

The impact of groundwater dynamics and soil-type for modeling coupled water exchange processes between land and atmosphere

B. Fersch, S. Wagner, T. Rummler, D. Gochis, H. Kunstmann

IAHS Assembly Gothenburg, July 24th 2013

Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany

 Regional atmospheric (dynamical) modeling studies focus typically on the prediction skill for precipitation and temperature

- Coupling to hydrological models is usually realized in one way direction or in an offline coupled bi-directional way often with bias correction for the exchange variables
- Such approaches often violate the closure of the water (and energy) balance and also the equilibrium for subsurface-surface-atmosphere hydrometeorologic applications

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

3

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

- Weather Research and Forecast Model WRF with Noah land surface model
- 1-dimensional column model with Richard's equation soil moisture physics

3

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

- Weather Research and Forecast Model WRF with Noah land surface model
- 1-dimensional column model with Richard's equation soil moisture physics
- Soil moisture controlled free drainage lower boundary

- Weather Research and Forecast Model WRF with Noah land surface model
- 1-dimensional column model with Richard's equation soil moisture physics
- Soil moisture controlled free drainage lower boundary
- No lateral transport of soil moisture and surface runoff

- Weather Research and Forecast Model WRF with Noah land surface model
- 1-dimensional column model with Richard's equation soil moisture physics
- Soil moisture controlled free drainage lower boundary
- No lateral transport of soil moisture and surface runoff
- Runoff gets lost at every timestep!

- Weather Research and Forecast Model WRF with Noah land surface model
- 1-dimensional column model with Richard's equation soil moisture physics
- Soil moisture controlled free drainage lower boundary
- No lateral transport of soil moisture and surface runoff
- Runoff gets lost at every timestep!

No interaction between shallow groundwater and vadose zone No lateral redistribution of surface and subsurface water

P

LAM

Noah-LSM Extended

http://www.ral.ucar.edu/projects/wrf_hydro/

4

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Noah-LSM Extended

- WRF-Hydro (Gochis et. al 2013) introduces lateral hydrological processes to the Noah-LSM with sub-grid (0.1 to 1km)
- Surface runoff and subsurface flow
- River channel flow
- Reservoirs and lakes
- Bucket groundwater model

4

http://www.ral.ucar.edu/projects/wrf_hydro/

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Noah-LSM Extended

WRF-Hydro (Gochis et. al 2013) Advection introduces lateral hydrological processes to the Noah-LSM with P FT sub-grid (0.1 to 1km) adose zone flow erland flow Surface runoff and subsurface flow Infiltration Groundwater bucket m River channel flow Reservoirs and lakes Bucket groundwater model

http://www.ral.ucar.edu/projects/wrf_hydro/

No interaction between shallow groundwater and vadose zone

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

groundwater <-> land surface model coupling

Coupling Methods

capillary rise

5

computational efficiency

groundwater recharge

2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Noah-LSM Free drainage boundary

(after Marth et al. 1984)

2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

groundwater <-> land-surface-model coupling

Sensitivity Study

applicability

coupling methods

soil type

observation driven

2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

GW Sensitivity Study

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

TERENO Terrestrial Environmental Observatories

11 2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

sensititvity study

RESULTS

12 2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Soil Moisture

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Surface Runoff

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Surface Runoff

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Evapotranspiration

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Evapotranspiration

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Skin Temperature

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Soil Moisture Evaluation

17 2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Soil Moisture Evaluation

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Soil Moisture Evaluation

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Conclusions

- The groundwater coupled lower soil moisture boundary condition in the extended Noah-LSM considerably affects the water budgets at the land surface for most of the tested soil types
- The deviation intensity varies with the soil type
- Strongest deviations occur during the vegetation period
- Both applied coupling methods show the same tendencies with deviations between 10 and 30%

Conclusions

- The groundwater coupled lower soil moisture boundary condition in the extended Noah-LSM considerably affects the water budgets at the land surface for most of the tested soil types
- The deviation intensity varies with the soil type
- Strongest deviations occur during the vegetation period
- Both applied coupling methods show the same tendencies with deviations between 10 and 30%

- For the Graswang site groundwater coupling leads mainly to increased aquifer recharge and to considerably decreased surface runoff and evapotranspiration
- Groundwater coupling could improve the simulation of the soil moisture dynamics for an observation-driven 1-D Noah-LSM simulation at a location with a shallow and dynamic groundwater level

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outlook

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outlook

Include horizontal groundwater transport (2-d, single layer model, unconfined aquifer)

19 2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outlook

 Advection

 Advection

 Advection

 Fully coupled, cross-compartment, distributed dynamical hydrometeorological model system

 Tool for investigating terrestrial-atmospheric moisture and energy ex

change and feedback under changing land-use and climatic conditions

Include horizontal groundwater transport (2-d, single layer model, unconfined aquifer)

19 2013/07/24 IAHS Assembly Gothenburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

!uov yueht Thank you!

Terrestrial Environmental Observatories

www.tereno.net

www.reklim.de

KIT-Campus Alpin

IMK-IFU: Atmospheric Environmental Research

www.imk-ifu.kit.edu

www.ral.ucar.edu

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association