |
|                             |             | Al-Alkyl-<br>Acryl-Complex<br>in Toluol<br>resp. Alkylether | Q <sub>K</sub> AI | $AI^{3+} + 3 CI-                                  $  |  |  |

### Development of electrochemical AI coating Process, toluol-based (ECA)









#### **Process specifics**

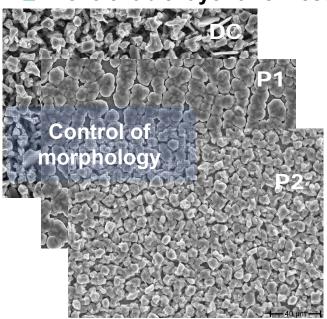
Organic electrolyte, Al-alkyle, under cover gas Deposition temperature ca. 100°C, rate ≈ 12 µ/h More complex geometries can be coated; even inside tubes

| EUROFER | 8.82 | 0.47 | 0.20 | 1.09 | 0.13 |    | 0.11 | 0.02 |
|---------|------|------|------|------|------|----|------|------|
| (wt%)   | Cr   | Mn   | V    | W    | Ta   | Мо | С    | Ni   |

#### **Result of ECA development**

- Electrochemical coating applicable to functional scales in TBM's
- Barrier function tested in corrosion, successfully
- Salt-based processes have to be developed for higher compositional flexibility
- Reason: Electro-negativity of refractory metals and unique behavior




# Development of coatings as corrosion T-permeation barriers (ECX)

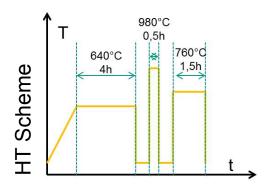


Development of electrochemical aluminum coating process based on ionic liquids (ECX)

Advantages of ECX process based on ionic liquids:

- Improved flexibility compared to ECA
- Improved security (inflammable, not volatile) compared to ECA
- Deposition parameters are customizable to produce coatings with specific properties (thickness, deposition rate, morphology)
- Controllable layer thickness (compared to HDA)




| Deposition Parameters |                       |                       |                       |  |  |  |  |
|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|--|
| Parameter             | DC                    | P1                    | P2                    |  |  |  |  |
| $j_m$                 | 20 mA/cm <sup>2</sup> | 20 mA/cm <sup>2</sup> | 20 mA/cm <sup>2</sup> |  |  |  |  |
| $j_p$                 | -                     | 80 mA/cm <sup>2</sup> | 25 mA/cm <sup>2</sup> |  |  |  |  |
| t                     | 30 min                | 30 min                | 30 min                |  |  |  |  |
| f                     | -                     | 1 s <sup>-1</sup>     | 1 s <sup>-1</sup>     |  |  |  |  |
| $\Theta$              | 100 %                 | 25 %                  | 80 %                  |  |  |  |  |

# Heat treatment of Al layers for corrosion and T-permeation barriers



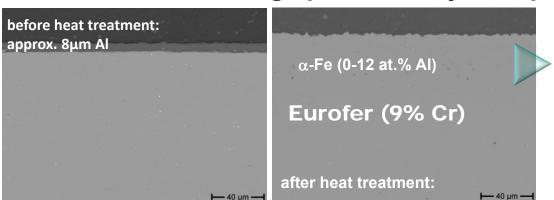
#### Treatment of AI coatings produced by ECX

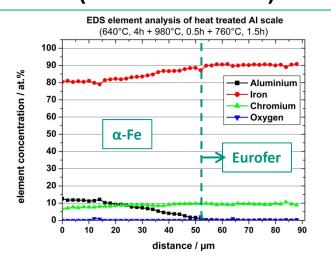
Heat treatment necessary to convert AI coatings to desired protective Fe-AI scales for corrosion protection and T-permeation











- Homogeneous conversion of Al coatings and formation desired Fe-Al scales on 1.2210 steel
- No delamination visible

# Heat treatment of Al layers for corrosion and T-permeation barriers

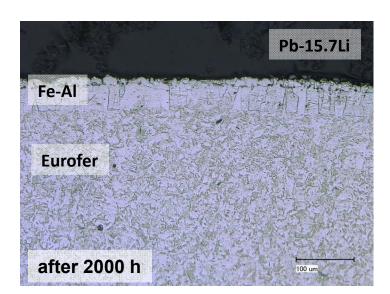


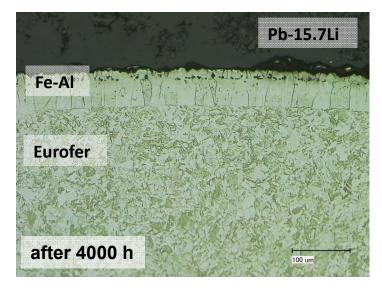
Treatment of AI coatings produced by EDX process (Lewis acidic IL)





- Heat treatment under Ar atmosphere (preventing of strong surface oxidation) + additional annealing step at 640°C (4h)
- Relatively smooth surface after heat treatment
- Layer thickness after heat treatment: approx. 50µm (center)


#### **Actual work:**


- Ongoing examination of deposition parameters:
  - Adhesion to the substrate, reproducibility, influence on coating properties
  - Influence of sample geometry
- Optimization of heat treatment parameters (depending on parameters during ECX process)

### Development of electrochemical aluminum coating processes (corrosion tests in Pb-15.7Li for ECX process)



- Barriers produced by ECX process:
  - Corrosion protection of Eurofer in flowing Pb-Li is shown for "short-term" exposure times up to 4.000h
  - Remaining protective scale thickness after 4000 h: >50 μm
  - Radial mass loss: ca. 10 μm → corrosion rate ca. 20 μm/year
  - Homogeneous corrosion attack of the scale itself → No formation of plateaus (!) visible as in the case scales produced by ECA process





#### **Conclusions**



- **Barriers**, based on Fe-Al/Al<sub>2</sub>O<sub>3</sub>, are appropriate to fulfill the requirements for T-permeation reduction and corrosion protection in liquid PbLi.
- Hot-dip aluminizing is an excellent tool to investigate the formation of aluminide layers on FM-steels (interdiffusion). But HDA coatings have drawbacks because of the high AI content in the surface
  - ▶ high activation under neutron irradiation: <sup>26</sup>AI and the low flexibility for coating of complex-shaped parts.
- Electrochemical deposition processes like ECX have shown their applicability for manufacturing of thin Al coatings with high reproducibility, even for complex geometries.
- The development of appropriate heat treatments has to be further optimized, followed by new permeation tests in H-, D- and finally T- environments.
- The new electrochemical Al-based coatings have also a high potential in other energy applications at elevated temperatures and aggressive environments.