

Regional climate simulations for West Africa

Comparison of input bias correction methods

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, ATMOSPHERIC ENVIRONMENTAL RESEARCH (IMK-IFU) Regional Climate Systems/Regional Climate and Hydrology

Future SOC Lab Day, Spring 2014

Dominikus Heinzeller & Harald Kunstmann

KIT-Campus Alpin

West African Science Service Center on Climate Change and Adapted Land Use

KIT - University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Global climate change: warmer and wetter

GISS

AM

2000

Global climate change: warmer and wetter

United Nations Environment Programme (UNEP, 2013)

West African Monsoon - the big sea breeze

MASCAL st African Science Service Center on nate Change and Adapted Land Use

Credits: C. Klein

West African Monsoon - the big sea breeze

West African Monsoon - the big sea breeze

KIT-Campus Alpin

IMK-IFU: Atmospheric I

The failure of global climate projections

KIT-Campus Alpin

IMK-IFU: Atmospher

The failure of global climate projections

KIT-Campus Alpin

The failure of global climate projections

KIT-Campus Alpin

IMK-IFU: Atmospher

Terrain height [m]

Terrain height [m]

Terrain height [m]

Terrain height [m]

IMK-IFU: Atmospheric Er

Regional downscaling at a glance

WASCAL West African Science Service Center on Climate Change and Adapted Land Use

Regional downscaling at a glance

WASCAL Nest African Science Service Center on Climate Change and Adapted Land Use

Garbage in, garbage out Bias GCM RCM Model (MPI-ESM) (WRF) output

GCM

Model

Model

Model

Output

Bias
Model
output
Model
output
Bias
Model
output
Model
output
GCM vs ERA-Interim

Karlsruhe Institute of

Garbage in, garbage out

Garbage in, garbage out

KIT-Campus Alpin

past: 1990-2000; "future": 2000-2010

past: 1990-2000; "future": 2000-2010

past: 1990-2000; "future": 2000-2010

KIT-Campus Alpin

past: 1990-2000; "future": 2000-2010

ASCAL

Python pilot code

Serial execution

Dictionary-based

Pro: easy to develop & debug Con: damn slow, memory use

```
# Start
```

```
# Read data into dictionaries
RAW_REA[date/time] = array(...)
RAW_GCM[date/time] = array(...)
```

```
# Calculate averages and decompose
AVG_REA[date/time] = array(...)
AVG_GCM[date/time] = array(...)
VAR_GCM[date/time] = array(...)
```

```
# Combine to revised climate data
CMB GCM[date/time] = array(...)
```

Write to disk, finish

Serial execution

Dictionary-based

Pro: easy to develop & debug Con: damn slow, memory use

Parallel Python/Fortran

Parallelized by model, period and files (np=9)

Array-based storage

Python shared-memory threads calling Fortran

```
# Start
```

```
# Read data into dictionaries
RAW_REA[date/time] = array(...)
RAW_GCM[date/time] = array(...)
```

```
# Calculate averages and decompose
AVG_REA[date/time] = array(...)
AVG_GCM[date/time] = array(...)
VAR_GCM[date/time] = array(...)
```

Combine to revised climate data
CMB GCM[date/time] = array(...)

Write to disk, finish

Serial execution

Dictionary-based

Pro: easy to develop & debug Con: damn slow, memory use

Original proposal

Parallel Python/Fortran

Parallelized by model, period and files (np=9)

Array-based storage

Python shared-memory threads calling Fortran

```
# Start
```

```
# Read data into dictionaries
RAW_REA[date/time] = array(...)
RAW_GCM[date/time] = array(...)
```

```
# Calculate averages and decompose
AVG_REA[date/time] = array(...)
AVG_GCM[date/time] = array(...)
VAR_GCM[date/time] = array(...)
```

```
# Combine to revised climate data
CMB GCM[date/time] = array(...)
```

Write to disk, finish

Python Global Interpreter Lock (GIL) problem; forced to use private-memory multiprocessing

Communication with Fortran routines requires passing large arrays in/out (copy in memory)

Serial execution

Dictionary-based

Pro: easy to develop & debug Con: damn slow, memory use

Original proposal

Parallel Python/Fortran

Parallelized by model, period and files (np=9)

Array-based storage

Python shared-memory threads calling Fortran

```
# Start
```

```
# Read data into dictionaries
RAW_REA[date/time] = array(...)
RAW_GCM[date/time] = array(...)
```

```
# Calculate averages and decompose
AVG_REA[date/time] = array(...)
AVG_GCM[date/time] = array(...)
VAR_GCM[date/time] = array(...)
```

```
# Combine to revised climate data
CMB GCM[date/time] = array(...)
```

Write to disk, finish

Python Global Interpreter Lock (GIL) problem; forced to use private-memory multiprocessing

Communication with Fortran routines requires passing large arrays in/out (copy in memory)

Scientific evaluation - 10-year climate runs

Domain configuration for climate simulations with WRF (<u>http://www.wrf-model.org</u>)

WRF model performance on a single Fujitsu RX600 S5 2, 64 threads (SMT)

30min realtime (rt) per simulation day 58400 CPUh / 76 days rt. per 10-year run

WRF model performance on JUROPA (FZ Jülich), 5x8 threads per run

20min realtime (rt) per simulation day 47500 CPUh / 51 days rt. per 10-year run

Multiple model runs required

ERA INT, MPI ESM, PAC, PGW

Scientific evaluation - precipitation amounts

ERA INT TRMM PGW **MPI ESM** GPCC PAC

Average precipitation July (2001-2006) in mm

Average precipitation and Pearson Correlation Coefficient wrt. TRMM July (2001-2006)

July	AVG [mm]	PCC							
	Total	Land	Sahel	Total	Land	Sahel			
TRMM (ref)	110.1	114.7	130.5	1	1	1			
GPCC	-	81.7	88.6	-	0.96	0.95			
ERAINT	144.5	124.4	99.8	0.88	0.89	0.92			
MPI ESM	195.6	118.2	49.0	0.39	0.82	0.91			
PAC	87.1	75.1	23.0	0.80	0.79	0.86			
PGW	136.2	118.1	69.8	0.85	0.87	0.91			

15

Average precipitation and Pearson Correlation Coefficient wrt. TRMM July (2001-2006)

July	AVG [mm]	PCC							
	Total	Land	Sahel	Total	Land	Sahel			
TRMM (ref)	110.1	114.7	130.5	1	1	1			
GPCC	-	81.7	88.6	-	0.96	0.95			
ERAINT	144.5	124.4	99.8	0.88	0.89	0.92			
MPI ESM	195.6	118.2	49.0	0.39	0.82	0.91			
PAC	87.1	75.1	23.0	0.80	0.79	0.86			
PGW	136.2	118.1	69.8	0.85	0.87	0.91			

Average precipitation and Pearson Correlation Coefficient wrt. TRMM July (2001-2006)

July	AVG [mm]	PCC							
	Total	Land	Sahel	Total	Land	Sahel			
TRMM (ref)	110.1	114.7	130.5	1	1	1			
GPCC	-	81.7	88.6	-	0.96	0.95			
ERAINT	144.5	124.4	99.8	0.88	0.89	0.92			
MPI ESM	195.6	118.2	49.0	0.39	0.82	0.91			
PAC	87.1	75.1	23.0	0.80	0.79	0.86			
PGW	136.2	118.1	69.8	0.85	0.87	0.91			

Average precipitation and Pearson Correlation Coefficient wrt. TRMM July (2001-2006)

July	AVG [mm]	PCC							
	Total	Land	Sahel	Total	Land	Sahel			
TRMM (ref)	110.1	114.7	130.5	1	1	1			
GPCC	-	81.7	88.6	-	0.96	0.95			
ERAINT	144.5	124.4	99.8	0.88	0.89	0.92			
MPI ESM	195.6	118.2	49.0	0.39	0.82	0.91			
PAC	87.1	75.1	23.0	0.80	0.79	0.86			
PGW	136.2	118.1	69.8	0.85	0.87	0.91			

Scientific evaluation - 2m surface temperature

KIT-Campus Alpin

IMK-IFU: Atmospheric I

Average near surface temperature TRMM July (2001-2006) in °C

Python pilot code

Serial execution Dictionary-based

Parallel Python/Redis

Parallel execution (np=9+9) Storage in parallel Redis DB

Reading/writing the largest file (30Gb vs. 4.5Gb/500Mb) is the bottleneck of the current implementation

Parallel I/O (C/C++)

Python pilot code

Serial execution Dictionary-based

Parallel Python/Redis

Parallel execution (np=9+9) Storage in parallel Redis DB

Reading/writing the largest file (30Gb vs. 4.5Gb/500Mb) is the bottleneck of the current implementation

Parallel I/O (C/C++)

10-year reference/application periods may not be enough to smooth out patterns of inter-annual variability (El Niño…)

Extension to 20-year periods

Python pilot code

Serial execution Dictionary-based

Parallel Python/Redis

Parallel execution (np=9+9) Storage in parallel Redis DB

Reading/writing the largest file (30Gb vs. 4.5Gb/500Mb) is the bottleneck of the current implementation

Parallel I/O (C/C++)

 \bigcirc

10-year reference/application periods may not be enough to smooth out patterns of inter-annual variability (El Niño...)

 $\overline{\mathbf{C}}$

Current code requires at least 320Gb (640Gb) of memory for 10-year (20-year) periods. We don't have such systems.

Extension to 20-year periods

Code to figure out parallelization

Python pilot code

Serial execution Dictionary-based

Parallel Python/Redis

Parallel execution (np=9+9) Storage in parallel Redis DB

Reading/writing the largest file (30Gb vs. 4.5Gb/500Mb) is the bottleneck of the current implementation

Parallel I/O (C/C++)

 $\mathbf{\mathbf{c}}$

10-year reference/application periods may not be enough to smooth out patterns of inter-annual variability (El Niño...)

ugh Extension to no…) 20-year periods

 \bigcirc

Current code requires at least 320Gb (640Gb) of memory for 10-year (20-year) periods. We don't have such systems.

Code to figure out parallelization

Model comparison and evaluation for full period 2000-2010

Sunset over the Sissili river, Northern Ghana (Nov. 2013)

MENNE (

Backup slides

Regional climate change: a rag rug with a trend

Vest African Science Service Center o limate Change and Adapted Land Use

SC

Regional climate change: a rag rug with a trend

KIT-Campus Alpin

WASCAL

Monthly temperature and precipitation anomaly: 1980 to 2010 minus 1950 to 1980 NCEP/NCAR Reanalysis GPCC Precipitation V6 Combined Surface air (C) Composite Mean Precipitation (mm) Composite Mean NOAA/ESRL Physical Sciences Division /ESRL Physical Sciences Division 1.5 40N 40N · 10 1.2 30N 30N-0 20N 20N 0.9 10N 10N -10 0.6 ΕQ FO 0.3 -20 10S 10S 0 -30 20S 20S · -0.3 30S 30S--40 -0.6 405 1 20W 15W 10W 5W 0 5E 10E 15E 20E 25E 30E 35E 40E 45E 50E 55E 40S 20w15w10w 5w 0 5E 10E 15E 20E 25E 30E 35E 40E 45E 50E 55E Jan to Dec: 1980 to 2010 minus 1950 to 1980 Jan to Dec: 1980 to 2010 minus 1950 to 1980

West African Monsoon (WAM) - a cooking recipe

Schematic view of West African Monsoon System

ITD: InterTropical Discontinuity (north of ITCZ) AEJ: African Easterly Jet TEJ: Tropical Easterly Jet STWJ: SubTropical Westerly Jet The oscillation of the AEJ yellow tube figures an African Easterly Wave.

Lafore et al. (2010/2011), Sylla et al. (2012)

WASCAL est African Science Service Center on mate Change and Adapted Land Use

WAM key ingredients: getting the dynamics right

Length and time scales of atmospheric motion

AASCAL Ist African Science Service Center on mate Change and Adapted Land Use KIT-Campus Alpin IMK-IFU: Atmospheric Environmental Research

Scientific evaluation - precipitation amounts

ERA INT TRMM PGW **MPI ESM** GPCC PAC

Average precipitation July (2001-2006) in mm

Scientific evaluation - precipitation differences

Average precipitation / difference in avg. precipitation to TRMM July (2001-2006) in mm

Scientific evaluation - precipitation amounts

Average precipitation August (2001-2006) in mm

Scientific evaluation - precipitation differences

Average precipitation / difference in avg. precipitation to TRMM August (2001-2006) in mm

July	AVG	[mm]		ME	[mm]		PC		
	Total	Land	Sahel	Total	Land	Sahel	Total	Land	Sahel
TRMM	110.1	114.7	130.5	-	-	-	-	-	-
GPCC	-	81.7	88.6	-	-33.0	-41.7	-	0.96	0.95
ERAINT	144.5	124.4	99.8	34.4	9.7	-30.7	0.88	0.89	0.92
MPI ESM	195.6	118.2	49.0	85.6	3.5	-81.5	0.39	0.82	0.91
PAC	87.1	75.1	23.0	-23.0	-39.6	-107.5	0.80	0.79	0.86
PGW	136.2	118.1	69.8	26.1	3.4	-60.7	0.85	0.87	0.91

August	AVG	[mm]		ME	[mm]		PC		
	Total	Land	Sahel	Total	Land	Sahel	Total	Land	Sahel
TRMM	125.7	143.2	161.6	-	-	-	-	-	-
GPCC	-	103.1	88.6	-	-40.1	-73.0	-	0.95	0.88
ERAINT	139.0	138.9	119.2	13.3	-4.3	-42.4	0.90	0.90	0.93
MPI ESM	217.5	162.0	97.0	91.8	18.8	-64.6	0.50	0.84	0.88
PAC	98.3	94.6	31.0	-27.4	-48.6	-130.6	0.82	0.81	0.87
PGW	145.9	143.4	129.1	20.2	0.2	-32.5	0.87	0.91	0.93

Sunset over the Sissili river, Northern Ghana (Nov. 2013)

MENNE (