

Kinetics of dissolution of oxide layer on cladding surface under oxygen starvation conditions at temperatures between 900°C and 1200°C

J. Stuckert, A. Pshenichnikov, U. Peters

QWS20, Karlsruhe 2014

Institute for Applied Materials, IAM-WPT, Program NUKLEAR

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Experimental procedure

Example of test progress for annealing at 1150°C: pre-oxidation to 66 μ m in O₂+Ar during transient, Annealing in Ar during 1800 s.

ZrO2 dissolution

4/19

Test matrix

T, K	ZrO ₂ δ ₀ , μm	e, 900	1800	3600	5400	7200
1170	20	X	Х	Х	Х	Х
1280	63		Х	Х	Х	Х
1373	70	Х	Х			
1373	85		Х	Х		
1420	66	X	Х	Х		Х

Peculiarities of ZrO2 between 900 and 1200°C: mixture of sub-stoichiometric tetragonal and monoclinic phases

Oxidation and annealing at 1170 K

Sample oxidised to $ZrO_2 20 \ \mu m, \ \alpha$ - $Zr(O) 28 \ \mu m$

Annealing in Ar during 3600 s: ZrO₂ 8 μ m, α -Zr(O) 47 μ m

Annealing in Ar during 7200 s: ZrO₂ 5 μ m, α -Zr(O) 60 μ m

Oxidation and annealing at 1280 K

Sample oxidised to ZrO_2 63 µm, α -Zr(O) 55 µm

Annealing in Ar during 3600 s: $ZrO_2 42 \mu m$, α -Zr(O) 130 μm

Annealing in Ar during 7200 s: ZrO₂ 21 μ m, α -Zr(O) 165 μ m

13.11.2014 Juri Stuckert

9/19

Comparison of experimental and calculation (SVECHA code) results for 1280 K

<section-header>

Sample oxidised to ZrO_2 70 µm, α -Zr(O) 79 µm

Annealing in Ar during 900 s: ZrO₂ 41 μ m, α -Zr(O) 165 μ m

Annealing in Ar during 1800 s: ZrO₂ 34 μ m, α -Zr(O) 240 μ m

13.11.2014 Juri Stuckert

11/19

Oxidation and annealing at 1373 K

13.11.2014 Juri Stuckert ZrO2 dissolution 12/19

Comparison of experimental and calculation (SVECHA code) results for 1420 K

After pre-oxidation to $ZrO_2 = 73 \mu m$: well prediction of ZrO_2 decrease, underestimation of α -Zr(O) increase

13.11.2014 Juri Stuckert

15/19

Arrhenius approximation for α-Zr(O) increase during ZrO₂ dissolution

Summary

- Reduction of the oxide layer under steam starvation conditions was experimentally investigated with the Zircaloy-4 claddings oxidized double sided at temperatures between 900 and 1200°C. The oxygen from ZrO₂ layer redistributed during annealing during growing α-Zr(O) layer and decreasing β-Zr layer.
- During dissolution of oxide layer between 900 and 1200°C the ZrO₂ transformed from stoichiometric monoclinic phase to sub-stoichiometric tetragonal phase.
- The mechanistical SVECHA code underestimates the ZrO₂ dissolution at T<1150°C (mixture of sub-stoichiometric monoclinic and tetragonal ZrO₂).
- Due to continuous conversion of oxide phases during dissolution of oxide at 1100°C would be not correct approximate the ZrO₂ dissolution by Arrhenius approach.
- The SVECHA code can well predict the decrease of ZrO_2 layer at T>1150°C (only substoichiometric tetragonal ZrO_2). However, the increase of α -Zr(O) layer is under-predicted.
- Correlations for change of layer thicknesses were established:
 - decrease of ZrO_2 (rough) $(d_0-d)/t^{1/2} = 287*exp(-8473/T) = 287*exp(-70326/RT)$
 - increase of α -Zr(O) (d-d₀)/t^{1/2} = 5*10⁶*exp(-19679/T) = 5*10⁶*exp(-163611/RT)

13.11.2014 Juri Stuckert

Thank you for your attention!

http://www.iam.kit.edu/wpt/471.php

http://www.iam.kit.edu/wbm/552.php

13.11.2014 Juri Stuckert

ZrO2 dissolution

19/19