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Introduction

The investigation of neutron spectra in nuclear reactors and assemblies 1s of
considerable interest. The real precise prediction of the neutron balance in
a thermal reactor depends on the knowledge of the neutron spectra particularly
at lower energies. Strongly dependent is especially the long time behaviour of

238 239

fission resonance at 0.3 €eV.

with its important

a thermal reactor where U is largely converted into Pu

The spectra are mostly used to produce properly averaged cross section data for
a more simple multigroup calculation. But the interaction of slow neutrons with
the scattering atoms of, say, hydrogen is also of interest for prure physical
reasons. Therefore the theory of neutron thermalization is a link between reactor

theory and pure physics.

There are two main influences on neutron spectra. The first is the mechanism of
the single process, where a neutron is scattered by a moderating atom. The
second is the superposed net diffusion process which transports the slow neutrons
to the absorbing materials like fuel rods etc. The second procsss, of course,

is of interest only, if the reactor is a heterogeneous one. But this is true for
almost all existing reactors. The investigation of the first influence suzzzsts
the picture of an infinite homogeneous assembly where no net diffusion process
takes place and the interest is focussed on the single scattering process. Thns
investigation of the influence of the heterogeneity suggests a picture vhere che
single scattering process is as simple as possible but typical and the hereroce-
neity is idealized into the cffunction type sink and source model, wnicn allous

for a simple mathematical description.

The investigation of the influence of the single scattering process on neutron
spectra has found a widespread interest during the last years because of the
more physical background. The Karlsruhe group, however, has also emphesized the
study of the influence of heterogeneity on neutron spectra. This parer sume-

rizes the work on this second aspect.
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2. The heterogeneous reactor model

H. Hurwitz jr., M.S. Nelkin and G.J. Habetler derive in their early paper[:i]
the equations for space dependent neutron spectra. They start from the Boltz-
mann equation, use the spherical harmonics method and arrive finally at an

equation of the diffusion type.

The equation is the following one:

(1) (z, - DA) §(3,E) = L(4(F,E))
(2) L(¢(%,E)) =JdE’ £ (B'—E) (7,8’ - 54(E) - FoE) = - g%
(3) I4(E) =JEO(E-+E’) iog
1
(4) D= 5—-%

Ea is the absorption cross section, in principle space and energy dependent
q is the slowing down density defined by (2)

4 is the Laplace Operator

E?is the spatial vector

E is the energy of the neutron

ZO(E’—sE) is the energy transport cross secticn which gives in case of a
scattering process the neutron from E’ to E.

The other quantities are defined in the equations (2) - (4).

We deal now with (1) and explain the Meetz model of heterogeneity [2:]. In the
—_—
simplest case we have a one dimensional mecdel, r is to be replaced by the simple

coordinate x. We consider a finilte reactor configuration of thickness 21 with

(5) N =2N+1

that is, with an odd number of fuel elements of thickness 2a and spacing d
(fig. 1).



We further require that there shall be moderator to such an extent that the

reactor consists of NO Wigner Seitz cells only, that is

(6) 21 = Nod

If we describe the fuel plates by d functions, this model leads to the

following equation:

2
(7) Da—g+L(¢)+f =0
Jx -
where
+N
(8) f =-2a1(6)¢ d (x-kd) @(x4,£)
k=-N

We use here and in the following the normalized energy

9) £ =15

where k is the Boltzmann constant and T the temperature of the moderator.

Ea(E) is now an effective cross section adapted to the absorption strength in
the real, finite plates. In the case of no self shielding Za(E) is simply the
absorption cross section of the fuel: In case of such a self shielding the value
and energy dependence of za(e) must be taken from a transport calculation inside

the fuel. In the simple but artificial case of the validity of a diffusion

equation
f%-ngz:o
dx
we have
z,(8) = (za)fuel ) §2§§-§_2



The boundary conditions which determine together with (7) the problem are the

following:

(10) #(+ 1,€) =0
(11) q(x,O) =0
4N Ef ~
(12) q(x,Ef) = v.2a -+ T d(x-ka) S ¢(kd,'5) zf(ﬁ) d&
k=-N
o]

In (12) we assume that all fission neutrons appear at a discrete energy £f.

Ef is the fission cross section, WV the number of neutrons per fission.

Wa now introduce two abbreviations:

(13) E%s? = x02
2a Za(EJ
(14) a gzs = P(B)

zis the logarithmic energy decrement for scattering down processes at high
energy that is: a constant value.

We now make the following ansatz:

(15) 6-VT T 90 v ()
p=0

v, are the orthonormalized eigenfunctions of the 4 operator and the boundary
conditions (9):

(16) v

1
= C0S a4 _X
v °%% %

(17) a

i
57 (@p + 1)



Inserting this into (7) leads to the following equation

L
5 o (fo) -
(18) LT —.S,--—zs - p&) IZ) $,(E) & [vp,vq_} =0

d [vp,vq] is Meetz’s matrix for heterogeneous plate type assemblies

+N
(19) a [vp,vq]= k::_N a -+ v (kd) vq(kd)

This matrix has a "one" in the diagonal terms:

l14+p+qg= Non n 1,2,3

i

(20)

0,+1,+2,43

It

p—q=Nom m

All other terms are zero. (20) implies the fact, that the system (18) splits into

N+1 different sets of equations, where only the quantities

WN m+s ?N'm-s-l
o) o)

appear.
We obey the fact that

2 .2
W m-s-1 = “N m+s
o) o]
and rearrange the indices:

(21) kaom_S-l-———~4>lP- (Nom+s)

(21) implieshthat now m goes from -® to +® and covers then all index constellations

in question.



Therefore we have

+®

2 2 1 =
(22) - % OLNor'+s tfJNON-S + -ﬁ L(\FNON-S) - p(€) m.—.z-co LFNOUH'S =0

T = «0 ¢00¢t@

s =0,1,2....N

The boundary condition (12) obeys the same symmetry. The exitation strength of
the q mode shall be Cq. We have

+1
Cq= q(x,EF) vy dx = E—g—%—zgd [vp vq]zp
“1
(23) e
F
X, = j RGERGEY
[o]

We have the same matrix d [vp,vq] and the same conclusions, therefore it obeys

the same frequency selection
(24) q = Nom-s

That means

(25) ¢ T 2y 7 X

N ms for all values of r
n=- o)

By means of this boundary condition our problem becomes an eigenvalue problem
with P as eigenvalue. Therefore only one of the N+1 sebs of eguations can have
a non trivial solution. From (16) one concludes that the term cos @ X must be
among the components. Therefore only the set s = O is here of interest because

the reactor is regular and undisturbed (see [2] ).

The frequency selection (24) has an immediate consequence for our ansatz (15).



It happens that

cos aNom kd = cos ao kd

d d m
cos aNom (kd + 2) = cos ao(kd + 2) - (-1)

Applying this result to (15) it follows that at the fuel plates (x=kd) and in
the middle of the moderator volume (x=kd + %) the spectra are the same for all
the different Wigner Seitz cells. This is the analog to the fact that in the
homogeneous case the problem is separable that means, the spectrum there is
space independent. L. Dresner [} J has shown that this result 1s generally true,

the only assumptions to be made are the following:

The fuel arrangement in the reactor must be periodical and the outer boundary
must be such that the image method can be applied. This immediately shows that
this method fails in the case of a cylindrical core boundary, it can be true

there only approximately.



3.

A principal classification of neutron spectra

The classification in question is a principal one. But it can be demonstratea
in the easiest way, if the heavy gas model is choosen for the scattering of the

neutron by the moderator. There we have [ 1 ]

2 : 2
(26)  L(®) = Erg(6 2L+ gg%ﬂu g +0 |G
213

if £y

H

|

o )
(27)  a(@)= - gz get (E- 1)) +0 G ))

m is the neutron mass and M the mass of the moderator atom. In order to be

consistent we must put:

=g

E; =2

o
ES = ZS = constant

(26) inserted into (7) gives an elliptical differential equation. This is true
in principle for all energies. One can recognize the character of the possible
solutions of (7) if one asks for the solutions of L(@) = O (for example in the

sense of a perturbation ansatz).

We have two solutions. First:
(28) B=9 =¢-e

(28) is a Maxwell distribution and refers in it’s character entirely to the
elliptic character of the equation (7), (26). The general implication is that
we have a spectrum which refers to an equilibrium or near equilibrium state.

Spectra of this type obey the following rule:

(29) q(8)~10(é'6) for large values of £



Spectra of this type shall be called type A spectra.
Besides of (28) there is another solution for which we can give the asymptotic

expansion

=

1

(30) g =2, =él- + o(e’é N =1,2,3...

N ™

-~
1
n!($)
n=1 2

For values sufficiently large ¢2 approximates the solution of the equation
(31) £(@) - ET (€L +9) = 0
SYTIE

But the equation (7), (31) is of a completely different character. It is of
parabolic nature and describes slowing down processes (Ausgleichsprobleme).

Spectra of this type shall be called type B spectra.

The reactor spectra are of the mixed type in the region of interest and this is
the reason why the mathematical treatment is so difficult:

Mathematical tools are developed for either the type B or the type A solution,
in the first for example the Laplace transformation, in the second for example
the expansion into eigenfunctions of L(f) = O with q(€) = O for large values

of £, because these eigenfunctions belong to the type A.

Reactor spectra for low energies are close to type A, for high energjés'éibse to
type B and the change takes place gradually and has no turning point which is
physically meaningful.

- 10 -
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Slowing down spectra in a plate type reactor (type B)

In the following we will concentrate on the heavy gas model which leads to (26)
and (27) although the procedure presented here is not restricted to that model.

This chapter refers to a first paper of the author EU:J . The details can be

seen there.

It is assumed there that only the slowing down case is of interest, where L given
by (26) can be replaced by L (31). In that case our problem is as follows:

+@m®
(32) -xoaaNf,l(’Nr+€%%+¢—p(6) P
o} o

Mm=-C0

LFNm=c>
o

and according to (25)

+®

LfNor'(EF)=vT s Z'Nm

d 'SES m=-m 0

but this means

(33) PN r( €F) = 8 = constant ¢ £(r)
o

In addition we assume a simple absorption law

&1))] p(t) = p, - . -

&/eq

In order to obtain the solution we make the following ansatz, where B8 is a constant
still to be determined.

v
(o] fNor-
(35) Py p(E) = T -
e} v=0 1-B4=
£ 2
(35) leads to the equation
) 2 v v +@® v-1
(36) (aero-B+§ fNr=.po z Nm
o o m=-w o

- 11 -
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From here we conclude, that 8 has to be one of the values aNgr x02 in order to let
o o) o
fN r ¥ 0. For very high energies that is for the fission energy ‘C’F the term fN r

in°(35) alone survives and represents the mode for which (33) is to be applied®
So the absorption p(£) at lower energies intermingles the modes, a pure mode at
€= £F splits into all other modes. The second conclusion is that in (36) ths

term on the right is independent of r. But this means that the way in which fN r
depends on r is given in (36). Using the abbreviation ©

v +0 Vv
M=~ o
we obtain
v-1
v -po F
(38) fN r v

-T2 2
° A p %o B3
o
v
Summation over r g%ves the final formula for obtaining the F and from this by
means of (38) the fNor'
M 1
(39) F = "'po . E 2 2 v *
r aN P xo -B+-2-
o]

The Fourier series (15) becomes a real result only in the case where all the
summation can be performed. Using (35) in (15) leads to the more general series
(40), which can be summed up by means of the residue calculus [2 ]:

b %% Sy g ¥
(ko) z

M=~ (X.Nom XO + s

= h(s) -+ F(x,s)

sinh -;3—- fg‘
(40a) h(s) = —= — =
2xO[E‘ (cosh ;; V5 - cos 1-\1—0-)

. x’ k+l — . x’-d k —
31nhx {g‘ cosN h - sinh p” \[5‘ cos 1

N
(40b) P(x,s) = 0 2 3 2 0
sinh =— {&'
X
e}
X = x’+kd
k = 0,+1,+2,...,4N
O<«x’2d

- 12 -
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From here on the calculation is straight forward and leads to the following result:

2 2
SO 400 £ c‘Nom xo
o) =g = (&) A,

=-C0

e} Vo 5V (m) 5
(41) Am = I (-1) (Z—) P, Bv . F(x,—aN X+ 3
V= I
(m) & 5
2 g
B, ” h(—aNom x5+ 2)
Cc=1

(41) is convergent for all values of E<£F and is the solution of our slowing
down problem, It has two significant features:
For sufficiently large values of £ only the first term of the series Am is %o
be tzken into account and 2 simple series remains which describes the smoothing
out process of the d functions acting as sources at € = 5F. The smoothing oufé_
process is of the © function type. On the other hand:
for sufficiently small values of £ only the term Ao is significant in the main
series. We have agalin a simple series which describes the flux peaks between
+he fuel elements in its energy and space dependence. There is a region in
between where only one term in both series is significant:

S

(&2) B g 55 * ¢0S & X
1 -« b'd
£ o]

o

The smoothing out process of the source d function produced the ground mode cos aox
and the absorption of the fuel plates is not yet significant. For reasonable ab-
sorption strengths of trl_:.te Tuel plates this pure ground mode takes over somewhere

in the neighborhood of Ea 100, that means £ =~ 20 keV if heavy water is used.

&

The main coneclusion we draw from this is the following:

It is possible (at least for heavy water and graphite) to separate the smoothing
out process of the heterogeneous fissicn neutron distribution from the formation
oi flux peaks in the moderator at low energiles.

Details of this calculation can be seen in paper [4 J.

- 13 -
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Equilibrium spectra in a plate type reactor (type A)

As indicated in chapter 4 we will use the heavy gas model.

The physical conditions for spectra of the equilibrium type are given in experi-
ments which use pulsed neutrons. Sometime after the shot which injects the
neutrons into a non multiplying assembly there are no more fast neutrons to be
slowed down and the existing neutrons, although decaying in time, have a sort
of equilibrium with the moderator. This type of experiment is investigated in a
second paper of the author together with L. Dresner [5].

In the analysis of the pulsed neutron experiments we have to add a term in (7)
which cares for the time dependence.

We have:

2
(43) D9-§+L(¢)-2M°D.¢+f
3x a

v is the neutron velocity and ZZOD allows for an absorption in the moderator.
Please note that we have not yet taken into account an absorption in the moderator
up to now.

We make the following ansatz:

(1) p=e™ VT T G0 v )

p=0

with the same notation as in (15). Some time after the pulse the frequency
selection (24) must hold and we obtain the following equations for the q%(&)

with p = N_r
(45)
2
2 2 ? ?Nor a?Nor '-12. +oo
- % GLNor‘f’Nr"6 5 tegE ey, vE T @y py Ty ) =0
(o] 86 e} o] == CO (o)
K-ZMOD v
(16) « =1
st.(gz 2

- 14 -



- 14 -

2a Ea(8= 1) 1
(462) Py = qET " Ve

Additionally we have:

g(x1) = O
(47) a(x,0) = ©
a(x,€) = © for large values of £ .

We now make use of the fact that we look for spectra of the type A. We expand the

LPN r(6) into eigenfunctions of the heavy gas operator L, These eigen-

1
5%

func%ions are as follows:

(48) 5 Mw) = -0

£

q(qu)=O for £ =0 and £=

W
P bp

For the case of the heavy gas model we have

(19) W, =£e~£’Lé1)(£)

(50) G_=p ; p=0,1,2,3...

Lr()l)(E) are the Laguerre polynomials of order one, which we use in the normalized

form

(l) _ p i p! B
(51) L () = Yot pio (-1) T (ot €

The operator is not self adjoint. The adjoints of (49) are:

+ (

(52) w* =g

- 15 -
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We now consider the following expansion:

e

(53) LfNor = pio ar,p‘”b(éa

Inserting (53) into (45) leads to a cumbersome but straight forward calculation,

where the matrix elements qu are to be considered.

(54)

. P [(o-1+3) [(a-1+ 3) - [(1+ D)

5
T Y (o+1)(a+1) ' 1=o0 (p-1)t(a-1)11t

o 1

2 +

v, - j W (O € 2 0 ak-
(0]

It should be emphasized that the formalism ocutlined in [5:} does not use in
principle a special model for the thermalization. However, if the heavy gas model

is used all expressions can be given explicitly as in (5%4).

The problem (45) - (47) is a homogeneous one and constitutes an eigenvalue problem
for a. Because of the two dimensions in question (x,£) a has a two dimensional set
of possible values, one degree of freedom refers totthe space dependence the other
to the energy dependence. Note that only in case of type A specira the eigen-
value of the problem is double indexed. For typve B spectra the condition (12)
establishes a source which makes the problem not homogeneous in the £ direction,

we have only a one dimensional set for the a’s there.

The calculation following the insertion of (53) in (43) is cumbersome although
straight forward. Under certain conditions it is enough to consider in (53) only
two terms p=0 and p=1. If, for example, the structure of the diffusion cooling
effect in heterogeneous non multiplying assemblies is the point of interest, it
is enough to have these two terms, because they can indicate a spectrum cooling
or heating. The resultpf this investigation of the diffusion cooling effect is
given in(:Sl]. But the several expansions are not driven to the latest stage

there. If one does so, the result is as simple as follows:

- 16 -
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D
(55) = (B0 V)
aogD;—aouDe 3"2 ‘5
S
2 2
2a 2a 1 1 d 1 d
+_d-2av—[—<'i_(zav):, Z—(Bk(x)+12 2+
v o]
S o]
2D," (2a L
0 { (x, fs-) - (F L) ; p+Y23
We used the following abbreviations:
b 4
=2 sinn 2 .
d o] d
(56) k(=) = cl=—5+ .iusnn
*o 2x02 12 x02
5 (cosh =— - 1)
d o

v is the Maxwellian average velocity of a neutron gas at temperature T;

-

(57) 7 = (%

It is also assumed, that not only a02 x02 but also ao2 d2<<fl.

From the investigation of the diffusion coolingeffect in homogeneous assemblies,
which 1s presented in,ESJ, one can argue that at least in the term a04 %'has to
be replaced by % if not only the first two terms in (53) but all of them are
taken into account.

The discussion of (55) is interesting:

There are three first order terms. The first is the contribution to the decay
constant coming from the homogeneous absorption of the moderator, the second is
the leakage term ao2 Dv sz the third comes from the homogenized heterogeneous
absorption in the plates T Zav. In the second order to which the formalism is
given here there are two diffusion cooling effects. The first is the well known

- 17 -
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leakage effect a04 D2 due the diffusion of the neutrons, the second refers to the

diffusion process into the lumped absorbers. This second diffusion cooling effect
disappears if §;~ﬁ>0 because this implies that for a neutron the assembly is no

o)
longer heterogeneous.

It should be mentioned that the energy dependent Milne problem was investigated
for type A spectra by E. Kiefhaber [6 ] in his master’s thesis. Instead of the
heavy gas operator the Nelkin kernel was used in (2) and (43). The mathematical
procedure was again the expansion into eigenfunctions of the operator L as in
(53). But the eigenfunctions are here no longer simply the Laguerre functions.
It is necessary to express the eigenfunctions in itself as an expansicn into
Laguerre functions. The experimental group of K.-H. Beckurts ([12], [13], (147,
[15] ) did a lot of measurements using pulsed neutrons in light water and it was

very useful and successful to have this comparison.

- 18 -
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Reactor spectra in the thermal range, type A and type B

As pointed out in chapter 3.the neutron spectrum is an actual thermal reactor is
not purely a type A or type B spectrum and this establishes the mathematical
difficulty. In the case of a plate type reactor a solution of the spectrum
problem was given by the author of this paper'f7]. But it was necessary to
restrict the application of the method outlined there to small absorption
strengths of the plates, because it was not possible to perform the summation of
all Fourier series. However, it was possible to give the asymptotic expansion of
the problem in question, which goes paralkl to the procedure given in chapter L
of this paper and there it was possible to perform all the Fourier summations.
It is an asymptotic solution only because of the essential singularity at oo of
the heavy gas operator (26). From here on the way to handle the problem was rather
obvious:

Suppose that E'is a function with the following features

g(€)

g,.(€) £E=2€&,

]

B(€) = P(E) £<E,

¢as(€D is the asymptotic expansion valid for large values of £ and P(E) is an
arbitray but smooth function which fulfills the boundary condition at € = 0 and
fits smoothly into ¢as at £ = Eo. Then the function

By pe(€) = B(E) - B(E)

where @(€£) is the solution of the problem, is clearly a function which represents
a spectrum of type A. But this means that we can apply for ﬁDiff(E) an expansion
into eigenfunctions of the operator L as given in (53). As long as there is no
absorption in the moderator, strong enocugh to influence the neutron spectra there,
all Fourier summations can be performed. And this is true even for the two
dimensional case. H. Kunze used this procedure in his master’s thesis [8].

The method shall be described here a little bit in more detail. We look into

the most simple case of a homogeneous infinite medium. Here we have:

- 19 -
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1

veLig.p €2g-0

(58) @

ol 13

In the homogeneous case we have to put 2a=d, (14) therefore tends to the following:

Za(£ =1)
(59) Py = -——%-—Z'g—-

We have the following boundary conditions:

(60) q(0) 0

a(&)

i

constant at high energies

In the first step we look into the asymptotic expansion

N g
(61) o) - = v
V=0 1+~
£ 2
Inserting (61) into (58) we obtain
2 v v
(62) Brp = van | (1+3) (243) &, - by gv+1)
that is
=-2p. 8 ; & =2(+p)g ;
& t Bo 2 vt/ B v

Besides of (61) there is a second asymptotic expansion:

=
[

(63) #2(e) —ge ©

[ e

V=0

£

g

1
¢a§.s) and ¢§§) are the asymptotic expansion of Qf(l) and 525(2), functions which
have logarithmic singularities at £ = 0. We look into the linear combination

- 20 -
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which cancels the logarithmic terms at € = O

(64) se) = 810 + » 83 (e)

Because of the contribution ¢(1> (£) @ does not belong to the Hilbert space of
the eigenfunctions of L, (49).

It is possible to expand the wanted, regular function @(£) at £ = O into a
1

power series of 62.

(65) 525=Zavf,2

We now congider an auxiliary function E(é) of the following properties:

Be) -pe)  ror  g2e

o}

(66)

. 3 5
=af+ b62+c£2+d£2 for E_¢_£O

wl

—~
™

~
|

N
The notation @ indiCﬁtes that the asymptotic expansion (61) shall be taken up

to v=N. The form of § for § _N€ is suggested by (65). a, b, ¢ and 4 are deter-
mined by the conditions that 525 and its first three derivatives at & E, shall
be continuous.

We now define a quantity

2 = N : x
(67) s = -{¢ L&) +£“¢‘f')+¢(e>-pt-£25(e> SE<E
a& °
For values & Zgo S has the order O ( s ).
£ 2

- 21 -
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As an approximation to this we define, that

(68) S =0 £ £

0

We put now:

N
Then we obtain
2 1
a- g ag.. -
(70) E—23+¢ dDéff * Ppipe - Py & ° Bpiee = S(E)

age?

The function ¢D‘ now lies in the Hilbert space of the eigenfunctions of the

iff
operator L. We therefore put

0
(71) Prier = pio A

W, is given in (49). Using (71) in (70) wc obtain

@
(72) -p - &Py q§ 7 a =C

[0 o]
(73) C, = j' W, s(€) af
(o]

This equation set determines the ap and we find in the order po the result:

Po

N
(74) g(e) = BE€) + T a_w(£)
po PP

This method has been applied to the example p, = 0.25.
We have chosenwﬁb =16, N = 10 and P, = 5.
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Fig. 2 shows the result of this calculation here. There is complete agreement
with the solution of Hurwitz, Nelkin and Habetler [ 1]. The figure showsg @(€) in

10 _N
its dependence onb&?. Furthermore £ @(£) has been drawn, too. @(€) represents

qualitativly the neutrons which are slowed down, where as I ap(»% represents

qualitativly the neutrons being in a sort of equilibrium with the moderator.

The significance of this method outlined here is, that it allows to handle the
problem of two dimensional heterogeneous spectra. For this case we use the
following model:

A reactor ofirectangular shape is considered, for reasons of simplicity it shall
be quadratic, that means, the reactor has now No2 rods of diameter 2a and con-
sists of an integer number of Wigner Seitz cells. The absorption in the moderator
is again neglected.

In the chapter 4 we saw that it is possible in most of the cases to separate the
smooth out process of the fission neutrons into the ground mode from the formation
of the flux peaks between the fuel rods at lower energies. We therefore concen-
trate our attentinn on the thermal and epithermal part of the spectrum and do not
care for the slowing down part at higher energies. This is possible because we
ask for the shape of the spectra only and we do not ask for a proper criticality
conditinn.

Therefore we have the following problem:

(75)

1

2 32¢ 82¢ 1 5 W .
L B ) E 2 J = d - * s =

x, (axg + eye) * T ) - p, AL (x-kd) d (y-1d) - #"(kd,1d€) = O

There we have redefined pt in the following way:

£ (E=1).Ta°
(76) p‘t = a 2
Tiga

Za is again an effective cross section as described in chapter 2.

- 23 -
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Additionally we have

(77) ¢(il:y:£) =0 ¢(X,il,é) =0
(78) a(x,y,0) =0
(79) a(x,y,E) = const * cos @ X - cos a_y for large values of£

In (75) ¢R(kd, 1d, ) is not the flux at x=kd, y=kd which would be the analog to
the one dimensional case. This analog does not work because there is a logarithmic
singularity of the flux at x=kd, y=kd. Therefore ¢R is the flux average over the

surface of the rod approximated by the following expression:

(80)

¢R(kd,ld,£) _ @(kd,1d+a,E) + ¢jkd,ld,-a,&i + @(kd+ a,1d4,£) + @(kd-a,1d,E)

We now make again a IFourier ansatz. For the same symmetry reasons as in chapter 2

we have a frequency selection. Making use of it we have

o 400
(81) #(x,y,£) = T LWy yp@ rcosa o x-cosap Y
o’ “o o] o

m=<00 I'=~00

Inserting (81) in (75) and using (80) we obtain the following:

(82)
2
d gNOr, Nos dyhor, Nos 5 - 5
£ s+t E——gg (- oy o ) x D€y oy s -
a¢ o) o o o}
_-é- +00 RO Ro
Py v € E fym w008 (g X) -cos Ty ¥) =0
m, t=-c0 o) o) o o

The index Ro of the cos in the sum means that the average is to be taken at the

- 2l
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central fuel element [ 27]. The reduction of taking the average at the central
fuel element only is a consequence of the special symmetry of the reactor con-
sidered here.

We now apply the same calculus to (82) as in the homogeneous case and obtain
the result in the following form:

(83)

+oo | N po

¢(x,y,8) = p> ?N r, N 5(6)+
o] (o]

. u%(&) cos &g X + cos @y _ ¥
r, S==- o 0

z
p=0 aNor, Nos, D

I? = Yas ’ f':’Eo

@ = <C <
¢ = Polyn., O £o

All the coefficients of the above Fourier series can be written as linear combi-

nations of terms of the form

(84) 1
Y+ oy ry) X
[e] (o]

Thus evaluating (83) in order to obtain the final result a Fourier series of the

type

+ 0o 08 aNor X - cos aNos y

(85) z R 5

r,S=-® Y + (aN % s) X,
) o

has to be evaluated.

But more than that: to establish the asymptotic solution analogous to (61) and

(35) and the equation system for the & p analogous to (72) made it
o 3

N s, p
)

already necessary to evaluate series of the type (85). This was done by

K. Meetz [2]. One summation can be carried out by means of the calculus of

- 25 -
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residues, see (U40). The remaining single series converges rather rapidly inside
the moderator, but its convergence is very poor at the boundary of the fuel rods,
because of the logarithmic singularities of the flux in the lattice points of

the reactor. But using a known Fourier series with the same logarithmic singulari-
ties and looking for the difference between (85) and these known series one can
improve the convergence considerably and therefore it is possible to evaluate

(85). For details see either [2] or [8_1.

The method explained here has been applied to twelve types of reactors in the
limit No=03. Besides the neutron spectra themselves the values of the n factor
and the thermal utilization have been calculated. In determining the latter
quantity a % -absorption law in the moderator has been assumed. The mean values
of the absorption and fission cross sections of the fuel elements were taken in
the energy interval O < £ <16; in the moderator the spatial average of the absorp-
tion cross section has been calculated, too, by means of the spectrum determined

neglecting the neutron absorption in the moderator.

The parameter of the twelve reactors considered here are given in table 1.

- 26 -
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Table 1
Reactor Moderator d (em] |2 [em])| p Yo f[g/ cmjj P, x/d plﬁ
I D0 ( %) | 10 1.6 ]0.7115 18.4 | 0.1046 | 0.186 | 3.33-10"
II " 16.8 " " " 0.03705 | 0.1108 "
I1I " 20 " " " 0.02614 | 0.093 m
v " 10 " 2 " 0.2274 | 0.186 "
v " 16.8 " " " 0.08058 | 0.1108 "
VI " 20 " " " 0.05686 | 0.093 "
VII Graphite 10 1.2 ]0.7115 " 0.1791 | 0.3925 | 4.34.10°
VIIT " (300%) | =20 " " " 0.04479 | 0.1962 "
IX " 30 " " " 0.01991 | 0.1309 "
X " 10 " 2 10 0.212 | 0.3925 "
X1 " 20 " " " 0.05299 | 0.1962 "
XII " %0 " " " 0.02356 | 0.1309 "
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%o M Zﬁ(&: 1)
a,d,pt ry have the meaning defined in the text above, by =% is the
2u %
S
absorption parameter of the moderator, p is the density of the fuel. In the

calculation of the f-factor the fuel was assumed to consist of p 96 U235 and

(100-p)% 1R,

The values p = 0.7115; @ = 18.4 g/cm3 correspond to those of natural uranium;
p = 2 and ? = 10 g/cm3 are the data of uranium oxide enriched up to 22&3 U235.
The macroscopic absorption cross section of natural uranium at the moderator
temperature of 40°C was assumed to be Za(E = 1) = 0.3467 cm_l. At a fuel enrich-
ment of 2%&) we have Za (€=1) =0.751 em™ for metallic uranium at 40°C mode-

rator temperature and za(g = 1) = 0.3034 cm"1 for enriched uranium oxide at

]

EOOOC moderator temperature. As absorption cross section in heavy water has been

used

7.736:10"° em™* at 40°C and graphite of 300°C

o
~~
on
i
b
-
i

= 2.58 —10'4 cm-1

oz
2
™
1]
oy
N
i

Finally the Sachs-Teller-mass has been used for heavy water.

Figures 3 - 14 show the neutron spectra in the reactor I - XII. The neutron
flux @ is plotted versus the energy £ in double logarithmic scale. There is
drawn the flux @ °(£) at the boundary of the fuel rods and the spectrum

ﬁ(%, g,é) in the middle of the moderator, respectively.

FPor comparison a Maxwellian distribution has been fitted to the spectrum in the
moderator at low energies. In the low energy range all the spectra have
Maxwellian character, the maximum being usually shifted. One recognizes clearly
the change from the Maxwellian part of the spectrum to the characteristic é
slowing down spectrum. A decrease of the lattice parameter d results in a simul-
taneous, almost equal increase of the neutron temperature in fuel and moderator.

The neutron temperature is here defined as the temperature of a Maxwellian

- 28 .



distribution fitted to the given spectrum in its maximum. An increase of the
absorption cross section of the fuel at unchanged geometry to the contrary has
as consequence a displacement of the meximum of the spectrum in the fuel, but

almost none in the moderator.

Figures 3 - 14 show that the spectra in fuel and moderator are far from being
identical in the epithermal region. In an infinite reactor (No = @ ) they tend

to meet asymptotically, of course. But this becomes true only at very high
energies. H.C. Honeck [9] made 1in the numerical treatment of the problem in the
Wigner Seitz cell the assumption, that the spectra in moderator and fuel are
identical abovef = 9, This assumption was necessary because of the limited machine
capacity. It seems to us to become dubious at least for strong absorption.
According to our experience a small inaccuracy in the calculation of the high
energy part of the spectrum results in serious deviations from the rigorous

solution in the thermal energy range.
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Table 2
Reactor f fvlvsgr 3? [barn] 'o-'z 38; N
I 0.99648 0.99606 415,96 491,09 2.037 | 1.30965
IT 0.98750 0.98655 46,82 526.56 2.171 | 1.31500
IIT 0.98125 0.97996 452,11 5%2.65 2.194 | 1,31585
v 0.99807 0.99764 373.24 yhy1 .24 1.853 | 1.70659
v 0.99217 0.99117 4po,12 L497.82 2.067 | 1.71586
VI 0.98786 0.98649 430,90 507.89 2.105 | 1.71731
\ARN 0.97453 0.97215 271.48 322.74 1.427 | 1.27012
VIII 0.89185 0.88192 311.89 370.06 1.606 | 1.28157
IX 0.77493 0.75494 320.73 380.41 1.645 | 1.28373
X 0.97801 0.97554 263.40 313.27 1.392 | 1.68171
XI 0.90395 0.89361 307.96 365.49 1.589 | 1.69160
XII 0.79586 0.77458 317.20 377.20 1.634 | 1.69351
Maxwellian distr. at mecderator-temperature
=5 - =8
Reactor c = e f o] a Q
I 481 .44 566.94 2.316 1.32037
II 1" 1 1} 1"
III 1" 3] 1 1"
IV 1 1t i 1 '72304
V 1t 1 1 1
VI 1 n 1t n
VII 341.01 403.86 1.7%0 1.29026
VIII 1 1t 1 ‘ 114
D{ n 1! 1t 1"
X " " " | 1.69962
}(I ft " 114 { n
XII 7" 1t 1" "
Maxwellian distr. with displaced temperature
U =5 =5 =8 .
Reactorn Tn PCJ o] . da c a rl
I T4 453,78 534,45 2,203 1.31578
II 65 460,74 542,62 2.231 1.31700
11T 56 468.11 551.26 2.261 1.31823
v 134 414,12 488,16 2.040 1.71469
\' 109 429,69 506.29 2.104 1.71703
VI 105 433,59 510.85 2.120 1.71757
vII 43 301,10 358.68 1.556 1.27680
VIIT 372 319.22 379.16 1.636 1.283%06
X 357 323.21 383.67 1.653 1.28440
X 472 294,68 351.42 1.527 1.68371
XI 386 315.32 374,74 1.619 1.69121
XIT 346 326.56 387.47 1.668 1.69502




Table 2 gives the values of the thermal utilization f calculated for our twelve
reactors I - XII. For comparison these quantities have been determined in a one

group diffusion calculation for the corresponding Wigner Seitz cells.

An estimate of the improvement in accuracy to be expected from a rigorous con-
sideration of the energy dependence of the nzutron density can be obtained
from a comparison of the f-factor values in table 2. The difference between
these quantities, determined by our method and the one group approximation,
respectively, is negligeably small for D20-moderated reactors with natural
uranium fuel elements (this is true only for a % -absorption law). But this is
not the case in reactors with enriched fuel elements, especially in graphite
moderated reactors. In any case the accuracy of the monoenergetic, transport-
theoretical calculation can be improved essentially, if the absorption cross
sections used are averaged over the neutron spectra determined in the diffusion

approximation.

In table 2 the values of the M factor determined by means of the neutron spectra
shown in figures 3 - 14 and those calculated from Maxwellian distribution at
moderator temperature and the temperature Tg of the neutrons at the boundary of
the fuel rods are also given for comparison. Finally the mean values of the

238

fission and absorption cross section of U are given as obtained from the three
types of spectra just specified. As expected the mean values of these cross
sections, obtained from Maxwellian distributions, are too large, because these
functions decrease so rapidly, that the epithermal cross section values have no
influence on the mean value. This has consequence, that thelq factors determined

with Maxwellian distributions are too large.
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The representation of reactor spectra (type A and type B) by simple sets
of functions

The method outlined in chapter 6 made use of the concept of an auxiliary runction
BN which represents the reactor spectra at high energies. In the case of chapter 6
a speclal energy E'o was chosen where the asymptotic solution and a polynomial
expression (66) were tied togehter. This has the taste of being artificial and
reminds of the concept of a "cut off" although it has nothing to do with it.

There are several possibilities to improve this procedure. One possibility is the
following:
Suppose that in (74) one wants to consider an approximation of the degree Pye

Then for f_éN the following unique representation is possible

p a2x2-1p0+1 v
(86) $-D'N—>5°=£° © T aﬁee
V=0 v _]

X
£

Y is chosen arbitrarily and it comes out that for example y=3 is, for heavy gas
model spectra, a reasonable choice in a sense to be described below. The av are
now chosen in such a way, that for large values of £ the asymptotic representaticn
up to the po + 1 degree is fitted. For small values of £ the funetion ,C‘p tends
strongly toward zero. If one applies analog to (67) the full differentie..? operator

to it, the source term S has the following order:

€
1
(87) s(g) = 0 5

- a+1+—g-—

Because of (87) the first P+l moments Cp are convergent:

®
(88) . Cp = 5 s(£) - &{:‘(5) d €= finite for P£D,
)
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Now Y=3 makes the first po+1 values Cp not tooc large, the source term S is still
behaving smoothly. Recent investigations have shown, that P =1, that is two terms
W (E.) in (74), is already a good way to represent reactor spectra with an error
of about 5/o provided that not highly enriched fuels are used. Now, two terms in
(74) and three terms in (86) give the chance to do all calculations fully analyti-
cally, so that there is a way to make the whole guestion of reactor spectra an
easy thing again. But it should be emphasized that there are also other ways to

keep the function EN simple and unique.
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ITterated multigroup method

A completely different approach to the problem in question has been given by
K. Meetz, K. Ott and S. Sanatani [10]. It does not claim, however, to be a

systematic method, because it is partially based on intuitive arguments.

Iet us recall that we have, roughly speaking, two categories of problems concerned
with either the spatial distribution or the energy spectrum of neutrons in a
heterogeneous assembly. In an analysis of the spatial distribution in the modera-
tor one might well use diffusion theory, if the scattering mean free path is
small compared with the fuel rod distance d. Introduction of point singularities
instead of the boundary conditions at the fuel surface makes the solution of the
diffusion problem in a regular lattice an easy task. This has been outlined in
detail in Sect. II for a one-dimensional reactor model. The knowledge of the flux
on the fuel rod surface is also sufficient for a good estimation fo fuel reacziion
rates, if the absorption length of the fuel is large compared with the rod dia-
meter. Hence, it i1s reasonable to keep the singularity method for the spatial

distribution in any approach to the spectral problem.

There a2 similarly simple and satisfactory entry does not seem to exist. The use
of eigenfunctions of the monatomic gas scattering kernel has its difficulties,
as we have seen in the previous section. It may, therefore, be worthwhile to
try a multigroup method. It was felt, however, by the authors of [10] that one
should improve the quality of such a method by incorporating an iteration proce-

dure.

Let vs briefly outline the way this has been done in [IQJ for the case of an

infinite homogeneous medium. The basic idea is to use the n flux mean values

@i, obtained from the solution of the multigroup equations for a n group theory,

for an improvement of the flux distribution that has been used in calculating
the group constants. To do this in a systematic way, ocne may choose a set of

spectral functions ﬁi(agi)... él); £), which describe the flux in the i-th inter-

val and depend on arbitrary constants CORRRL besides the energy £ : (£ = E/KT).
i
The choice of the ¢i is determined by physical arguments. For groups in the

slowing down region one may use the asymptotic expansion
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a

a a
(89) ¢(e)=-g-1-+?§§+gg+...

while in the thermal region the shape is Maxwellian:
£ 2
(90) BE) = £e (a.:’l + e.é€+ aé{, 4+ ve)

Tn the epithermal region a combination of (89) and (90) may be taken as the best
description. Now the constants ag%) are objects of the iteration:

In zero order one starts with a convenient set of constants Oa(%z for the cal-
culation of zero order group constants. The resulting first order mean values
5§1) are then required from the functions ¢i(.%ag%2:, €) in combination with a
sufficient number of continuity conditions at the group boundaries. First order
constants lag%) are obtained by solving the corresponding linear equations and

first order group constants from the functions ¢i(...la§%2.., £) etec.

The results of this procedure have been compared with the numerical solution of
Hurwitz, Nelkin and Habetler [1] for the heavy gas model in heavy water. The
agreement is quite good for both values of the absorption parameter

L Py = 4 =14 Za/_§25(4’= 0,1; 7] = 1). However, there is a characteristic
difference, namely a minimum in € @(£) in the epithermal region just above the
Maxwell peak. This is probably due to the different scattering kernels used:
heavy gas approximation in [ 1] and Wigner-Wilkins kernel in [10] . It may be
mentioned that Corngold’s correction of the heavy gas model [1{] points in the

same direction.

There is no difficulty to combine the multigroup method with the singularity
approach for the spatial distribution. As an example, the one dimensional model
described in Sect. IT has been studied in [[10] . As has been mentioned in Sect. II
the flux spectra on the fuel boundaries and in the center between the fuel plates
are independent of the cell position. It is reasonable to take the spectra at
these positions as representative for the neutron spectrum in a heterogeneous
assembly. This has the further advantage that the corresponding multigroup con-

stants are likewise independent of the cell position. Spectra calculated this
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way are in very good agreement with those obtained by Kunze [B;Iin.his more

systematic but more tedious approach.

Due to its extreme simplicity and the satisfactory results the iterated multi-
group method promises to be useful for practical calculetions, although it is

certainly unsatisfactory from a more systematic point of view.



Final remark

This summary presents the work of the theoretical group of Karlsruhe on the
subject of neutron spectra. The goal was to investigate how strong the in-
fluence of the heterogeneity i1s and to predict the thermal and epithermal
part of reactor spectra in order to obtain by this properly weighted thermal

neutron cross sections.

One successful first application of these spectra was the calculation of the
critical experiment of the Karlsruhe reactor FR 2. It came out that 54 fuel

elements were predicted and criticality has reached with 52 elements.

It should be mentioned that it is felt that these procedure are not restricted
to either the heavy gas model or the diffusion theory. These simple models were

chosen only to develope in the most simple cases the general methods.
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