

Aspects of fusion safety considering fission regulations

R. Stieglitz, R. C. Wolf, N. Taylor , L.V. Boccaccini, D. Carloni, W. Gulden, J. Herb, X. Z. Jin, C. Pistner, J. Raeder, N. Taylor, A. Weller

INSTITUTE for NEUTRONPHYSICS and REACTOR TECHNOLOGY (INR)

- Past ¤t fusion safety studies
- Fission & Fusion Power plant concepts
- Nuclear power plant safety approach
- Comparison of safety concept fusion ←→ fission
- DEMO in view of severe accidents
- Summary & Recommendations

² Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

³ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Past & current safety studies III

Methodology

transition from conceptual level to integral approach

Consequences in view of DEMO-FPP development

- specification of design & licensing requirements **plant safety approach** safety functions ➡ safety concept
 - safety requirements
 - safety importance classification \Rightarrow design options to match requirements
 - general safety principles document
- integrated safety analysis
 - operational mode (duration, availability, ISI&R*, design limits)
 - quantification of source terms (fuel, activ. materials, effluents, plant logistics)
 - identification of energy potentials (magn., chemical, plasma, thermal)
 - internal events and external events and hazards
 - development of validated tools, uncertainties, QA measures
 - analysis in view of worst case with respect to plant and environment
 - preliminary safety document
- Radioactive waste management
 - waste (liq., sol., gas) logistics (RH, casks), separation (hot cell), immobilization
 - clearance, dose rates (nuclide spec.)
 - quantity reduction
 - safety and disposal concept
- Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al. 4

*ISI&R=In-Service Inspection and Repair

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

public acceptance

plant safety demonstration

Power plant concepts

Nuclear Power Plant (NPP)

- nested physically static barriers
- high volumetric power density
- off-site fuel conditioning
- criticality prevention measures
- 1% of P_{th} decay power
- very high radioactive inventory

- 2 static but also dynamic barriers
- low volumetric power density
- on-site fuel management
- criticality arguments absent
- 0.6% of P_{th} decay power
- high radioactive inventory (many mobile, different nuclide vectors)

5 Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

Nuclear power plant safety approach I

Image: CFE Image: CFE</t

Safety requirements*

- Protection of public and environment against radiological hazards
- Protection of site workers against radiation exposure according to ALARA-principle (<u>As Low As Reasonably Achievable</u>)
- Employment of measures to prevent accidents and mitigate their consequences
- Elimination of need for public evacuation in any accident
- Minimization of activated waste

Safety functions*

- Primary safety functions
 - Confinement of radioactive materials
 - Control of operational releases
 - Limitation of accidental releases
- Secondary safety functions
 - Ensure emergency power shutdown
 - Provisions for decay heat removal (potentially passive)
 - Control of thermal energy (coolant(-s) enthalpy)
 - Control chemical energies
 - Control of other potentially likely energy discharges or interactions
 - Limitation of airborne& liquid operating releases to environment

*PPCS GDRD 2004

- 4/5 static subsequent enveloped barriers
- Static barriers for release control (mainly related to barriers + PAR+ PRS)
- "practical elimination" of level 5 by design + core catcher + mitigation chains
- Compact system, small control volume, high power density, rare release paths

- Two static barriers extended over large scale
- Mixture of static and dynamic barriers (DTS, TES, HVACS)
- Large sets of active + passive systems (but lower inventory and energy content ☺)
- Large volume, low power density, several release paths, dedicated rad. contaminants

Multi-stage systems for severe accidents

8

Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Mobile species to identify

Nuc	lear power	SEE DE SAUST Raisuher Institut für Technologie						
Defence in Depth Safety Concept (DiD) * Definition of plant state levels in DiD => solid data base in ITER / PPCS								
Lev.	Operational state	Objective	Means	Consequences dose limit				
1	Normal operation	Prevention of abnormal operation and failures	Conservative design high quality in construction, operation	No measure				
2	Anticipated operational occurrence $f > 10^{-2}/yr$	Control of abnormal operation and detection of failures	Control, limiting and protection systems and surveillance features	Plant shall return to full power in short term (after fault rectification)				
3	Design basis accident (DBA) 10 ⁻² >f >10 ⁻⁴ /yr	Control of accidents within design basis (unlikely events)	Engineered safety features and accident procedures	Plant shall return to full power after inspection, rectification & requalification 5mSv/event				
4	"very unlikely accident" 10 ⁻⁴ > <i>f</i> >10 ⁻⁶ /yr	Control of severe plant conditions incl. prevention of progression and mitigation of consequences	Complementary measures and accident management	Plant restart not required 50mSv/event				
5	Post severe accidents <i>f</i> <10 ⁻⁶ /yr	Mitigation of radiological consequences (release of radioactive materials)	Off-site emergency response	Plant restart not required				

⁹ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

¹¹ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Nuclear power plant safety approach V

- Mitigation into the acceptable risk zone by countermeasures
- Diminution of dose rate by enhanced confinement

Ibb

Oko-Institut

CCFE

Nuclear power plant safety approach VI

- There are many kinds of safety!!!!
- Pathway for consistent treatment
 Systematic Safety Analysis (SSA)

¹³ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

IPP

Öko-Institut e.V.

CCFE

Comparison of safety concept fusion ←→ fission Iccre

General:

- Physics/technology basis of FPP differs from NPP
- fusion specific adaptions has to be implemented in licensing procedures.

Most percepted argument = public safety in terms of radiological hazard

- Enveloping event by maximum radiologic release
 - Identification of in-plant energy sources causing/accelerating an event
 - Quantification of sources of radioactive inventory (=source term(s))
 - Assessment of
 - release fractions (by energy inventories +mechanistic arguments-deterministic),
 - release time (deterministic) and
 - ambient conditions (weather –probabilistic)

Result

- Analysis of dose rates in three domains
 - □ (vital area in plant),
 - protected area (1km at fence border) and
 - to public (>1km) for most exposed individual (MEI*)

* MEI=Most Exposed Individual .

¹⁴ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

10m

Comparison of safety concept fusion ←→ fission II

IPP

Main energy inventories in a FPP for enveloping event

Energy Source	Energy	Reference	
in-vessel fuel (DT)-(self-limiting	~ 325 G I	SEAFP, SEIF	
in case off accident)	020 00		
magnetic field	~ 200 GJ	SEAFP, SEIF	
plasma thermal energy	1 to 2 GJ	SEAFP, SEIF, PPCS	
primary coolant water enthalpy	~ 400 GJ	SEAFP, SEIF	

But be careful

- potential chemical interactions are not considered
- considerations limited to blanket, contributions may require incorporation of divertor, heating systems other PFC with different nuclide vector
- ACP content due to unknown coolant chemistry problematic
- lack of validated tools to predict temporal evolution (conservative assessments by now)

* ACP=activated corrosion products.

¹⁶ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

Comparison of safety concept fusion - fission IV

- Assume 1kg T- to be released
- worst case dose to public 0.4Sv (1km distance from release point)
- Safety concept mandatory
- Is specification of allowable radionuclide inventory a reasonable approach?
 - From plant safety aspect and operational aspects yes !

Advantages

- specification of nuclides to be used in structure
- coolant chemistry/purification required to assure operation
- man/machine operation

•

Example

 Evolution of collective dose in NPP's by adapted coolant conditioning and material choices

Learnt

 Dedicated procedures/material selection yield dose rate reduction of 10

AGR=adanced gas reactors, PWR=pressurized water reactor BWR=boiling water reactor * WANO, 2013, Performance indicators of NPP

¹⁷ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

IPP

^{3&}lt;sup>rd</sup> IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Comparison of safety concept fusion $\leftarrow \rightarrow$ fission VI

Reactivity control, fuel and inventory

- NPP: largest part of the inventory stored inside the fuel rods
 - ➡ requirements for the fuel,
 - handling and for the control of reactivity and
 - prevention of re-criticality.
- Fusion: Excursions of the reaction rate can be excluded due to inherent features of the design
 - x not applied to FPP: control of reactivity
 - ✓ applied to FPP: plasma shutdown of the facility under any circumstances

Barriers

- NPP: multiple barriers on several consecutive levels of defense for confinement of the radioactive materials
- Fusion: inventories of source terms are not concentrated locally. Active retention functions like detritiation systems are used.
 - ✓ applied to FPP: physical barriers and retention systems

Comparison of safety concept fusion ←→ fission VII

CCFE

- Defense in depth and independence of levels of defense
 - NPPs: several safety functions are ensured by multiple installations related to different levels of defense
 - Fusion: safety concept is also based on the concept of levels of defense.
 - assign the safety functions of a FPP to certain level(s) of defense, if plant design will be available
 - ✓ applied to FPP: defense in depth, but the independence of the different measures and installations for all safety functions is currently not possible

External events and very rare man-made external hazards

- A complete fission reactor safety analysis shall incorporate an analysis of the impact of external events on the plant.
- In ITER for the first time, and they will be covered in the safety concept of on-going DEMO, as well as for future FPPs.

First of its kind

- NPP: use of proven technologies and qualified materials as well as validated calculation methods for the safety demonstration based on operational experience
- FPP: only minor operational experience is available for a power plant.
 - > X not applied to FPP: requirements with respect to the evaluation of the operation experience

Comparison of safety concept fusion ←→ fission VIII

Cooling

- NPPs: decay heat from fuel elements has to be removed to avoid eventual fuel element damage and the break of barriers
- Fusion: decay heat of in-vessel components at EOC (blanket, divertor, etc.)
 - Applied to FPP: requirements regarding cooling

Leak before break

- NPP: certain parts of the piping the component integrity is guaranteed by applying the "leak-before-break concept" (LBB) in the plant design.
- Fusion: LBB concept cannot be assessed currently.
 - ✓ applied to FPP: LBB concept

pp

CCFE

Comparison of safety concept fusion ←→ fission IX

Postulated initiating events (internal events)

- Similar as in nuclear power plants such as
 - Loss of flow accident (LOFA), Loss of offsite-power (SBO), Leaks (VV, Primary System, Fire & evaluation
 - ...), Fire & explosion
- □ Additional fusion specific events: loss of cryo-system, arcing, magnets → affecting barriers

²¹ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Öko-Institut e.V.

Comparison of safety concept fusion $\leftarrow \rightarrow$ fission X

- Most crucial radiological event =Loss of coolant accident (LOCA)
 Goal
- Safe heat removal without loss of functional integrity or

Note:

Any safety demonstration design and system (including sec. side) dependent !

²² Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

 3^{rd} IAEA DEMO Prog. Workshop, Hefei, China, May 2015

²³ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

DEMO in view of severe accidents II

How much radionuclide inventory is acceptable to exclude for an enveloping event exceeding INES-6?

- comparison of DEMO 5kg T with 1.2GW PWR
 - Specific potential dose for a MEI, assuming highest release categories, most unfavourable weather conditions and no-counter measures *1

	FUSION	FISSION (1200MW-generic PWR)					
Isotope	Tritium	131	¹³⁷ Cs	⁹⁰ Sr	²³⁹ Pu	⁸⁸ Kr	^{133,135} Xe
rad. nuclide inventory [TBq]	1.85E6	3.8E6	2.6E5	1.3E5	1.1E3	2.8E6	8.9E6
specific potential dose rate	1 HTO	6900	1850	1150	500	3	0.2
	0.1 HT						

- Substantially lower dose rate in FPP
- comparison of a DEMO (5kg T) with Chernobyl

	FUSION	FISSION (Chernobyl- C-Moderated Reactor)					
Isotope	Trit./HTO	¹³¹	¹³⁷ Cs	⁹⁰ Sr	²³⁹ Pu	⁸⁸ Kr	^{133,135} Xe
radio nuc. inventory [TBq]	1.85E6	1.3E6	2.9E5	2.0E5	850	3.3E6	1.7E6
spec. potential dose rate	1	2360	2070	1770	390	3	0.05
acc. release fraction [%]		20	13	4	5	100	100
spec. potential dose rate by released isotope	1	470	270	70	12	3	0.05

^{*1} Gulden ,1993, ^{*2} Gulden, 1994

Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al. 24

²⁶ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

Unknowns to be identified / assessed II

- Energy inventories wrt.
 - release time
 - detection of failures

Nuclide inventories

- release paths / fractions
- Tritium saturation in structures
- Diffusion / monitoring in structures
- Max. allowed release fractions (Be / SiC = ?)
- Operationalisation of safety by design
 - PHTSs (Blanket, Divertor, NBI)
 - Material criteria
 - Monitoring control (time scale, redundancy, diversity)
 - Release path @ anticipated failure

Dust inventory and removal

Plasma instabilities

- time scales
- early detection systems / diversity
- prevention measures shut-down proc.

Magnets

- Evolution of magnet faults (structure, arcing, quench detection, ...)
- Station black out requirements

"Nuclear Fuel"

- inventory (free, stored in structures) e.g. temperature dependence
- interaction with structures / residuals
- on-line accountancy
- potential for in-pile failure

Coolant enthalpy

- interaction with in-vessel components
- coolant activation (ACP) & control (e.g. erosion products)
- activity & integrity monitoring
- potential for in-pile failure

Unknowns to be identified / assessed III

Operational probation of

- safety relevant control systems, components or detectors in nuclear environment (accuracy, failure resistance, ...)
- □ Intrinsic / defined barriers (failure mode, aggravating effects in case of failure, ...)

Material behavior at high irradiation doses IFMIF

- Material data base (design rules, failure resistance, operational measure/threads)
- Design margins for design / safety margins to be set
- Potential interactions with coolants (corrosion/erosion, SCC, IASCC, fretting, fatigue, creep, embrittlement, DBTT, preparation for disposal / separation, ...)
- Tritium retention

Nuclear fuel cycle

- Tritium inventory
- TES (Tritium Extraction System) efficiency, failure scenarios, time scales doubling time
- □ CPS (Coolant Purification Systems) efficiency, malfunction monitoring, ...
- Tritium mitigation techniques
- □ all around the tritium plant ...

Waste management

Extraction, Handling, Reprocessing, Clearance

^{*1}FW module (BLK#15) . irradiated in ITER (B-lite), 21 days decay, R2Smesh, U. Fischer et al. 2013

²⁹ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

3rd IAEA DEMO Prog. Workshop, Hefei, China, May 2015

Summary & Recommendations

- Fusion safety concepts relies on state-of-the-art safety concepts for nuclear installations containing radioactive environment and is based on DiD concept.
- Similarities and differences between safety concepts of fusion and fission. Main reasons for differences are radioactive inventories in plants and relevant potential release paths
- Plant-internal events do not result in conditions requiring off-site evacuation
- Systematic assignment of measures & installations to the different levels of defence (as required by internat. fission regulations) has to be performed once an adequately detailed design level of a FPP is attained.
- Safety function "cooling" demands detailed design of in-vessel components (blanket&others) and necessitates demonstration of safe decay (passive) heat removal development of validated tools mandatory
- External hazards must be included in the future safety analysis
- Numerous issues remain open and requires adequate attention
- Waste management has not been considered

³⁰ Fusion Safety in View of Fission regulations | Stieglitz, Wolf, Taylor et al.

Contributors

- Max-Planck-Institut für Plasmaphysik (IPP) Jürgen Raeder, Arthur Weller, Robert Wolf
- KIT

Lorenzo Virgilio Boccaccini, Dario Carloni, Fabrizio Franza, Xue Zhou Jin, Werner Gulden

- Gesellschaft f
 ür Anlagen- und Reaktorsicherheit (GRS) Joachim Herb
- Öko-Institut e.V. (Institute for Applied Ecology) Christoph Pistner
- Culham Center for Fusion Energy (CCFE) Neill Taylor
- Bundesministerium f
 ür Umwelt, Naturschutz, Bau und Reaktorsicherheit (BUMUB) – project sponsor Marcus Fabian