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The influence of a non-uniform temperature distribution on the absorp.tion of neutrons i'n a
purely absorbing resonance of an isolated lump is studied. It is shown that In practical situations
the absorption in the lump depends only on its average temperature and not on whether its

temperature distribution is uniform or not.

The criticality, on one hand, and the initial time
behavior of heterogeneous reactors following a large
instantaneous reactivity addition, on the other, de-
pend to a great extent on the increase in resonance
absorption with increasing temperature. Therefore,
the temperature dependence of resonance absorption
is one of the important quantities determining both
the eriticality and safety of heterogeneous reactors.
This temperature dependence has been the subject of
much study in the past, but in all previous work the
temperature distribution was uniform in the ab-
sorber lump, quite in contrast to the state of affairs
in an actual reactor. The effects of non-uniformity
in the temperature distribution may be important,
and it is the purpose of this paper to discuss them.

We shall only consider the case of absorption in an
isolated lump (i.e., no Dancoff effect) by a purely ab-
sorbing resonance (i.e., I'y & I'). I'urthermore, we
shall ignore potential scattering altogether. Thus we
shall not consider either monoenergetic scattering or
scattering with moderation in the absorber lump.
Under these conditions the effective resonance
integral of the absorber is given by the equation

cos & ¢

NVIg = f du f ds f do
res 8 nw>0 ™
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the atomic density of absorber atoms
in the lump

the lump volume

the effective resonance integral

the flux in the moderator, taken as uni-
form in space and lethargy

the lethargy

the differential element of the lump
surface, S

the position of a point on the lump
surface

the inward normal to S at ry

a unit vector at rg

the angle between « and n

the peak resonance cross section in the
absence of Doppler broadening

the length of the chord at rg in di-
rection o

the Doppler broadened line shape given
below in (2)

the ratio of the natural width of the
resonance, I', to the Doppler width,
(HE,T /A

the resonance energy

the temperature of the absorber nuclei
in energy units

= the mass number of the absorber nuclei

the energy measured from exact




9135

40

resonance in units of the half-width,
e, r =2 —E) T
s = the distance along the chord I(rs , ©)
and where (8, v) is given by
+oc _ _ 2
b / exp |- LQIJ‘)Y -y dy (2)
24/ L+

By using the inequality (/)

ff( e’ dr = exp <——ff(r)z' (1u) (3)

where f(r) is any normalized probability frequency
function, we can rewrite (1) as

S . 1S
NVig = Td) fm du (l — (\xp{—) oof\(:\,f

I(rsm\ (0\ })
. { — = Ylo(s0),
/1;'(;)>0 o j()\ \0[ (‘5(” lJ

Ax we shall see later, the difference between the RIS
of (1) and the RHS of (4) is actually rather small.
Hence, in what follows we shall drop the < —sign.
The exponent in (4) can be rewritten by mterchang-
ing the order of the S and o integrations:

g Hrs o)
a8 f do f ds ‘3 Z latse), o]
w>0 0

S
1 I Hraw) (5)
= [ do / s fo ds )

con ¥ U(n-o) ¢Y(sw), ]

where U(y) = 0if y < Oand U(y) = 1if y > 0. The
last two integrals over N and s give exactly the
volume integral of ¢ over V. Thux finally we have

1 Hrsuw)
ﬁf(l(,)fd.’\'[ ds cox 9 (n-w)
’ﬂ'A\, N 0 ((S)

Hlolse), r] = W8, r)

where the bar over ¢ denotes a spatial average over
I"and { = 4178, Substituting (6) into (4) now gives

Yo, ) =

(4)

= (A\'Z)_ljl dull — exp [=Noo Ip(6, )1t (7o)

_ ("\'2)*‘11, de'1 — expl=Noolp@ 0l (Th)

“0Jo

In the last step we have used the relation
—du = dx(I'2K).

The difference between the RHS of (1) and the
RHS of (1) due to the use of inequality (3) can be
caleulated in the case of no Doppler effect at all, 1.e.,

(1 + 2577, by the method of Gurevich and
Pomeranchouk (2). These authors find that the ratio
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of the two RHSs is 1'2/1'2 where the by ars denote
averages with respeet to the chord-length distribu-
tion

dS Ccos ¢

10 =[5 [ e o =t )
and where [ still also equals 4V/S. The factor
721 is respectively cqual to 0.980, 0. 975, and
0.943 for spheres, eylinders, and slabs. Thus only a
small error i introduced into (4) when it is {uken
with the equality sign.

That this last coneclusion does not depend very
strongly on the preeise shape of the line can be seen
by repeating the above caleulation for a line with the
shape (1 + 297 n > 1. In this case, the ratio of the
RHS of (1) to that of (4) is given by /I For
spheres and slabs this ratio has a shallow mininmm‘
near n = 2, rising to unity for n = land n = =,
The values at the minimum are essentinlly those
given in the previous paragraph. Thus we expeet
that for spheres and eyvlinders especially, the error
arising from the use of (3) in (1) is neither very
great nor varies rapidly with the shape of the line.

According to (2)

P 0
b, x J(o) de - -

vois = [roa- 7

f““ expl—(6°/4) (x — 1/)]

e 1 + I/.“ ! (9)
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where f(6") d6” is that fraction of the lump volume in
which 8 lies between 6" and 8 + d6’. Now f(6) 8§ =
2¢(6%), where the latter function, g, ix then a possible
normalized distribution of §. In this case, it follows
from (9) and (3) that

<

5 oo ('xp[— ﬁij (.1'—,//)2:’ (10)
senz, [Tk e
T2V L+

Here the braces denote an average with respect to g.
However,
) s al s 6'1(0) do _ 6°
) = fﬁ' g(e) do” = l(ﬁ.lﬁ == (1)
) 6 9
where the bars, as usual, denote space averages.
From (10) and (11) it follows that
(0, 1) = ¢ yled, x)
& = §/7

(12a)
(12b)
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I'rom (12) and (7) it then follows that

6 — cl) (13)

where Jymr is the resonance integral of a lump of th_v
same material and shape, with a size given by ¢,
and at a wngform temperature ¢d. The ~ sign occurs
rather than an equality sign to indicate that (13)
holds as an inequality only within the (small) error
arising from dropping the < sign in (4).

f-Distributions are conceivable in which ¢ does not
di.ff('r very much from unity, although 6 varies over a
reasonably wide range of values. (We shall see an
example of such a distribution shortly.) If ¢ — 1 is
small, however, the right- and left-hand sides of
(12a) cannot be very different. For, indeed, their

'int(‘g;mt(‘d difference is given by

[ z/ C——ljunlf (7 — (74177

c—1
C

r=0 (14)

f [¢(6,2) — ¢ ylch, o)) de =

and since the integrand i~ positive evervwhere, it is
clear that if ¢ — 1 << 1, y(6, x) and ¢¥(ch, ©) cannot
be very different at all. In such a case we would
expect that a valid approximation to (13) would be

the equality

I = oni (L= 1,0 —cB) ~ Lame (6)  (15)

where o (@) i the resonance integral of the actual
lump being considered at a uniform temperature 6.

In order to pursue this study further and, in par-
ticular, test the acceuracy of (15), some reasonable
S-distribution must be assumed. Let us therefore
imagine that in a cylindrical fuel rod in a power
reactor the fission heat source is effectively spatially
uniform. In this case the temperature distribution in

.tho rod will be parabolic, i.c.,

TG) =Ty + (T — Ty(r R (16)

where r ix the radial coordinate in the rod, R ix the
radius, and T, Ty, and T, are, respectively, the
temperatures at any point, at the center, and at the
boundary. If 7'y ix not very different from T, the
corresponding distribution of 8 ix also parabolie, Le.,

0(r) = 6y + (6, — 8,)(r RY: an

I'rom (17) it follows that
J(8) = (6, — 0,7 0y =0 <0, (181)
g(0%) = (6, — 647" 2 < 02 <62 (18b)

i.e., fand ¢ are both uniform distributions. We will
assume henceforth for the sake of argument that the
i distributions (18) hold exactly; fortunately, our final
t conelusions do not depend eritically on the details of

these f- and g-distributions. With respect to general
form (18) is, of course, representative.

From (18a) it follows that

_ (@)1/2 _ [2(0[2 + 1):]1/2. _ 6,
By NCES I )

For 9, which corresponds to a ratio
To/Ty = 2, ¢ differs from unity by less than 1.5 ;
for « = v/3/2, ¢ = 1.005. Hence, under the antici-
pated cireumstance that in practical cases a is not
too large, we expect (15) to be valid.

We can test this conclusion for the interesting case
of extreme Doppler broadening (i.e., 8 << 1) for which
Wigner ef al. (3) have suggested the use of the
approximate line shape

07
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(19)

a =

(6, x) = exp [—(6°/4) o7 (20)

Jquation (20) is particularly appropriate for those
resonances which contribute strongly to the tem-
perature cocflicient of the resonance integral. I'rom
(20) and (18) it follows that

———  exp[— (6,5 4)2%] — exp[—(6,°4) Y
Y8, ) =7 T =

Inserting (21) into (7b) and rearranging one obtains

Il ” [ 2
2k \ (22)
1—expl=ta —1 W}) 2
(@—=12 ]/

where 8 = Nool(~n/7 2)8 and « = (6, 6,). When
a= 1,1 = I, (®.

Typical values for the parameters are N = (.05
barns—t em~! for metallic U, [ = 2 em, 8 = 0.05,
oo = 5000 barns. TFor these values 8 = 22. Numerical
integration of (22) for the four cases, « = 1, /2:
g = 10, 30 gives the following results: For g = 10,
I and T (B, i, I = 2) and /(e = 1), are
within about 1.5¢¢ of one another, the former being
larger. For g8 = 30, the corresponding difference is
about 2.5, Thus for these conditions our expecta-
tion that (15) would be accurate is verified.

Based on the foregoing analysis we are inclined to
consider the approximation I = I (8) as a fairly
accurate one'. l'or practical purposes it ix virtually

(21)

' This approximation is originally due to G. M. Roe,
“Resonance Absorption of Neutrons in Doppler Broadened
Resonances,”” KAPL-1241 (October, 1954) Roe assumed that
for slabs, I was given by [y, (8, where 8, was determined
by the requirement that the integrals _ff,cx/,(oi,r\l dr and
jff¢2(0,,x) dr be the same. This condition gave 8, approxi-
mately equal 1o 8 — (3/211(82 — 8%)/(1 + 3 8)]. The form
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identical with the oft-repeated prescription that the
actual resonance integral is equal to that of the same
lump uniformly held at the average temperature,
since the effective temperature determined from 8 is
usually not very different from the average tem-
perature. The virtue of the present note is that it
indicates that this prescription is, in fact, quite ac-
curate, at least in the special case treated.

of the second term depends on how 8, is determined and is to
some extent arbitrary. Thus the real meaning of Roe’s
result is that if the second term is not too large, 8. = 4 to
a good order of approximation.
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