

UrbENO - an urban observatory in the context of larger holistic research strategies

Stefan Emeis IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

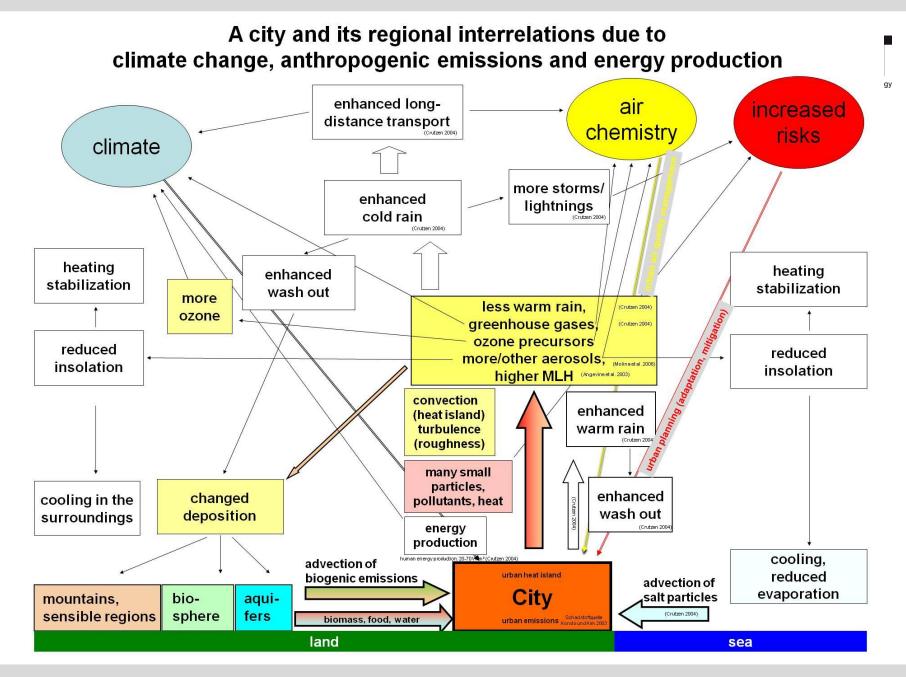
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Some urban facts

- Since 2007 more than 50 % of the world's population live in urban agglomerations; it is estimated that 70 % do so by 2050
- Until 2030 there will be 59 cities with more than 5 000 000 inhabitants and 23 megacities with more than 10 000 000 people. (Brennan-Galvin 2000)
- Urban agglomerations in China increased from 20 % to 41 % (between 1980-2005)
- Europe has an urbanization rate of 72 %
- 1.2 % of the land surface is considered to be urban

Interaction of urban agglomerations with Global Change


cities → trace gas emission → changed radiative properties of the air → contribution to global warming

- → aerosol production → changed clouds and precipitation patterns
 → regional dimming
- → heat → changed regional circulations
- → growing urban population
 → more emissions
 → more heat
 - ➔ more fresh water demand

Global Change → warmer and partly dryer climate → even warmer cities → less fresh water availability

→ more people → larger cities → larger climate impacts
 → problems in food and water supply

Colour code: radiation; air dynamics; air quality/chemistry; water cycle

Peculiarities of the climate in urban agglomerations

buildings → flow obstacles → reduced mean wind speed

- ➔ increased turbulence
- → flow convergence at upwind edge

- mean upward motion
 more clouds, precipitation
- → trapped short wave radiation (multiple scattering in street canyons, etc.)
- → retained long wave radiation (reduced sky view)
- ➔ storage of heat
 - stronger run off during precipitation events
 - → less humidity available for evaporation

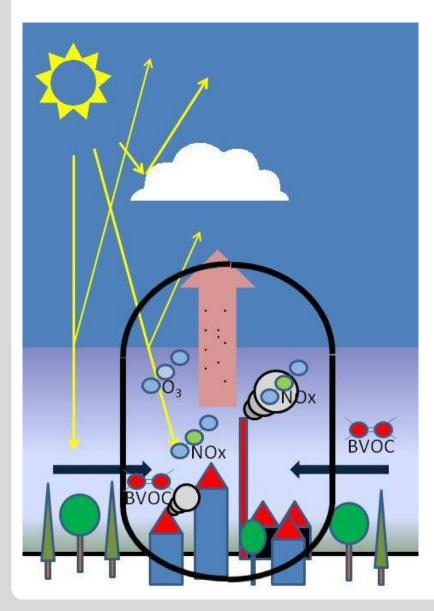
less vegetation

impervious surfaces

human beings

(UHI)

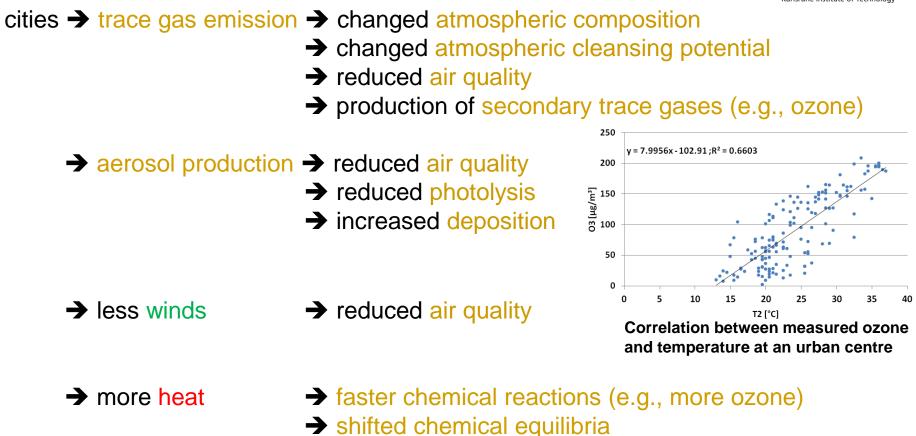
- → less humidity available for evaporation
- → anthropogenic heat production
- → trace gas emissions → changed chemical properties of the air
 - \rightarrow reduced air quality \rightarrow health risks
- → aerosol production → changed clouds, precipitation
 - → reduced air quality → health risks
 - ➔ reduced visibility


excess heat \rightarrow upward motion over cities

- → compensating inflow from rural areas
- enhanced chemical reactions
- - → health risks (missing cooling at night)

Colour code: radiation; air dynamics; air quality/chemistry; water cycle

The urban ecosystem – a reaction chamber with global impact



Internal processes and exchange with surrounding compartments of the Earth system

- urban heat island
- secondary circulation
- natural emissions (inside and outside of the cities)
- anthropogenic emissions
- air chemistry, aerosol formation
- impact on local and regional air quality
- impact on regional and global climate

Interaction of urban agglomerations with air quality

→ secondary circulations bring rural biogenic and urban

anthropogenic emissions together

→ enhanced import of fresh air

Colour code: radiation; air dynamics; air quality/chemistry; water cycle

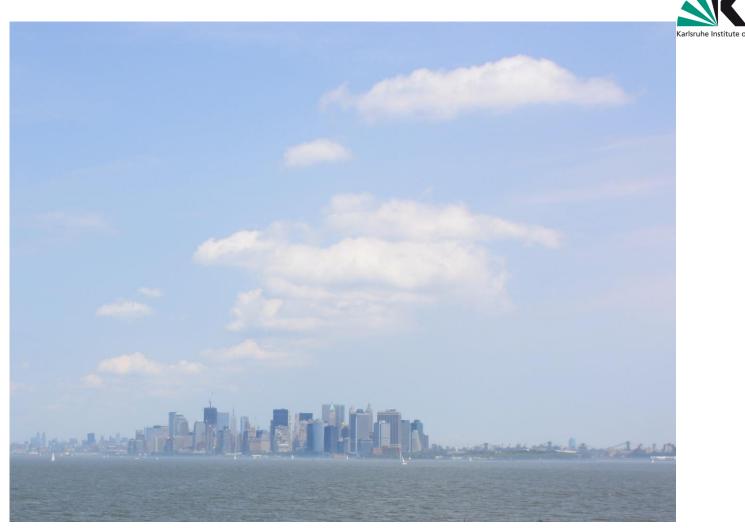
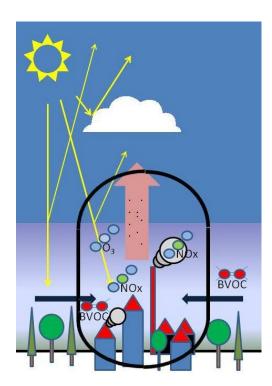
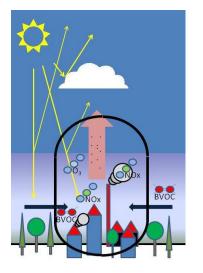



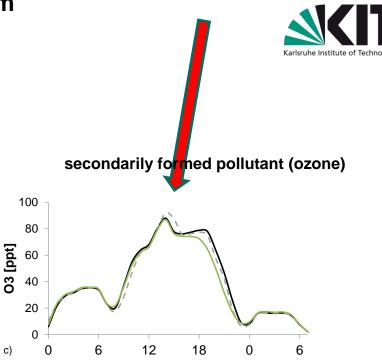
Photo: 2011 Stefan Emeis


Warmer cities influence local and regional climate (Clouds over Manhattan on May 28, 2011)

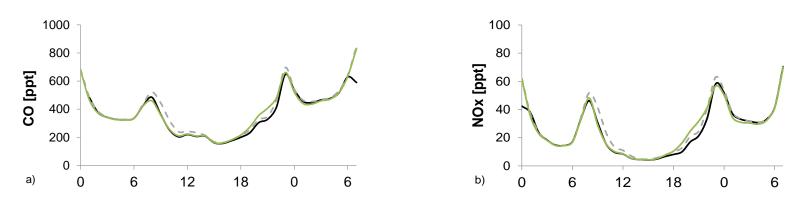
UrbENO - an urban observatory

Why UrbENO

- understand how a complex system is working
- understand the possible impacts of global/climate change on cities
- being able to manipulate such a complex system towards sustainability


Example of manipulating a complex system

UHI mitigation (WRF simulation with UCM)


impact on air quality

primarily emitted pollutants (CO, Nox)

Basic questions

- what data is needed for future urban research, planning, development and policies?
- how can this data be provided?
- how can future monitoring strategies look like which capture complex temporal and spatial dynamics?
- which challenges emerge from the enormous amount of data?
- how can this data (and subsequent research results) be stored and made available to researchers and stakeholders?
- how to include citizens (their needs and abilities, social networks)?
- do unknown data sources exist which have not been accounted for so far?

involving citizens / recently unknown data sources

Cell phone fine dust sensors

Clean air alongside busy roads? The smartphone fine dust sensor is intended to measure concentration in real time. (Photo: Patrick Langer, KIT)

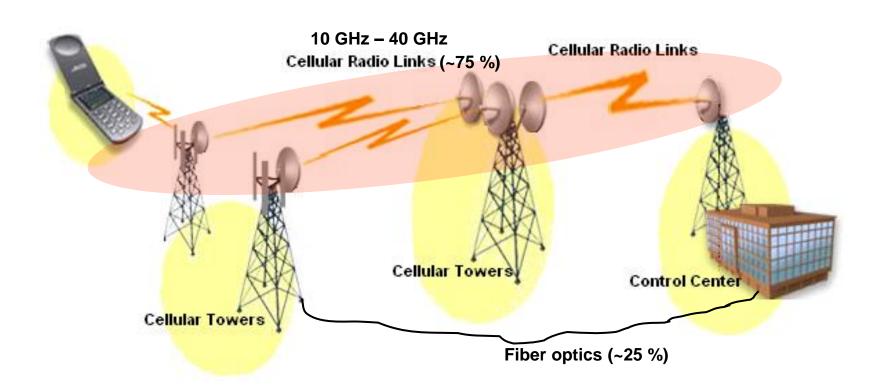
Institute of Telematics Chair for Pervasive Computing Systems / TECO

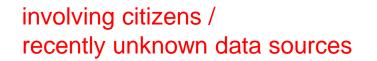
Project: FeinPhone

START/END •03/2015 - 06/2016

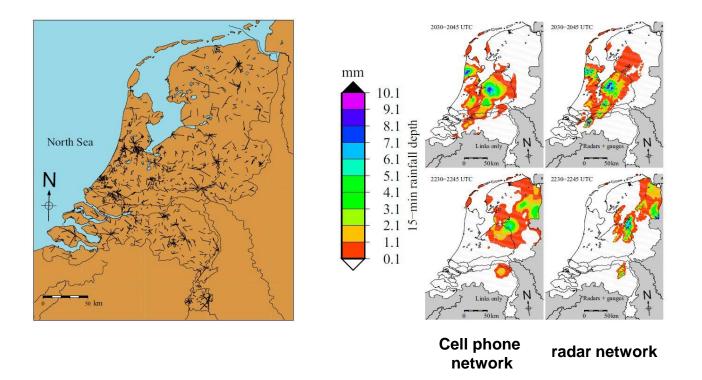
PARTNERS •Siemens AG

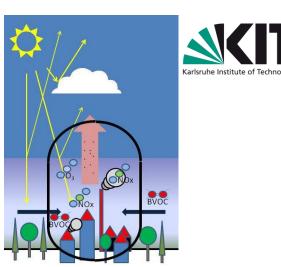
RESEARCH TOPICS •Environmental Sensing


- •Mobile Computing
- Participatory Sensing



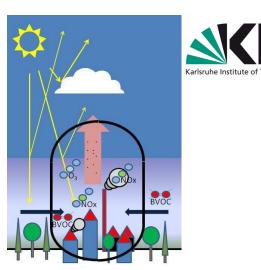
involving citizens / recently unknown data sources


Cell phone signal attenuation by atmospheric humidity and precipitation


precipitation maps from microwave attenuation

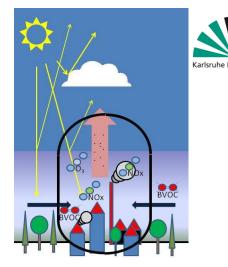
Source: Overeem, A., Hidde Leijnse, Remko Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. PNAS, **110**, 2741-2745.

Challenges


related to the urban system

- high dynamics and complexity of urban development (partly unplanned)
- complex large-scale spatial and socio-economic dimensions and connections
- small-scale multitude of different compartments (representativeness?)
- highly varying entities of spatial and socio-economic relations
- high density and partly overlapping of different land use

Challenges


related to the monitoring systems

- integration of a large multitude of data capture and monitoring systems
- necessity of defining and shaping reference systems
- large amounts of highly heterogeneous data (e.g., different time base)
- short update cycles due to dynamic developments
- provisions for multi-scale assessments, up- and downscaling options

Challenges

related to data storage and dissemination

- integration of a large multitude of heterogeneous data
- harmonisation of heterogeneous data
- data quality assessment and control (QA/QC)
- provision of meta data
- storage media

18

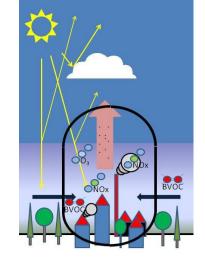
extraction software for various users

Existing/earlier projects

Germany:

- HGF: TERENO, Risk Habitat Megacities
- DFG: Megacities Megachallenge
- BMBF: Future Megacities

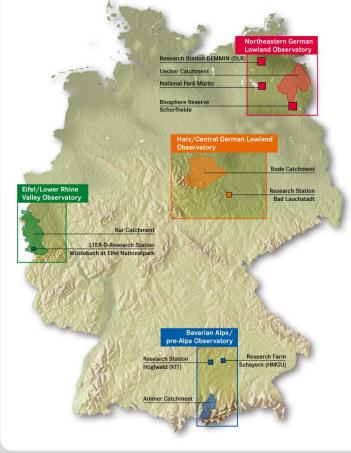
Europe:


IUME (EEA, Towards an Integrated Urban Monitoring in Europe) ClearfLO (Clean Air for London) LyON (existing urban data base) Santander (existing urban data base)

<u>USA:</u>

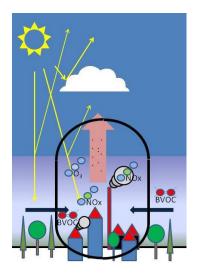
NEON (National Ecological Observation Network), LTER (Long-term Ecological Research Network)

Intern'l:


AURIN (Australia Urban Research Infrastructure Network)

TERRESTRIAL ENVIRONMENTAL OBSERVATORIES

The TERENO Network

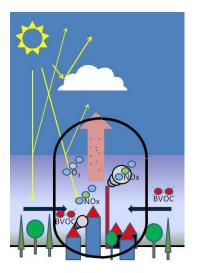


"aims to determine the long-term ecological and climatic impact of global change at regional level"

- the effects of Global Change on terrestrial systems are regionally differentiated
 - \rightarrow requires a network approach
 - ... with complex feedbacks between compartments (soil, water, bio-, atmosphere)
 - \rightarrow requires a platform approach
- Iong-term observation
 - as non-manipulative field experiment
 - detection of trends
 - validation of terrestrial environmental models

UrbENO will be in some analogy to TERENO and complements it.

embedded into larger programs / initiatives



- KIT urban research (survey of existing competence)
- Helmholtz Association (HGF) urban research initiative
- Germany: national platform "City of the Future" (NPZ, Nationale Plattform Zukunftsstadt)
- Europe: Horizon2020: "smart cities"

all these programs / initiatives are heading for a more holistic approach, not just ecosystem exchange fluxes

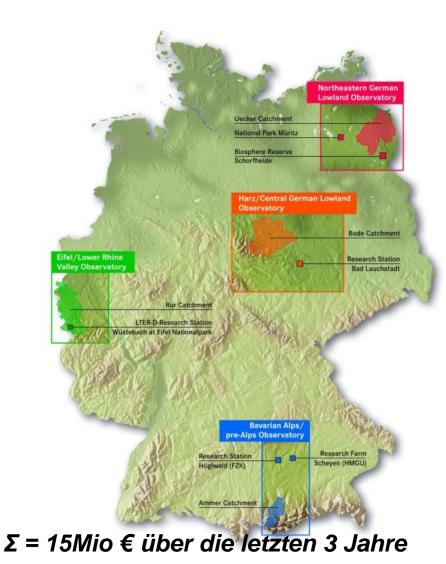
coordinated within the Helmholtz Association (HGF) open to other groups

Karlsruhe Institute of

tentative schedule

2016-2017	conceptual work
2018-2019	first observational sites
2020-20	operational phase

Vielen Dank für Ihre Aufmerksamkeit


KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association IMK-IFU Atmosphärische Umweltforschung Garmisch-Partenkirchen

ifu.kit.edu

Die TERENO-Observatorien

> HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

Helmholtz-Zentrum

GFZ

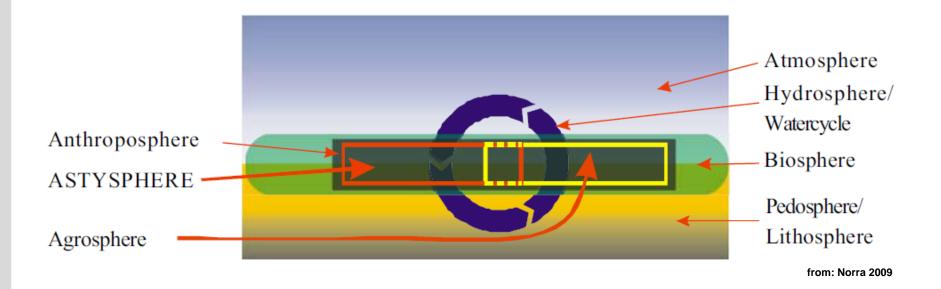
Karlsruhe Institute of Technology

Ziel

Eine **interdisziplinäre** und **langfristige** Beobachtungsplattform schaffen (in enger Zusammenarbeit mit *Helmholtz-Gemeinschaft* & Universitäten)

Forschungsfragen

- Konsequenzen der beobachteten und erwarteten Klimaänderung auf Grundwasser, Böden, Vegetation, Fließgewässer)
- Rückkopplungen zwischen Landoberfläche & Atmosphäre (Wasser, Stoffe, Energie)
- Einflüsse von Böden und Landnutzungsänderungen auf Wasserhaushalt, Bodenfruchtbarkeit, Biodiversität und regionales Klima
- Konsequenzen anthropogener Eingriffe auf terrestrische Systeme


Anthroposphere comprises cities and agricultural areas

Urbanisation has been the most drastic change in land use and land surface properties ever.

Stefan Norra therefore suggested the term **astysphere**.

The **astysphere** surrounds the globe like a spider net. The knots are the cities, and the silks represent the connecting transport network (Norra 2009).

