

Gold-stud bumpbonding

Interconnection technology for research and development of new detectors

Thomas Blank, Michele Caselle, Fabio Colombo, Ulrich Husemann, •Simon Kudella, Benjamin Leyrer und Marc Weber

Institut für Experimentelle Kernphysik

KIT – University of the state of Baden-Wuerttemberg and national research institution of the Helmholtz Association

www.kit.edu

Bumpbonding of pixel detectors

2 27.03.2014 DPG-Frühjahrstagung 2014 **Gold-stud bumpbonding** - Interconnection technology for research and development of new detectors

Simon Kudella

3

IConn

Ball-wedge-Bonder

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Institut für Experimentelle Kernphysik

Alternative bumping method (KIT)

Bond head with capillary

- Gold-stud bumping is an evolution of ~50 years of wirebonding
- Wire gets sheared after ball connection to substrate
- No UBM necessary

substrate

- Single-chip-bumping possible
- Cheap bumping process, @KIT
- 20 bumps/s

Bumping – process operation

- Process of upto 10 single steps
 - "Free Air Ball" formation
 - Touchdown onto surface
 - Bonding via ultrasonic bonding by ultrasonic generator (USG)
 - Shearing of wire
 - Re-feeding and ripping of wire
- Process with large number of paramters → optimization regarding:
 - Mechanical strength
 - Bumpsize and -shape
 - Long-term stability

Simon Kudella

4 27.03.2014 DPG-Frühjahrstagung 2014 **Gold-stud bumpbonding** - Interconnection technology for research and development of new detectors

Investigation by shearing of the bumps

Looking for:

- High shearforce per connection area
- Separation process: bond-shear, aluminium-shear

Bumping – mechanical strength

- Systematical investigation of mechanical strength
- No connection for I_{USG}<25 mA or</p>
 - F_{bond}<7 g
- Dimension for mechanical strength $\gamma = \overline{F}/(A\sigma)$, σ =standard deviation
- Parameters in area of high stability chosen
- Shearforce: 8 g per bump

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Bumping – Bumpgröße & -form

■ Minimal bump-diameter depending on opening diameter of passivation → small passivation openings cause bigger bumps

- Bump-shaping via wire-shearing parameters
- Current status: 30 μm diameter, 15 μm height
- Bump-diameter comparable to lithographic process

6

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Bumping – long-term stability

- Long-term stability depending on hardware parameters (condition of wire, cleaniness of wire-feed system) and bumping parameters
- Current long-term stability >4000 bumps without interruption → bumping of a CMS pixel single sensor (4160 bumps) process in <5 min</p>

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Bonding – process operation

Bond-temperature

- Two-step process
 - 1) Establishing planarity by gamber tool
 - 2) Bonding by thermo compression
- Process parameters
 - Bond-force: 200 N (4,9 g/bump) for 60 s (necessary for bumpdeformation)
 - 2) Bond-temperature 250 °C for 60 s (no elektromigration in ROC/Sensor)

- Flip-chip bonding by thermocompression
- Bonding with Femto Fineplacer[®] @KIT

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Bonding – test results

Pulltest:

- High pull force of >2,2 g per bump
- Separation process: 95% bump-tobump, 5% aluminium-liftoff
 - \rightarrow bumping optimized
 - \rightarrow bonding not optimized yet
- Chip shift due to weak vacuum

Cross-section:

- Very good connection of the gold bumps at 250 °C
- Chip shift due to weak vacuum

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Bonding – flattening of bumps

- Shift due to high shear-forces during the bonding
 - \rightarrow Reduction of the shear-forces by flattening all bumps
- Pressing bumps onto bonding table

Shift reduced

All bumps seem to be connected → electrical test

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella Institut für Experimentelle Kernphysik

Bonding – electrical test

- First prototype assembled
- Chip alive after processing and 80% of connections established
- Source test shows planarity problem
 - \rightarrow correlated to flattening problem causing two plane structure
- Improving flattening process to assemble class A singles soon

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella

Summary

- Bumpbonding necessary for hybrid pixel detectors but complex and expensive
 Gold-stud bumpbonding as cheap flexible alternative that enables single-chip
 - processing in the R&D phase
- Setting at KIT:
 - Bumping with Ball-wedge bonder (@KIT)
 - Bonding with Flip-chip bonder (@KIT)

Bumpbonding process @KIT

Status:

- Stable process producing 30-μm-bumps
- Very good and strong interconnection using 250 °C bond-temperature
- Chip shift due to weak vacuum \rightarrow flattening of bumps to avoid shear forces

Upcoming:

Improvement of flattening process and produce class A singles

Simon Kudella

Thanks for your attention!

Gold-stud bumpbonding - Interconnection technology for research and development of new detectors

Simon Kudella