

KIT advanced approaches for MC modeling and multiphysics coupling

Yuefeng Qiu(Chu), Lei Lu, Ulrich Fischer

Institute for Neutron Physics and Reactor Technology, KIT

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Introduction

- KIT Karlsruhe Institute of Technology
 - Created in 2009: University of Karlsruhe
 + Karlsruhe Research Centre (FZK)
 - One of the 17 largest Helmholtz center
- INR Institute for Neutron Physics and Reactor Technology
 - Fission: Design optimizations and safety evaluations on LWR and GEN IV reactor
 - Fusion: Nuclear component design, neutronics analysis, fabrication and experiment.

EU DEMO

ITER

IFMIF

Introduction

- Focus on fusion neutronics
- Computational methods and tools
 - McCad: Advance MC modelling program

Neutronics analysis

08.06.2015 4

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

GEANT4 development meeting, 8th June 2015, CERN, Geneva,

Cad

CASCADE FCHNOLOGY

Introduction

- Nuclear data
 - Contributing to JEFF-3.2 library
- Experiment facility
 - Neutron laboratory of the Technical University of Dresden (TUD)
 - Accelerator: 300 kV, 10 mA, up to 10¹² n/s

SiC detector

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Integrated system

- CAD conversion tool for Monte Carlo (MC) neutronics codes;
- Data transfer tool for translating MC results for TH/SM codes;
- Implementation and integration of tools into a suitable platform.

Integrated system

SALOME

- Open-source integration platform;
- GEOM: CAD modelling;
- SMESH: Mesh generation;
- ParaView: Data visualization.
- MC codes
 - MCNP5: CSG
 - MCNP6: hybrid CSG and mesh
 - TRIPOLI-4: CSG
 - Geant4: CSG and Tessellated solid
- TH/SM codes
 - Fluent
 - CFX
 - ANSYS Workbench
- Integrated system
 - MC geometry conversion tool
 - MC data transfer tool
 - All the missing links

ParaView

cea

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

My PhD work!

GEANT4 development meeting, 8th June 2015, CERN, Geneva,

ANSYS WB

Integrated system-- McCad

- SALOME intergrating version of McCad
 - Integrated GUI;
 - Model persistency using a project file;
 - Internal data sharing with CAD and mesh modules.
- Model processing functions
 - Decomposition
 - Void generation
 - Tessellation
 - Mesh generation
- Hybrid MC geometry support
 - Hybrid CSG& mesh for MCNP6
 - Hybrid CSG& faceted solid for Geant4

Integrated system-- McCad

- CSG decomposition algorithm
 - assisting splitting surfaces
 - Optimizing splitting surfaces sorting algorithm
- Mesh generation approach

10

Tessellation-Tetrahedralization (TT)

Improved algorithm

8th June 2015, CERN, Geneva,

Integrated system-- McMeshTran

McMeshTran

- A <u>MC Mesh</u> and data <u>Tran</u>sformation/ <u>Tran</u>slation/ <u>Tran</u>sfer tool;
- A module in SALOME, sharing meshes with SMESH and data with ParaView
- Store mesh and data using universal library MED
- Mathematic calculations, spatial transformation

Generic interpolation

- Nearly any mesh to any mesh
- MED data mapping functions
- Volume weighted scheme: physical conservative mapping data on cell
- Point to point scheme: fast mapping data on node

11 08.06.2015

Integrated system-- McMeshTran

- MC interfaces
 - MCNP5 mesh tally interface
 - MCNP6 unstructured mesh output
 - TRIPOLI-4 interface
 - Geant4 Interface
- TH/SM interfaces

08.06.2015

12

- Fluent: User Defined Function (C source)
- CFX: User Fortran (Fortran source)
- ANSYS Workbench: Comma-separated Value (CSV) format
- Voxel searching algorithm
 - Points are grouped into regular voxels
 - The voxel is firstly located, next find the point inside the voxel
 - The time complexity for locating the voxel is O(1)

Integrated system– McMeshTran verifications

- MCNP5 mesh tally interface
 - Inverted interpolation check
 - Interpolated results agree with MCNP direct-tallied result
- MCNP6 unstructured interface
 - Hybrid CSG and mesh model
 - Unstructured mesh generated by ANSYS-ICEM
- CFD interfaces
 - 1/6 FW model;
 - Nuclear heating is transferred using McMeshTran
 - CFX results are agree with Fluent

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Geant4 developements – Half-space solid

- Half-space surface
 - Common analytic surface
 - Sense: half-space index
 - 1: $f(x, y, z) \ge 0$, positive half-space
 - -1: $f(x, y, z) \leq 0$, negative half-space
- Half-space solid
 - Boolean intersect by half-space surface
 - Complex geometry can be decomposed into half-space solids
 - It is consisted of :
 - A list of half-space surfaces
 - A pre-calculated boundary box
 - Volume and surface area (optional)
 - A polyhedron for visualization.

15 08.06.2015

Geant4 developements -- Half-space solid

Karlsruhe Institute of Technology

Geant4 developements -- Advanced modelling

Hal	fSpa	ceSolid		HalfSpace	SolidType 😞			
🖓 Halfs		@ lur @ au	nit nit		xsistring xsistring			
pace	thoice [0.*]	@ na	me		xs:ID			
Soli		<> Sui	face	s	SurfacesType ≈			
dType extension		SurfacesType	sequence	 Plane [0*] Sphere [0*] Cylinder [0*] Cone [0*] Quadric [0*] Torus [0*] 	S Cy Qi	PlaneType phereType linderType ConeType uadricType TorusType		
Type		SoundaryBox			BoundaryBoxTyp	oe ≽		
		 VolumeSize [01] SurfaceArea [01] 			VolumeSizeTy SurfaceAreaTy	pe > pe >		

→Interface to export a complete GDML file

→Polyhedron is
 generated by Open
 Cascade library

 \rightarrow Material is managed in McCad

 \rightarrow Also able to export Tessellated Solid

→ Modifying GDML schema to accept new solid type

 \rightarrow Add a Polyhedron type in the Define block

 \rightarrow Add a HalfSpaceSolid type in the solid block

→Union the HalfSpaceSolid using the G4BooleanSolid (not efficient) →Modifying Geant4 GDML parser to process new solids

17 08.06.2015

Geant4 developements – Unst. scoring mesh

First-order elements

- General type for all convex first-order element
- Currently implemented four element type
- Preprocess
 - Input: a list of point with indicate order
 - Common preprocess
 - Calculate boundary box
 - Pre-calculate face normal and other params
 - Calculate Area
 - Calculate Center
 - Difference preprocess
 - Form faces
 - Calculate volume
 - Reverse node ordering
- Particle tracking
 - All the required methods
 - General for all convex element type

Geant4 developements -- Multi-physics

- Unstructured scoring mesh
 - Based on G4VScoringMesh
 - Use command script
 - Assign Multifunctional detector
 - Able to use all implement elements
 - Visualized the mesh and result
 - In linear or log color map
 - Geant4 have limitation on visualization
- Import mesh / Export results
 - Mesh parser for VTK format
 - Export the results in VTK format

Unstructured

mesh

Export for ParaView

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Test verifications

Compared with Geant4 primitives with Average Absolute Deviation

	Volume (%)	Relative position	Surface normal	Distance to enter	Safety outside	Distance to exit	Safety inside
Box	0.001	Pass	0	6.08×10 ⁻¹⁵	1×10-9	2.67×10 ⁻¹⁵	0
Sphere	0.023	Pass	2.56×10 ⁻³³	8.61×10 ⁻¹⁴	N/A	7.02×10 ⁻¹⁵	0
Cylinder	0.012	Pass	3.98×10 ⁻³³	8.68×10 ⁻¹⁵	N/A	1.77×10 ⁻¹⁵	0
Cone	0.156	Pass	7.81×10 ⁻¹⁸	4.38×10 ⁻¹⁴	N/A	3.71×10 ⁻¹⁵	9.03×10 ⁻¹¹
Torus	0.163	Pass	4.65×10 ⁻³¹	2.06×10 ⁻¹¹	N/A	1.21×10 ⁻¹¹	N/A
Trapezoid	0.014	Pass	5.28×10 ⁻²¹	4.96×10 ⁻¹⁰	N/A	4.54×10 ⁻¹⁰	2.49×10 ⁻¹⁰
Tube	0.133	Pass	4.57×10 ⁻³³	5.54×10 ⁻¹⁵	N/A	1.12×10 ⁻¹⁵	4.62×10 ⁻¹⁷
Cut Tube	0.099	Pass	5.72×10 ⁻³³	2.28×10 ⁻¹⁴	N/A	2.25×10 ⁻¹⁵	2.12×10 ⁻¹⁰
Cone section	0.123	Pass	1.11×10 ⁻³²	3.40×10 ⁻¹⁴	N/A	3.35×10 ⁻¹⁵	1.16×10 ⁻¹⁵
Ellipsoid	0.002	Pass	3.86×10 ⁻³³	2.54×10 ⁻¹⁵	N/A	1.25×10 ⁻¹⁵	N/A
Torus section	0.175	Pass	9.20×10 ⁻³¹	1.38×10 ⁻¹²	N/A	1.07×10 ⁻¹²	N/A
UMeshHex Box	0	Pass	0	9.15×10 ⁻¹⁵	N/A	6.14×10 ⁻¹⁵	0
UMeshHex Trapozoid	0	Pass	2.59×10 ⁻³²	2.22×10 ⁻¹⁵	N/A	3.46×10 ⁻¹⁵	N/A
UMeshPent Wedge	0.012	Pass	1.22×10 ⁻³²	4.44×10 ⁻¹⁵	N/A	1.71×10 ⁻¹⁵	
UMeshPyrm Pyramid	N/A	Pass	1.16×10 ⁻²³	-2.65×10 ⁻¹⁰	N/A	2.22×10 ⁻¹⁰	1.20×10 ⁻¹⁰
UMeshTet Tetrahedron	0	Pass	0	0	0	0	0

21 08.06.2015

Test verifications

- HalfSpaceSolid vs. Tessellated solid
 - Breeder unit of fusion blanket
 - Complex model with cooling channels
- Calculation
 - Geantino
 - Particles: 1e6
- Time comparison
 - Half-space solid: 86.3 sec (need optimization)
 - Tessellated solid: 78.2 sec

22 08.06.2015

Test verifications

- Test of unstructured scoring mesh using a steel pipe case
 - Orthogonal mesh compared with MCNP5
 - superimposed unstructured mesh tally compared with MCNP6
 - Results agree very well.
 Air
 Fe56
 Void(source, 14.07 MeV)

08.06.2015

23

GEANT4 development meeting, 8th June 2015, CERN, Geneva,

- Introduction
- The integrated system
- Geant4 developements
- Test verifications
- Summary and outlook

Summary

Summary

- An CAD based modelling approach has been developed for Geant4 simulation
- The unstructured mesh scoring function has been developed for multi-physics coupling analysis
- These functions have been implemented in an integrated system based on SALOME platform.
- Outlook
 - Conduct more tests on the Half-space solid;
 - Make code available;
 - Extend Geant4 for fusion neutronics, e.g implement reflecting boundary, fusion reactor neutron source;
 - Validations of Geant4 for fusion neutronics, e.g. benchmarking, experiment validation, etc.