

Manufacturing and Characterization of PIM-W Materials as PFMs

Gerald Pintsuk¹, Steffen Antusch^{2,} M. Rieth^{2,} M. Wirtz¹

¹ Forschungszentrum Juelich (FZJ)
² Karsruhe Institute of Technology (KIT)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation

DEMO divertor development within the EUROFusion program WPMAT

Pure and particle strengthened materials interesting characteristics: strength, fracture toughness, ductility, recrystallization resistance, and sufficiently high thermal conductivity

PIM: near net shape technology; materials with isotropic microstructure and properties; fast screening of different compositions

Qualification via e-beam testing (standardized method) vs. a reference Wgrade

Tungsten Powder Injection Molding @ KIT

Mass production of components

Time & cost effective near-net-shape forming process

Shape complexity & high final density

Materials development

Tailoring new materials & Investigation of properties

Mass production of tungsten parts

Powder

Binder

Mixing / Kneading / Extrusion

Feedstock

Mass production of tungsten parts

Powder

Binder

Feedstock

Filling simulation

PIM-tool

Mass production of tungsten parts

Green parts (dark), finished parts (bright)

Development of new materials

Texture analysis: EBSD Rolled W-plate (Plansee AG) vs. PIM-W

Rolled-W: [A] in rolling direction – e.g. high strength and bending toughness [B] perpendicular to rolling direction

PIM-W: [C] fully isotropic

G. Pintsuk | PFMC 2015 | Aix en Provence, France | 18-22. May 2015 | 7

Reference W according to ITER specs ("IGP")

Top view, Ø ∼10 µm

Side view, $5 \times 25 \,\mu m^2$

Manufacturing according to shown PIM-process; final sintering at 2400 °C; particle sizes < 1 µm

- **pure W**: 2 grades with different powder sizes (*W-170, W-5050*)
- ✤ W-2La₂O₃: initial composition; vaporization of La₂O₃ during sintering ⇒ pure W with "clean" grain boundaries
- W-Y₂O₃: 3 grades with different Y_2O_3 content (W-0.5Y₂O₃, W-1Y₂O₃, W-2Y₂O₃)
- ✤ W-TiC: 4 grades with different TiC content (W-1TiC, W-1.5TiC, W-2TiC, W-3TiC)
- ✤ W-TaC: 3 grades with different TaC content (W-0.5TaC, W-1TaC, W-2TaC)

Materials grain size

Optimization potential by variation of raw materials (powder sizes)

Materials hardness

Pure PIM-W similar to recrystallized W; hardness increase only for W-TiC

Qualification via thermal shock: e-beam

E-beam parameters

acceleration voltage:	120 - 150 k
beam power:	≤ 60 kW
pulse length:	1 ms – cont
beam diameter:	1 mm
scanning frequency:	≤ 100 kHz

Test parameters

power density: 0.19-0.38 GW/m² pulse length: 1 ms pulse number: **100, 1000** base temperature: RT, 400 °C, 1000 °C

Reference W according to ITER specs ("IGP")

Thermal shock response: reference W

- small crack formation
- grain loss for transversal orientation
- significant surface roughening for recryst. material

- Significant surface roughening similar to recrystallized material!
- Reduced crack formation compared to reference

- Local µ-cracks due to inhomogeneities
- Reduced crack formation compared to reference

Low surface roughening

Crack formation similar to reference

- Large crack formation
- No improvement compared to reference

G. Pintsuk | PFMC 2015 | Aix en Provence, France | 18-22. May 2015 | 18

— 100 µm

- Local µ-cracks due to inhomogeneities.
- Reduced crack formation compared to reference

reference, rxx: 1.33 µm

Reduced roughening / plastic deformation for W-Y₂O₃ and W-TiC materials

Grain size vs. roughness

Less roughening with decreasing grain size

Grain size vs. hardness

Increased hardness with decreasing grain size

Hardness vs. roughness

Decreasing roughness with increasing hardness

Further investigation via 4pt-bending & disruption tests

Mechanical testing via 4pt-bending

Sample geometry: $12 \times 1 \times 1 \text{ mm}^3$ Strain rate:0.033 mm/min

Disruption test - Rationale

W-1.1TiC (H. Kurishita): $P_{abs} = 0.38 \ GW/m^2$, $t = 1 \ ms$, n = 1000, $T = 1000 \ ^{\circ}C$ \Rightarrow low roughness ($R_a = 0.3 \ \mu m$) \Rightarrow only small and localized crack formation

 $P_{abs} = 1.13 \text{ GW/m}^2$, t = 5 ms, n = 10, T = RT

No disruption on cool surface \Rightarrow disruption test will be done at 1000 °C!

Disruption test

Summary

Fabrication

- Mass production of near-net-shape parts via PIM @ KIT
- Brittle to ductile transition for pure PIM W at 200 °C (low strain rates)
- ✤ High density (> 99 % T.D.)
- Fully isotropic material properties

Qualification

- ♦ Increased hardness and mechanical strength for $W-Y_2O_3$ and W-TiC materials ⇒ reduced roughening / plastic deformation
- Reduced roughening ⇒ thermal fatigue induced crack formation (in view of > 10⁶ ELM pulses) is slowed down
- ✤ Disruption test: crack formation (≥ 1 mm) is still an issue even at 1000 °C
- Disruption test: additives with relative low melting point may cause an inhomogeneous melt distribution

