

Thermal stability of ferritic and austenitic nanocluster containing ODS steels

S. Seils¹, D. Schliephake¹, A. Kauffmann¹, E. Bruder², D. Janda¹, J. N. Wagner¹, M. Heilmaier¹

- ¹ Karlsruhe Institute of Technology
- ² Technische Universität Darmstadt

Institute for Applied Materials IAM–WK

Deutsche Forschungsgemeinschaft

Motivation

2

Steels for high temperature applications

- Advantages: low cost, low density, well characterized
- Disadvantages: use limited up to 700 °C

Benefits of oxides addition

- Formation of nanoclusters \rightarrow limit mean free path of dislocations
- Pinning of grain boundaries hinder grain growth

Characteristics of typically used ferritic oxide dispersion strengthened (ODS) steels

- Stable long-term microstructure at high temperatures
- Resistance against radiation-induced swelling
- Superb corrosion and oxidation resistance
- Extraordinary good creep properties

Do austenitic ODS steels have even better properties?

- Materials
 - Ferritic
 - Austenitic
- Thermal stabiltiy
- Cluster analysis by APT
- Mechanical properties

- Materials
 - Ferritic
 - Austenitic
- Thermal stability
- Cluster analysis by APT
- Mechanical properties

Materials

Two ferritic alloys were prepared

Nominal composition:

in wt.%	Fe	Cr	Ti	Y ₂ O ₃
NC 0.4Ti-0.25Y ₂ O ₃	balance	14	0.4	0.25
NC 1Ti-0.5Y ₂ O ₃	balance	14	1	0.5

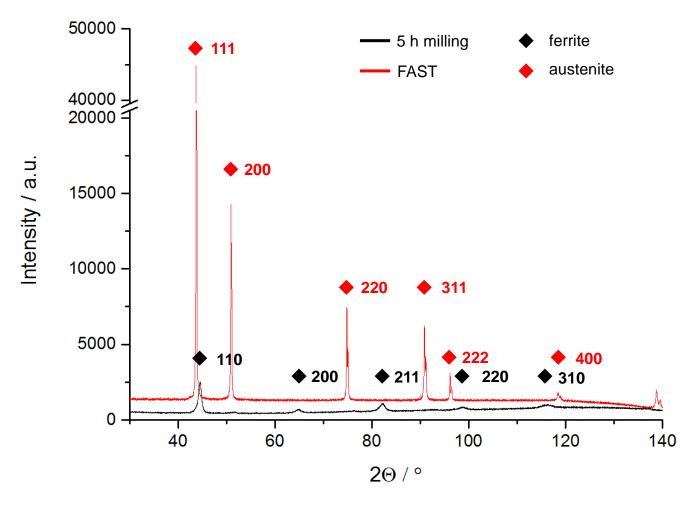
- Mechanical alloying from elemental powders in attritor mill
 - 1000 rpm
 - Steel balls (BPR = 10:1)
 - 4800 cycles of 45 s milling and 15 s cooling
 - Ar atmosphere and -10 °C
- Compaction by field assisted sintering technique (FAST)
 - Heating/cooling rate: 100 K/min
 - Temperature: 1000 °C
 - Pressure: 50 MPa
 - Time: 5 min

5

Materials

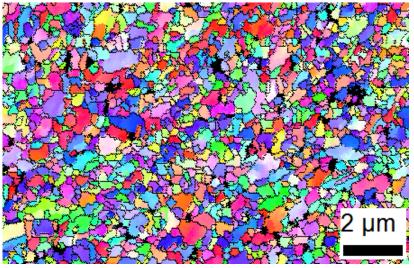
Additionally one austenitic alloy was prepared

in wt.%	Fe	Cr	Ni	Ti	Y ₂ O ₃
NC 0.4Ti-0.25Y ₂ O ₃	balance	14		0.4	0.25
NC 1Ti-0.5Y ₂ O ₃	balance	14		1	0.5
ANC 0.4Ti-0.25Y ₂ O ₃	balance	16	16	0.4	0.25


- Mechanical alloying from elemental powders
- Low gains and changes in composition in attritor mill
- Use of planetary ball mill
 - 200 rpm
 - WC balls (BPR = 10:1)
 - 300 cycles of 1 min milling and 2 min cooling
 - Ar atmosphere
- Compaction by field assisted sintering technique (FAST)

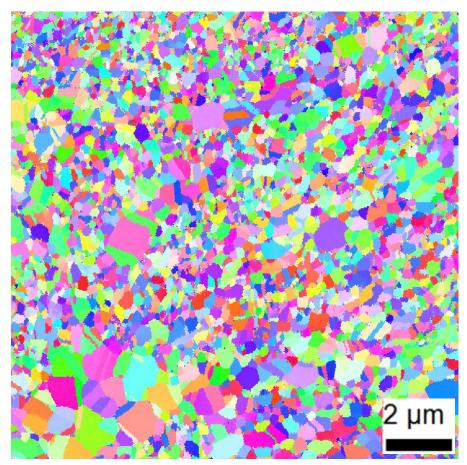
XRD measurements on ANC 0.4Ti-0.25Y₂O₃

Milling → pure ferrite → *compaction* → pure austenite



- Materials
 - Ferritic
 - Austenitic
- Thermal stabiltiy
- Cluster analysis by APT
- Mechanical properties

Microstructure after compaction

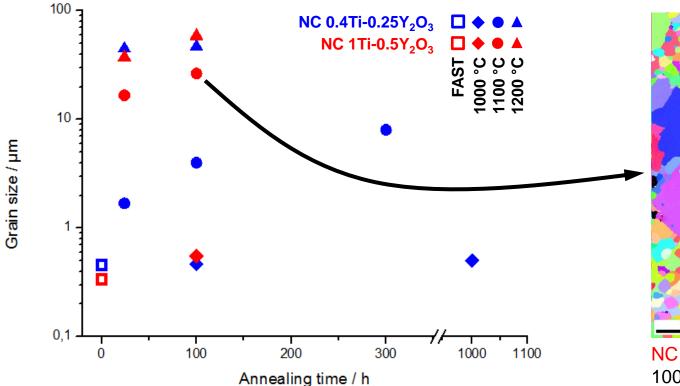


NC 0.4Ti-0.25Y₂O₃

Initial grain size in all alloys similar

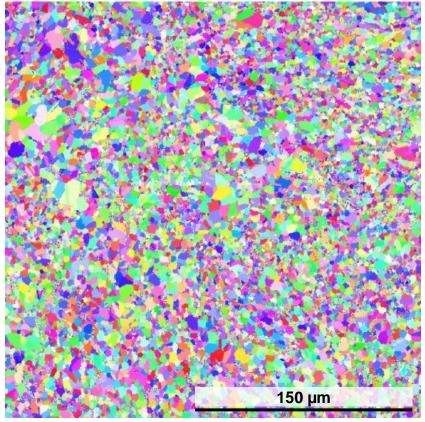
NC 0.4Ti-0.25Y ₂ O ₃	0,46 µm		
NC 1Ti-0.5Y ₂ O ₃	0,34 µm		
ANC 0.4Ti-0.25Y ₂ O ₃	0,38 µm		

No texture caused by FAST

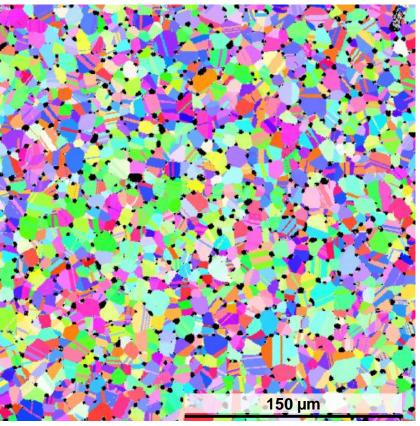


ANC 0.4Ti-0.25Y₂O₃

Heat treatment of ferritic ODS steels

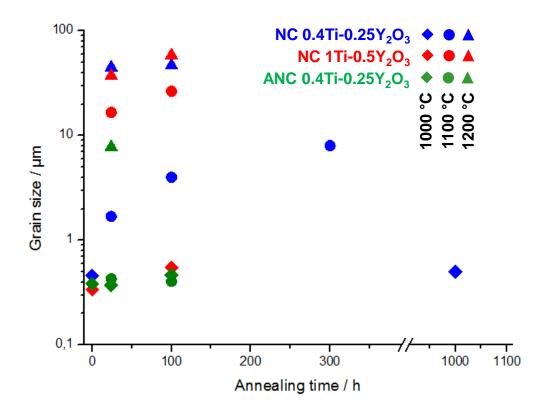

NC 1Ti-0.5Y₂O₃ after 100 h at 1100 °C

- Stable grain size at 1000 °C
- Growth of selected grains at 1100 °C for NC 1Ti-0.5Y₂O₃
- Fast grain growth at 1200 °C



Heat treatment of ANC 0.4Ti-0.25Y₂O₃

100 h at 1100 °C



24 h at 1200 °C

Heat treatment of austenitic ODS steels

ANC 0.4Ti-0.25Y₂O₃

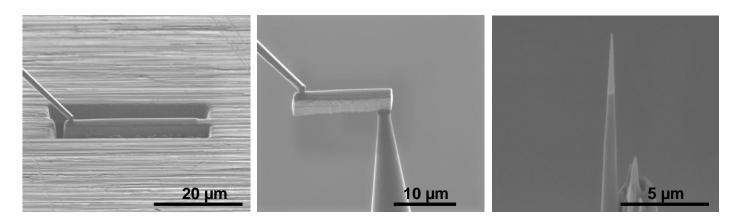
No grain growth at 1000 °C and even 1100 °C

Smaller grains after 24 h at 1200 °C compared to ferritic ODS steels

Grain growth starts possibly at higher temperatures for austenitic ODS steel

12

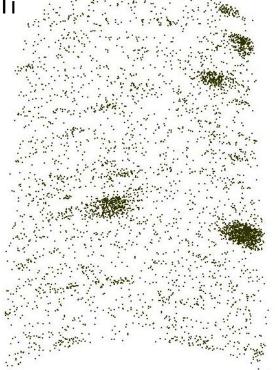
- Materials
 - Ferritic
 - Austenitic
- Thermal stability
- Cluster analysis by APT
- Mechanical properties

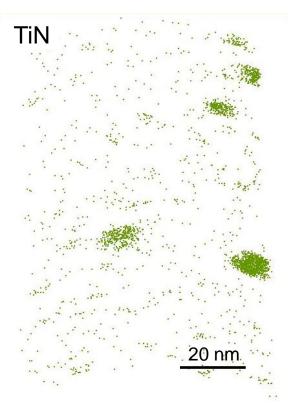


Analysis of nanoclusters

Nanoclusters most likely responsible for high thermal stability of ODS steels

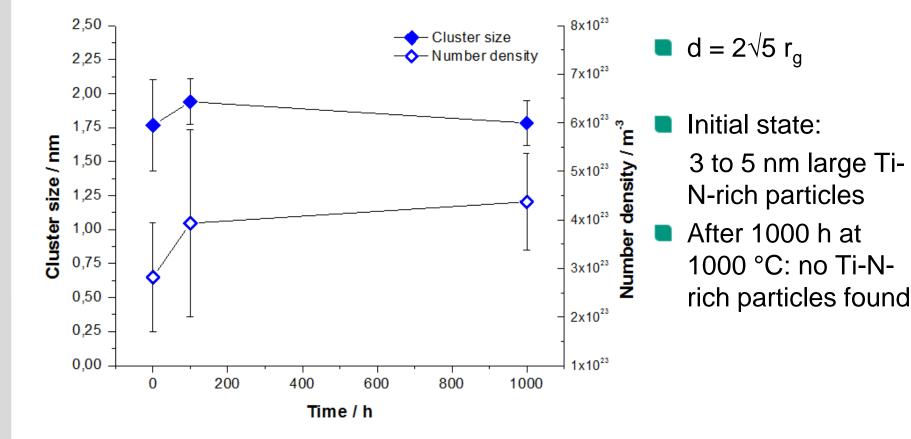
- Analysis of nanoclusters by Atom Probe Tomography
- Three states of NC 0.4Ti-0.25Y₂O₃ were investigated
 - As FAST
 - After 100 h and 1000 h at 1000 °C
- FIB lift out specimens



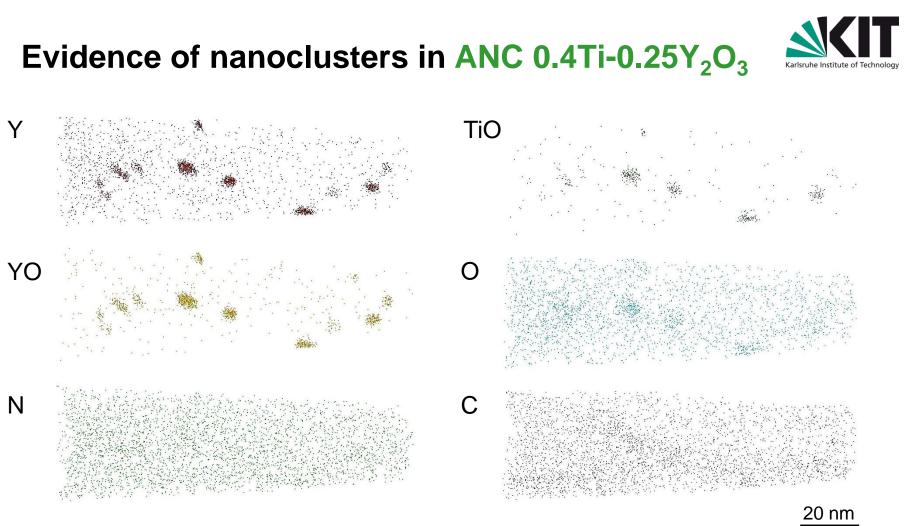


APT of NC 0.4Ti-0.25Y₂O₃ initial state

L

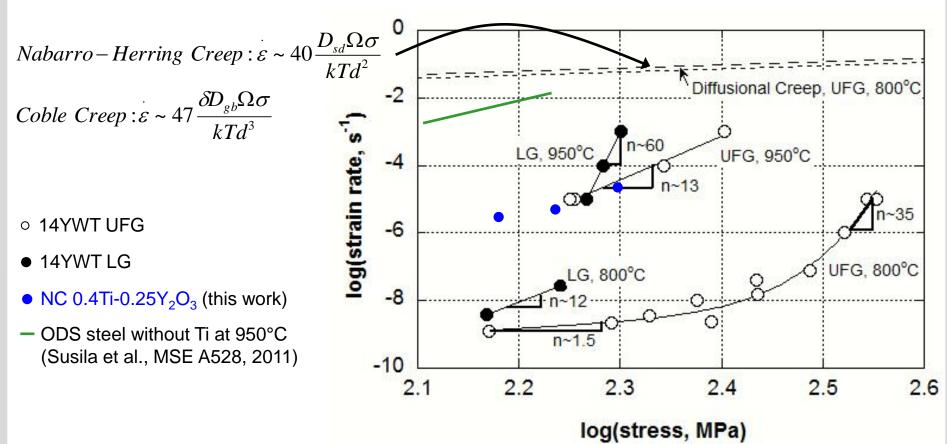

- Nanoclusters are detected
- Small clusters coincide with Y and Ti
- Impurities from processing

Number density is also stable


Cluster size is stable up to 1000 h at 1000 °C

Development of cluster size during annealing

- Y-Ti-O rich clusters are found in this sample
- Less and may be larger clusters compared to ferritic ODS steels
- Nitrogen is homogenously distributed
- Clusters were only found in few tips > inhomogenously distributed



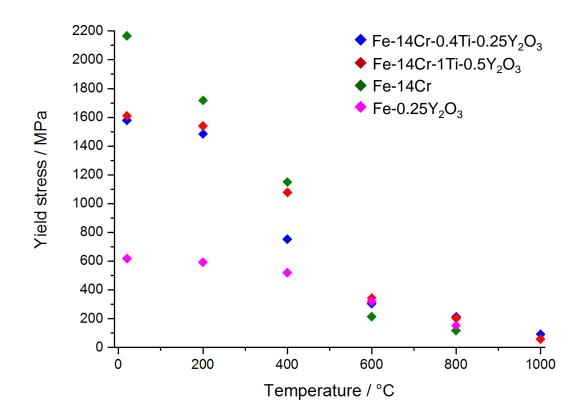
- Materials
 - Ferritic
 - Austenitic
- Thermal stability
- Cluster analysis by APT
- Mechanical properties

Consequences on mechanical properties – Creep behaviour


Unusual high creep resistance of NC 0.4Ti-0.25Y₂O₃

Schneibel et al., Script. Mater. (2009)

Consequences on mechanical properties – Stress-strain curves for NC 0.4Ti-0.25Y₂O₃



- Decreasing yield stress with increasing temperature
- Largest difference between 400 and 600 °C

Consequences on mechanical properties – Temperature dependence of yield stress

- ODS steels compared to base alloys
- Strong decrease of yield stress in steel without dispersion strengthening
- Low yield stress without solid solution hardening

Summary

Ferritic and austenitic ODS steels

- Same initial fine grain size (around 0.5 μm)
- Grain size of austenite stable up to higher temperatures
- Clusters supposed to be responsible for that

Cluster analysis

- Ferritic ODS steels
 - High number density of clusters in ferritic ODS steels
 - Stable cluster size of Y-Ti-O clusters at 1000 °C up to 1000 h
- Austenic ODS steels
 - Less but larger clusters than in ferritic counterpart in the initial state

Resulting mechanical properties of ferritic ODS steels

- Extraordinary creep resistance
- High yield stress up to 600 °C

Karlsruhe Institute of Technology

Outlook

Ferritic ODS steels

- Searching for reasons of yield stress breakdown and creep behaviour
- Cluster evolution at higher temperatures during annealing

Austenitic ODS steels

- Detailed tests of mechanical properties at high temperatures
- Cluster evolution at higher temperatures during annealing

Thank you for your attention!

