

Mechanical properties of pre-hydrogenated (600 – 5000 wppm) cladding segments

J. Stuckert, M. Große, M. Walter

Institute for Materials Research

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Objectives

- Preparation of hydrogenated samples for mechanical tests
- Hydrogen uptake under hydrogen starvation conditions to achieve axial hydrogen gradient in the cladding
- Tension and ring compression tests with hydrogenated samples

Short term secondary hydrogenation after ballooning and burst: hydrogen uptake increased rapidly up to 4000 ppm (significant higher than ductility limit of 500 ppm)

Hydrogenation facility

vertical 3-zones tube furnace LORA (height 60 cm)

sample extraction at furnace top

sample 15 cm

sample	temperature	H2 partial pressure	hydrogenation duration	dissolved hydrogen (weight gain)	hydrogen solubility limit
#	°C	mbar	min	wppm	wppm
H11Z4	700	90	2	2473	16770
H12Z4	700	90	6	5417	16770
H13 Z4	700	37	2	681	10820
H14 Z4	700	37	4	1819	10820
H15 Z4	700	37	6	2746	10820
H16 Z4	700	37	8	4810	10820
H18 Z4	800	37	2	827	5150
H19 Z4	800	37	4	1625	5150
H20 Z4	800	37	8	2783	5150
H21 Z4	800	37	16	4420	5150
H29Z4	900	37	1	400	2770
H31Z4	900	37	4	1215	2770
H33Z4	900	37	8	1689	2770

18.11.2010 J. Stuckert: Hydrogenated samples

18.11.2010 J. Stuckert: Hydrogenated samples

∆m_H=1800 wppm

∆m_H=1700 wppm

with H2 (37 mbar); ∆t=240 s ∆m_H=1600 wppm

6

Axial distribution of hydrogen content measured by neutron radiography

18.11.2010 J. Stuckert: Hydrogenated samples

Tension tests with samples hydrogenated at 700 and 800°C: rupture with negligible contraction

18.11.2010 J. Stuckert: Hydrogenated samples

sample

Tension tests with samples hydrogenated at 800°C (moderate H gradient) and 900°C (small gradient)

18.11.2010 J. Stuckert: Hydrogenated samples

QWS 16, Karlsruhe

Compression tests with rings from bottom of samples hydrogenated at 700 and 800°C

18.11.2010 J. Stuckert: Hydrogenated samples

QWS 16, Karlsruhe

Compression tests with rings from bottom of samples hydrogenated at 700 and 900°C: hardening and embrittlement increase at higher annealing temperature

18.11.2010 J. Stuckert: Hydrogenated samples

Summary

- Twelve Zry-4 cladding specimens with length of 150 mm were hydrogenated in Ar + H₂ atmosphere at temperatures 700, 800 and 900°C
- Average hydrogen content was measured with sample weighing between 600 and 5000 wppm. Axial hydrogen distribution was measured by neutron radiography.
- No macroscopic hydrides were observed by means of optical microscopy.
- Tension and ring compression tests showed clear hardening and embrittlement increase with increased hydrogen content and annealing temperature.

The authors would like to thank Ms Peters, Ms Baudin, Ms C. Goulet and Ms Wozniak

Thank you for your attention