

Die städtische Wärmeinsel – Chancen und Risiken von Anpassungs- und Vermeidungsmaßnahmen

Stefan Emeis und Joachim Fallmann Karlsruher Institut für Technologie stefan.emeis@kit.edu

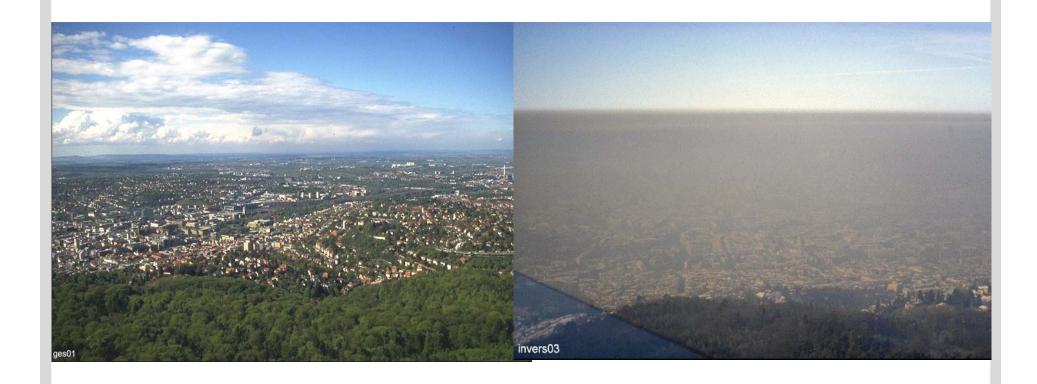
INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

Mehr als die Hälfte der Menschheit lebt in Städten

Ein Großteil der anthropogenen Schadstoffemissionen erfolgt in Städten

Luftqualität in urbanen Räumen ist vielfach schlecht und belastend (z.B. Beijing, ...

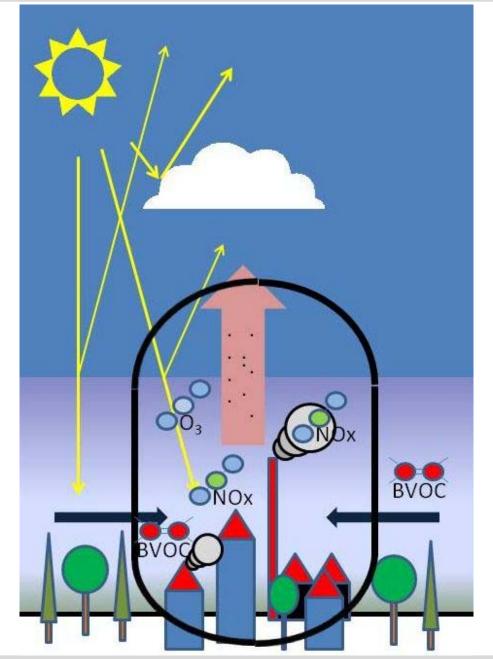
Städte sind wärmer als ihre Umgebung (ebenfalls belastend)


Thema des Wissenschaftsjahres 2015: Zukunftsstadt (BMBF)

Forschungs- und Innovationsagenda für die CO₂-neutrale, energie- und ressourceneffiziente und klimaangepasste Stadt (Nationale Plattform Zukunftsstadt (vier Bundesministerien)

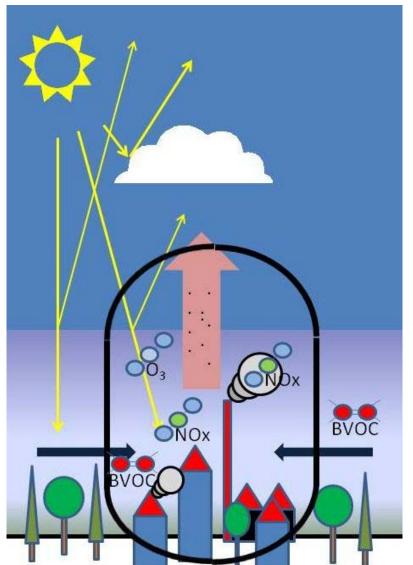
Stuttgart bei "schönem Wetter"

links: Kaltluft, rechts: sommerliche Inversion


www.stadtklima-stuttgart.de

Venedig bei "schönem Wetter" kurz vor der Landung am 16.10.2013

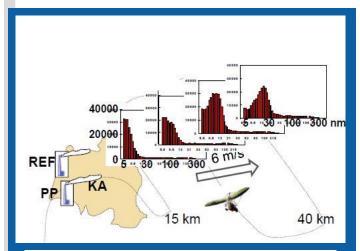
Foto: Joachim Fallmann



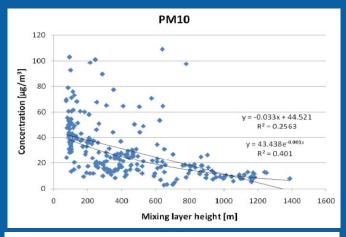
Die Stadt als einzigartiges luftchemisches Reaktionsgefäß

- wärmer
- trockener
- geringere Windgeschwindigkeit
- Vermischung unterschiedlicher Emissionen

Landoberflächenprozesse im Klimasystem Wechselwirkungen zwischen Stadt und Umland



Die Stadt als einzigartiges "Reaktionsgefäß"


Drei Zielsetzungen:

- (1) Aerosolpartikelquellen identifizieren (aus anthropogenen, biogenen und geogenen Emissionen und durch sekundäre Bildung)
- (2) Einfluss von anthropogenen und biogenen Emissionen auf die Luftqualität, die regionale Meteorologie und die Klimatologie untersuchen
- (3) Anpassungs- und Vermeidungsmaßnahmen für städtische Wärmeinseln untersuchen und deren Einfluss auf die Luftqualität analysieren

(1) Aerosolpartikelquellen identifizieren (aus anthropogenen, biogenen und geogenen Emissionen und durch sekundäre Bildung)

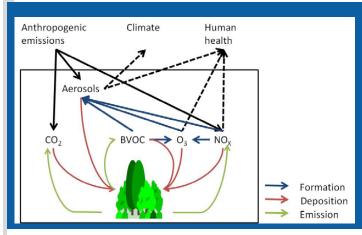
Partikelgrößenverteilung als Funktion der Entfernung von der Quelle

Verdünnung von Partikelkonzentrationen als Funktion der Mischungsschichtdicke

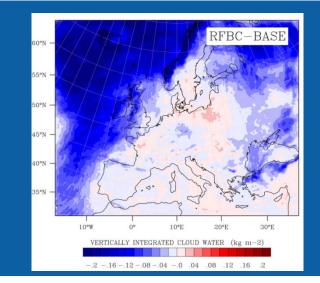
Fragen:

- (1) Einfluss von Emissionsreduktionen auf die Luftqualität?
- (2) Änderung von Partikelzusammensetzungen aufgrund von Landnutzungsänderungen?
- (3) Einfluss erneuerbarer Energien (z.B. Holzverbrennung)?
- (4) Einfluss der Klimaänderung auf die Advektion von Wüstensand?
- (5) Einfluss der lokalen Meteorologie auf die Luftqualität?

Werkzeuge:


- (1) luftgestützte (Ultraleichtflugzeug) und bodengestützte in-situ Messungen (Partikelgröße und chemische Zusammensetzung)
- (2) in- situ und Fernmessung meteorologischer Größen (z.B. MLH)
- (3) Emissionsmodelle, Boxmodelle, WRF-Chem

Partner:


- (1) andere IMK und KIT-Institute, internationale WRF-chem community
- (2) Universität Augsburg, HMGU, DWD, Süddeutsche Aerosol-Kooperation
- (3) Chinesische Akademie der Wissenschaften, Beijing

(2) Einfluss von anthropogenen und biogenen Emissionen auf die Luftqualität, die regionale Meteorologie und die Klimatologie

untersuchen

BVOC-Wechselwirkungen in Stadtluft

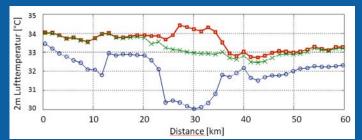
Geänderter Wolkenwassergehalt durch indirekte Aerosolrückwirkung

Fragen:

- (1) Einflüsse von BVOC auf sekundäre Aerosolbildung?
- (2) Ändert städtische Luftqualität BVOC-Emissionen?
- (3) Aerosol-Strahlung-Rückkopplung (regional dimming), Einfluss auf lokale und regionale Sekundärzirkulationen?
- (4) Änderung des Niederschlags stromab von Quellen?

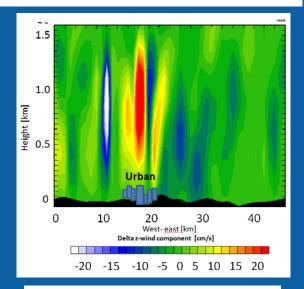
Werkzeuge:

- (1) WRF-Chem Simulationen mit verbesserter Turbulenzparameterisierung und BVOC-Emissionen
- (2) Modelle für biogene Emissionen, Landnutzungsszenarien
- (3) Messungen zur Validierung


Partner:

- (1) andere IMK-IFU Gruppen
- (2) IASS Potsdam, NOAA Boulder, HMGU
- (3) AQMEII (Air Quality Model Evaluation International Initiative)

(3) Anpassungs- und Vermeidungsmaßnahmen für städtische Wärmeinseln untersuchen und deren Einfluss auf die


Luftqualität analysieren

Temperaturquerschnitt durch eine

Stadt: rot: Ausgangsfall grün: keine Stadt, blau: weiße Dächer

Sekundärzirkulation durch Wärmeinsel (rot: aufwärts)

Fragen:

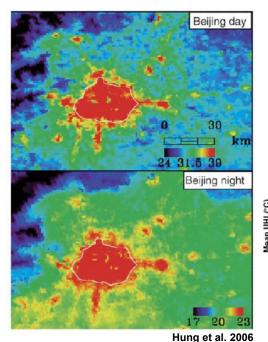
- (1) Effizienz von Vermeidungsstrategien (Begrünung, grüne oder weiße Dächer, Wasserflächen, Gebäudeform und -dichte)?
- (2) Einfluss dieser Strategien auf das regionale Wetter und Klima und auf die Luftqualität?
- (3) Wechselwirkung Wärmeinsel und Klimaänderung?

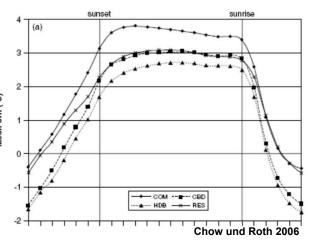
Werkzeuge:

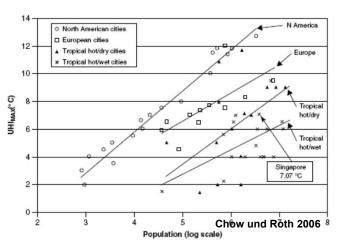
- (1) WRF-Chem Simulationen mit "urbanisiertem" Modell
- (2) Evaluation regionaler Klimasimulationen
- (3) Landnutzungs- und Emissionsszenarien

Partner:

- (1) Dialog mit Entscheidungsträgern (z.B. Stuttgart)
- (2) Kooperation in Europäischen Projekten
- (3) NOAA Boulder
- (4) Kooperation mit anderen Gruppen im IFU


09.12.2014


Problem:



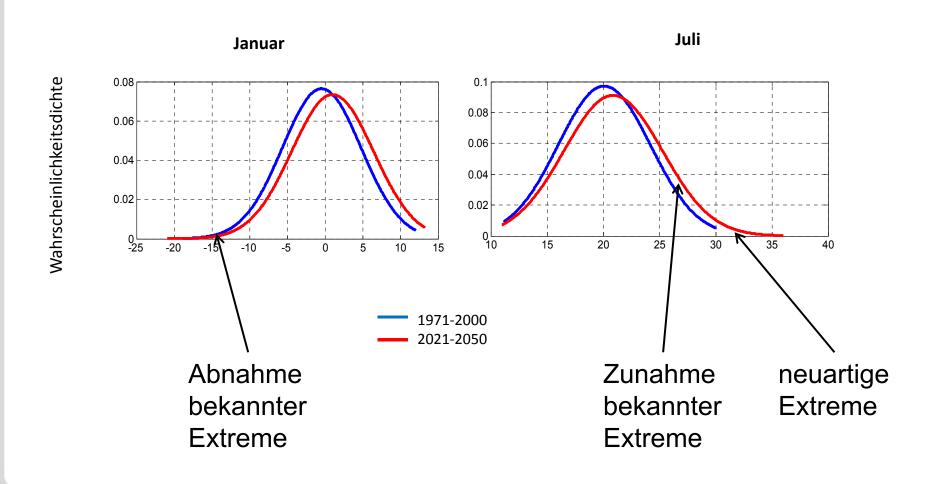
Städte wärmer als ihre Umgebung

- → Hitzestress für die Bewohner
- → schlechtere Luftqualität
- → höherer Energie- und Wasserbedarf

Infrarot-Satellitenbild von Peking

Überwärmung nachts am stärksten

Überwärmung abhängig von der Bevölkerungszahl


Photo: 2011 Stefan Emeis

Warme Städte beeinflussen das lokale und regionale Wetter (Wolkenbildung über Manhattan am 28. Mai 2011)

München 2021-2050: Klimawandel führt zu anderen und neuen Extremen

Regionale Klimamodellierung (WRF, Sven Wagner, IMK-IFU)

Drei mögliche Strategien gegen Klimawandel und überwärmte Großstädte:

- 1) Anpassungs- bzw. Reparaturstrategien
 - 2) Milderungsstrategien
 - 3) Vermeidungsstrategien

1) Anpassungs- und Reparaturstrategien:

Klimawandel

Großstädte (Megacities)

CO₂-Abscheidung

Klimaanlagen

fossilen Rohstoffe bleibt

Energieaufwand, Endlichlichkeit der Energieaufwand, mehr CO₂-Emissionen

Düngung der Meere

aufwändigere ärztliche Versorgung

Energieaufwand, nicht absehbare ökologische Folgen

bindet finanzielle Ressourcen

Aufforstung

Umzug aufs Land

Energieaufwand, Düngung, Flächenbedarf, spätere Nutzung des Holzes

Verstädterung, erhöhtes Verkehrsaufkommen, fehlende Agrarflächen

2) Milderungsstrategien:

Klimawandel

Großstädte (Megacities)

SO₂-Eintrag in die Stratosphäre

Energieaufwand, nicht absehbare ökologische Folgen

Spiegel im Weltall

Energieaufwand, behindert auch die Nutzung der Solarenergie

mehr Bäume/Grünanlagen

Wasserbedarf, Emission schädlicher Kohlenwasserstoffe, die zur Ozonbildung beitragen, filtert Luftschadstoffe, kühlt nachts stärker aus

mehr Wasserflächen

Brutstätte für Schadinsekten dämpft Temperaturextreme in beide Richtungen

Dämmung von Gebäuden

Energieaufwand für Dämmmaterial

grüne Dächer

dämpft Temperaturextreme in beide Richtungen, Wasserbedarf problematisch, wenn das Klima trockener wird

Milderungsstrategie: begrünte Straßenbahntrassen

Photo: Gisela, Matthias und Jonas Frey, www.bahnbilder.de

Milderungsstrategie: städtische Wasserflächen

Photo: 2013 Stefan Emeis

Milderungsstrategie: grünes Dach in Chicago

Photo: Tony The Tiger, http://en.wikipedia.org/wiki/File:20080708_Chicago_City_Hall_Green_Roof.JPG

Milderungsstrategie: große Parks in Städten

Photo: 2011 Stefan Emeis

3) Vermeidungsstrategien:

Klimawandel Großstädte (Megacities)

Erneuerbare Energien Erhöhung der Albedo im Sommer (weiße Dächer)

Vermeidung von CO₂-Emissionen reduziert Aufwärmung der Städte, verringert Energiebedarf für Kühlung, verlangsamt Alterungsprozesse des Baumaterials

effizientere Energienutzung Verringerung der Albedo im Winter (dunkle Wände)

Vermeidung von CO₂-Emissionen verstärkt Aufwärmung, verringert Heizbedarf

Solaranlagen auf Dächern

nutzt die einkommende Energie sinnvoll, dämpft Aufwärmung und Auskühlung der Gebäude

enge Gassen (wie in Wüstenstädten)

verkehrstechnisch ungünstig

Santorin in Griechenland als Beispiel ...

... aber was passiert in höheren Breiten im Winter?

Foto: Mstyslav Chernov, Quelle: http://upload.wikimedia.org/wikipedia/commons/c/c1/Oia_%28panoramic_cityscape%29._Santorini_island_%28Thira%29%2C_Greece.jpg

Wüstenstädte ...

... sind vielleicht eine gute Lösung in den Tropen und Subtropen

Beni Izguen, Algerien

Photo: Holger Reineccius, http://en.wikipedia.org/wiki/File:Beni-Izguen.jpg

Weiße Dächer zusammen mit dunklen Seitenwänden

weißes reflektierendes

Dach

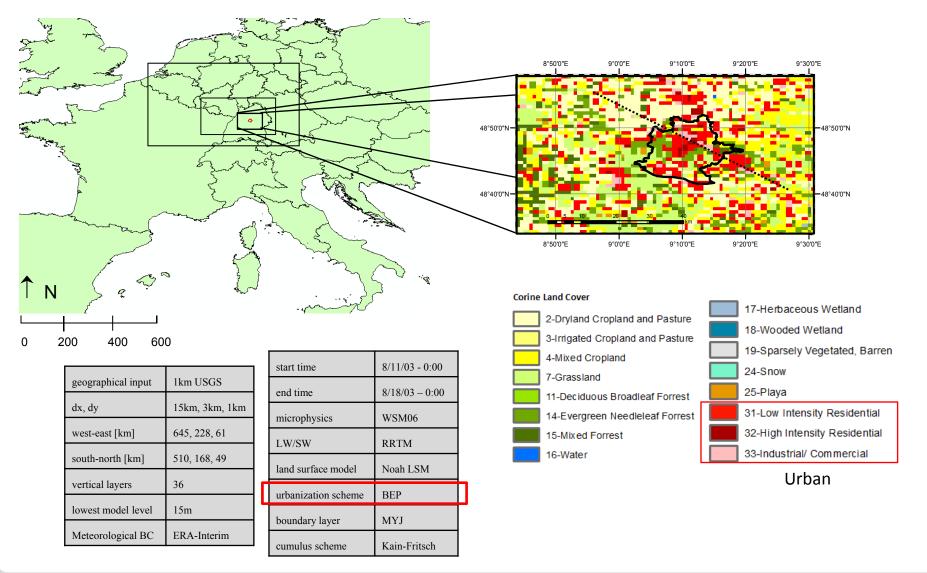
-dunkle absorbierende Wände

Quelle: Baufritz, http://www.baufritz.com/lu/architektenhaus-mit-weissem-klimaschutz-dach

ideale Kombination für höhere Breiten ...

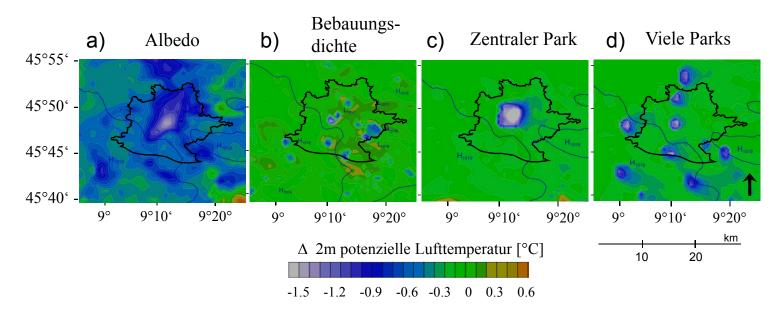
... aber noch unüblich

Luftqualität



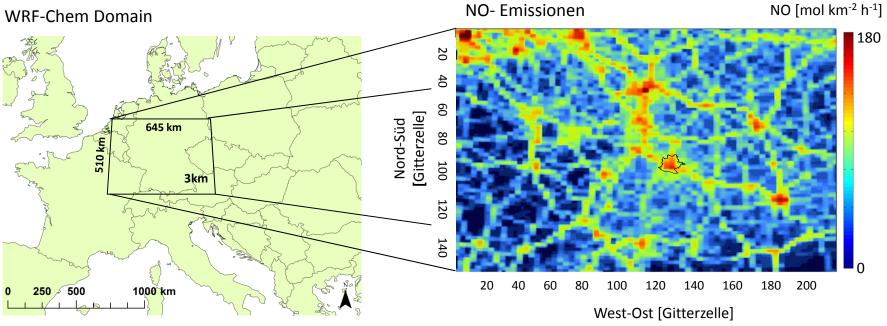
Cooler City – Cleaner City ? > Wie können stadtplanerische Maßnahmen die Wärmeinsel verringern? Wie beeinflussen diese Strategien die Luftqualität? www.stadtklima-stuttgart.de invers03

Numerische Simulationen mit WRF


- Meteorologischer Teil -

Wärmeinsel-Vermeidungs-Szenarien 13. Aug. 2003 – 8 Uhr abends

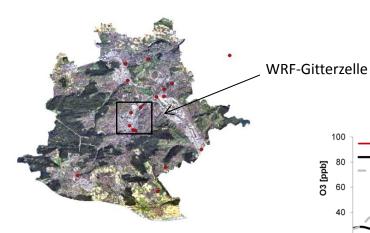
Einfluss der Vermeidungsmaßnahmen auf die Wärmeinselintensität


Scenario	Control	Albedo	Many Parks	Big Park	Density
T mean urban [°C]	33.1	31.5	32.5	32.3	32.4
T max [°C]	34.3	31.9	33.5	33.3	33
UHI; delta Ө	2.52	0.84	1.47	1.19	1.32

Fallmann et al. 2014

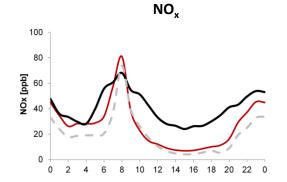
Numerische Simulationen mit WRF

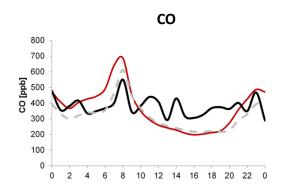
- Luftchemischer Teil -

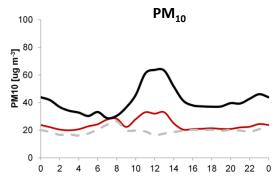


geographical input data	30 Deg USGS land use with 33 classes
dx, dy	3km
west-east	200
south-north	150
vertical layers	36
lowest model level	20m
meteorological boundary conditions	0.5 Deg ERA-Interim reanalysis
chemical boundary conditions	Mozart global data
biochemistry	Megan
chemical option	RADM2 chemical mechanism; MADE/SORGAM aerosols

emission data	7km MACC emission for Europe		
running time	8/9/03 - 8/18/03		
microphysics	Lin et al		
longwave	RRTMG		
shortwave	RRTMG		
land surface model	Noah LSM		
urbanization scheme	BEP		
boundary layer	MYJ		
cumulus scheme	Grell-Devenyi ensemble scheme		
photolysis	FastJ		


Prüfung von WRF-chem anhand von Messdaten


Beobachtungen



Mittel von vier Stationen:

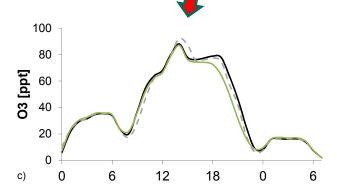
- ➤ Bad Cannstadt
- ➤ Schwabenzentrum
- > Zuffenhausen
- > Hafen

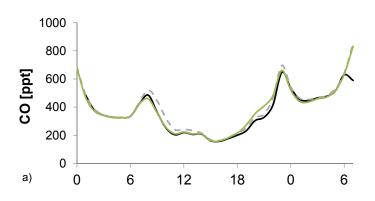
Effekt auf die bodennahe Schadstoff- Konzentration (Tagesmittel)

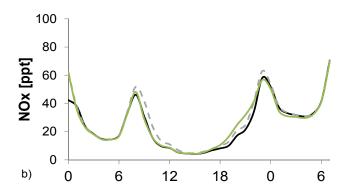
Primäre Schadstoffe (Bsp. CO)

Albedo' ,Park' CO [ppb] + 30

Sekundäre Schadstoffe (Bsp. Ozon)


UHI Vermeidungsstrategien


Auswirkung auf den Tagesgang der Luftqualität


sekundär gebildeter Schadstoff

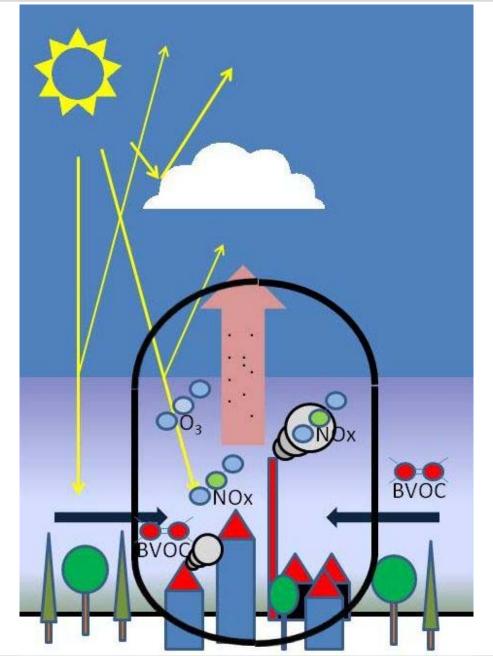
ControlAlbedoPark

primär emittierte Schadstoffe

Auswirkungen der Reduktion der Wärmeinsel auf die Luftqualität

- über die Dynamik: verringerte thermisch erzeugte Turbulenz

geringere Dicke der Mischungsschicht

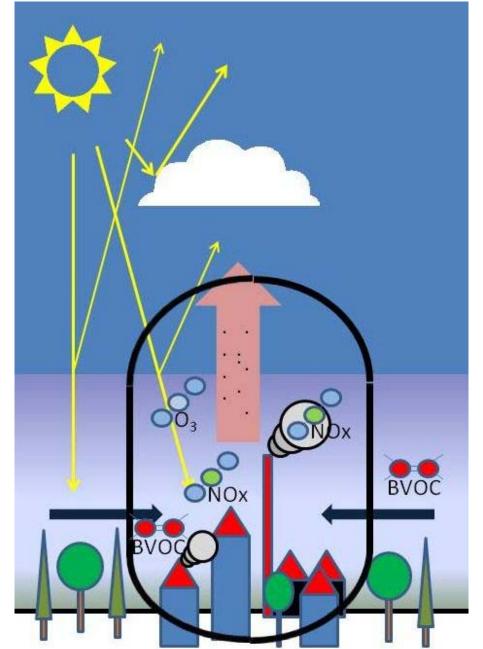

→ höhere Konzentrationen primär emittierter Schadstoffe

- über die Temperatur: geringere chemische Reaktionsraten

→ geringere Konzentrationen sekundär gebildeter Schadstoffe

- über die Strahlung: (weiße Dächer) mehr kurzwellige Strahlung

→ höhere Photolyse → mehr Ozon



Zusammenfassung

Die Stadt als einzigartiges luftchemisches Reaktionsgefäß

- Ist überwärmt
- biogene und anthropogene Schadstoffe sorgen für eine spezielle Luftchemie
- Temperatur und Chemie hängen komplex zusammen
- geplante Maßnahmen müssen in ihrer Gesamtheit betrachtet werden

Zukünftiger Forschungsbedarf

Monitoring und Analyse der Stoffflüsse in einer Stadt und zwischen einer Stadt und ihrer Umgebung in einem sich wandelnden Klima: Austausch zwischen Grundwasser, Boden, Vegetation, Atmosphäre

geplante Initiative in der Helmholtz-Gemeinschaft: UrbENO

wissenschaftliche Begleitung des notwendigen Umbaus der Städte zu klimaverträglichen Städten im Rahmen einer Transformation zur Nachhaltigkeit

"Gesellschaftsvertrag für eine Große Transformation"

"Bei der Transformation zur Nachhaltigkeit kommt dem Klimaschutz eine besondere Bedeutung zu, denn er ist eine conditio sine qua non für nachhaltige Entwicklung: Klimaschutz allein kann zwar den Erhalt der natürlichen Lebensgrundlagen für die Menschheit nicht sichern, aber ohne wirksamen Klimaschutz entfallen absehbar essentielle Entwicklungsmöglichkeiten der Menschheit."

aus dem Hauptgutachten des Wissenschaftlichen Beirats der Bundesregierung Globale Umweltveränderungen (WBGU, 2011)

darin werden drei Handlungsfelder benannt:

- Energie
- Urbanisierung
- Landnutzung

Quelle: Südd.Z., 2.9.6

Vielen Dank für Ihre Aufmerksamkeit

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

IMK-IFU Atmosphärische Umweltforschung Garmisch-Partenkirchen

www.imkifu.kit.edu

