KFK-336

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juni 1965

Í

KFK 336

Institut für Radiochemie

Die Reaktion der Transuranoxide mit Alkalioxiden - 1 und II

C. Keller, L. Koch, K. H. Walter

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

DIE REAKTION DER OXIDE DER TRANSURANE MIT ALKALIOXIDEN—I

TERNÄRE OXIDE DER SECHSWERTIGEN TRANSURANE MIT LITHIUM UND NATRIUM

C. KELLER, L. KOCH und K. H. WALTER

Lehrstuhl für Radiochemie der Techn. Hochschule Karlsruhe und Institut fur Radiochemie, Gesellschaft für Kernforschung m.b.H. Karlsruhe, Kernforschungszentrum.

(Received 20 April 1964)

Zusammenfassung—Im System Alkalioxid–Transuranoxid–Sauerstoff wurden durch Festkörperreaktion je nach Reaktionsbedingungen folgende ternäre Oxide mit sechswertigem Transuran erhalten: $Na_2Np_2O_7$, α -Na_2NpO₄, β -Na_2NpO₄, $Li_4XO_5(X = Np, Pu, Am) \alpha$ -Na₄XO₅ (X = U, Np, Pu, Am), β -Na₄XO₅(X = Np, Pu), $Li_6XO_6(X = Np, Pu, Am)$ und $Na_6XO_6(X = Np, Pu, Am)$. Diese Verbindungen sind isotyp mit den Uranaten (VI) entsprechenden Formeltyps Für α -Na₄XO₅ wurde NaCl- Struktur mit statistischer Verteilung der Metallionen gefunden. Die thermische Stabilität der angegebenen Verbindungen nimmt ab in der Reihe U—Np—Pu—Am. Mit Ausnahme der ternären Oxide des Systems Na₂O/NpO₃ bilden die übrigen Alkalitransuranate (VI) mit Wasser eine molekulare Losung, wobei die ternären Oxide Me₆XO₆ ein durch die Kristallstruktur bedingtes, irreversibles Verhalten zeigen.

Thermische, hydrolytische und strukturelle Eigenschaften werden einzeln und im Vergleich zu den Uranaten (VI) eingehend erörtert. Die richtungsabhängige Gitterausdehnung durch die α -Eigenstrahlung der Transurane wird am Beispiel des Li₄AmO₅ diskutiert.

Abstract—In the system alkali-oxide-transuranium-oxide-oxygen, ternary oxides containing hexavalent transuranium elements were prepared by reactions in the solid state. Depending on reaction conditions, the following compounds were obtained: $Na_2Np_2O_7$, α -Na_2NpO_4, $Li_4XO_5(X = Np, Pu, Am)$, α -Na₄XO₅(X = U, Np, Pu, Am), β -Na₄XO₅(X = Np, Pu), $Li_6XO_6(X = Np, Pu, Am)$ and $Na_6XO_6(X = Np, Pu, Am)$. These compounds are isotypic with the uranates of corresponding formula types. For α -Na₄XO₅ a NaCl-structure with statistical distribution of the metal ions was found. The thermal stability of the above-mentioned compounds decreases in the order U—Np—Pu—Am. With the exception of the ternary oxides of the system Na₂O/NpO₃ the alkali-transuranates (VI) form molecular solutions in water. In the case of the Me₆XO₆ compounds, this behaviour is irreversible as can be explained by the crystal structure.

The thermal, hydrolytic and structural properties are described in detail and compared with the uranates (VI). The unisotropic swelling of the lattice of these compounds due to its α -radiation is discussed for Li₄AmO₅

1. EINLEITUNG

IN DEN vergangenen Jahren wurden die Reaktionen der verschiedenen Oxide des Urans mit den Alkalioxiden von mehreren Arbeitsgruppen systematisch bearbeitet. Neben ausgedehnten chemischen Untersuchungen wurde besonderer Wert auf die Aufklärung der Kristallstrukturen der einzelnen Verbindungen gelegt. Dabei zeigte sich, daß zumindest die Strukturen der Alkalidiuranate (VI) und -Monouranate (VI) mit den Strukturen der Erdalkalimonouranate (VI) nahe verwandt sind. Tabelle 1 enthält eine Zusammenfassung der bisher bekannten Alkaliuranate (VI) des Natriums und Lithiums, soweit sie durch thermische Reaktionen zu erhalten sind. Präparate, die nur aus wässriger Lösung erhalten werden können, sind nicht mitaufgeführt, da besonders hier sehr widersprechende Ergebnisse vorliegen, die vorläufig eine eindeutige Beschreibung nicht gestatten.

	TABEL	LE 1.—TERNÄRE	OXIDE DES SECHSWERI	rigen Ura	ns mit Lit	HIUM UND N	ATRIUM		
			Zahl der Moleküle		Gitterkons	stanten (Å)			ļ
Verbindung	Struktur	Raumgruppe	pro Elementarzelle	а	p	с	α	Literatur	
Li ₂ U ₃ O ₁₀	Tetragonal	÷	2	5,63	l	12,31	I	1, 2	
Li ₂ U ₂ O ₇	ċ			a second	1		ł	1, 2	
α-Li ₂ UO₄	Orthorhomb.	Fmmm	4	6,04 6.06	5,11 5 13	10,52	-	$\frac{3}{4}$ 1, 2, 5	
β-Li ₂ UO4	Hexag.	;	4	3,904	61.62	16,49	!	1, 2, 4–6	
Li,UO5	Tetragonal	I4/m	7	6,721 6 736		4,451 4 457		$\frac{7}{8}$ 1,9	
Li4UO5	Orthorhomb. (?)	ż	4	10,94	7,97	4,99	ļ	5 7	
Li,UO,	ż	-	J	1				10	
Na ₂ U ₂ O,	Rhomboedr.	R3m	0,5	6,34	1		36°7′	2, 5, 12-18	
α-Na₂UO₄	Orthorhomb.	Cmmm	7	9,74	5,72	3,49	t r	11, 2, 5, 7, 12, 15, 18, 1	6
β -Na ₂ UO ₄	Orthornomb.	Fmmm	4	5,97	5,795	11,68	-	11, 2, 4, 5, 6, 15, 18	
R-No ITO	Tetragonal	11/m	ç	7,536		4,630		7 11 15 16	
p-rut-o2	1 VIT agoliat	11/+1	4	7,576		4,641	I	8 11,01,01	
Na4UO5	Orthorhomb. (?)	¢.	4	10,93	5,72	5,03		2	
(1) K. M. Efr (2) K. M. Efr (4) A. Neliha	temova, E. A. Ippolity temova, E. A. Ippolity tis and K. Recker, Z	DVA and Y. P. SIN DVA, Y. P. SIMAN Elektrochem. 63	MANOV, Issled. v Obl. Kli ov and V. I. Spitsvn, L 1, 89 (1959)	iim. Urana, Jokl. Akad.	Sb. Statei Nauk. SSS	55, (1961); R 8R. 124, 1057		Abstr 57, 3064d (1962).	
(4) L. M. Kov	VBA, E. A. IPPOLITOVA	Y. P. SIMANOV	and V. I. SPITSYN, Zhu	r. Fiz. Khii	m. 35, (1961	.(
⁽⁵⁾ L. M. Kov	VBA, E. A. IPPOLITOVA,	Y. P. SIMANOV a	nd V. I. SPITSYN, Dokl.	Akad. Nau	k. SSSR 12	0, 1042 (1958)			
⁽⁶⁾ H. R. Hoi	CHARIASEN, MUUUC-11 ECKSTRA and S. SIEGEL	32 (1940). J. Inore. Nucl.	Chem. 26, 693 (1964).	1 2	. NI. NUVBA	, Znur. Siruk . Anrew. Che	г. мит. э, т. 70. 583 (1.958). (1958).	
(10) R. SCHOL	DER and D. RÄDE, ref	in: Diss. H. G	LÄSER T. H. KARLSRUH	ie (1961).		0			
(11) L. M. Ki	OVBA, G. P. POLUNINA	, E. A. Ippolito	IVA, Y. P. SIMANOV and	I V. I. Spit	SYN, Zhur.	Fiz. Khim. 35	5, No. 4 (19	961).	
(12) G. V. SAI	MSONOV and M. M. Al	NTONOV, Zhur. F	iz. Khim. 35 , 900 (1961)). ⁽¹³⁾ S	. SUTTON, J	. Inorg. Nucl.	Chem. 1, 6	8 (1955).	ŝ
(15) F A 188	VBA, Y.F.JIMANOV, E.	A. IPPOLITOVA 31 Joy K M Febr	nd V. I. SPITSYN, <i>Issied.</i> Mova and V. M. Shat	v Uni. Khii svii Teelae	n. Urana, S I Ohl Kl	D. Statet 21 (1	901). Ket.: ('h Statei 20	1960) Bef . Chem 4.	102). hetr
57, 3063f	(1962).			M11007 (1140			0. Dimit 27		
(16) J. R. FIN	DLEY, J. N. GREGORY	and G. WELDRIG	ск, Report AERE-C/I	M-265 (195	55).				
1171 L. H. VII	darskii, L. M. Kovba.	, E. A. Ippolito	va and V. I. Spitsyn,	Issled. v C	obl. Khim.	Urana, Sb. S	tatei 63 (19	61). Ref.: Chem. Abstr	. 57,
21) BCODC (18) UL M. VI	02). darskii. L. M. Kovba	V. E. A. Ippolito	VA and V. I. SPITSYN.	Issled. v G	obl. Khim.	Urana Sh. St	<i>atei</i> 65 (19)	51). Ref.: Chem. Abstr.	57.
3065b (1)	962).						,		•
⁽¹⁹⁾ L. M. Ko 3063h (19	DVBA, G. P. POLUNINA. 362)	, Y. P. SIMANOV	and E. A. IPPOLITOVA, J	Issled. v O	bl. Khim. U	hana, Sb. Sti	atei 15 (196	1). Ref.: Chem. Abstr.	57,

1206

Über Verbindungen der Transuranoxide mit Alkalioxiden liegen bisher nur wenige Untersuchungen vor. Es handelt sich dabei ausschließlich um Präparate, die durch Fällung aus einer Np(VI)- bzw. Pu(VI)-Salzlösung mit Alkalihydroxid erhalten und in Analogie zu den entsprechenden Verbindungen des Urans als Dineptunate bzw. Diplutonate bezeichnet wurden.^(20,21) Eine nähere chemische bzw. röntgenografische Untersuchung erfolgte in den meisten Fällen nicht, sodaß es auch nicht überraschend ist, wenn die Mehrzahl dieser Ergebnisse nicht bestätigt werden konnte. Für mehrere aus wässriger Lösung durch Fällung erhaltene und in der Literatur als Diuranate (VI) bezeichnete Präparate wurde zudem in den letzten Jahren festgestellt, daß sie entweder Gemische mehrerer Einzelkomponenten sind (z.B. bei der NH₄-Verbindung^(22,23)) oder eine kompliziertere Zusammensetzung besitzen (z.B. bei der K-Verbindung⁽²⁴⁾).

In dieser Arbeit soll das thermische Reaktionsverhalten von NpO_2 , PuO_2 und AmO_2 mit den Oxiden des Lithiums und Natriums näher beschrieben werden.

2. DARSTELLUNGS- UND UNTERSUCHUNGSMETHODEN

2.1. Darstellungsbedingungen

Sämtliche Versuche mußten infolge der hohen spezifischen Aktivität der verwendeten Nuklide Np-237 (0,68 μ C/mg), Pu-239 (61 μ C/mg) und Am-241 (3,2 mC/mg) in Glove-Boxen durchgeführt werden. Wegen der Empfindlichkeit der Alkalioxide gegen Wasser und Kohlendioxid wurden die unter geringem Unterdruck (20–40 mm H₂O) stehenden Boxen mit trockenem Stickstoff bzw. Argon gespült.

Die pro Versuch benutzte Substanzmenge betrug 5–30 mg, wobei die kleineren Substanzmengen bei den Am-Versuchen zur Reaktion kamen. Die durch intensives Pulverisieren und Mischen homogenisierte Einwaage aus Transurandioxid und Li₂O bzw. Na₂O₂ (Genauigkeit der Einwaage: ± 0.2 Mol%) wurde in Goldschiffchen zur Reaktion gebracht, da diese sich in oxydierender Atmosphäre am widerstandsfähigsten gegen Alkalien erwiesen. Die Reaktionstemperaturen betrugen je nach Versuch 400–900°C bei Reaktionszeiten von 2 × 4 bis 2 × 36 Stunden, wobei die ternären Oxide mit Me^I = Li die längeren Reaktionszeiten benötigten. Die genauen Reaktionstemperaturen sind den Angaben im Abschnitt 3.1. über die thermische Stabilität der erhaltenen Verbindungen zu entnehmen.

Während die Darstellung der ternären Oxide des Np(VI) und Pu(VI) mit Lithium und Natrium keine größeren Schwierigkeiten bot, ergaben sich jedoch solche bei Versuchen in den Systemen Na₂O/AmO₂/O₂ und Li₂O/AmO₂/O₂. Die Reaktion AmO₂ + 3Na₂O₂ führt im Temperaturbereich von 350°-600°C in Sauerstoffatmosphäre zur Bildung von Na₆AmO₆. Ein AmO₂-freies Präparat ist nach den Ergebnissen der röntgenografischen Analyse nur dann zu erhalten, wenn ein Überschuß von 0,3-0,5 Mol Na₂O₂ über das stöchiometrische Verhältnis AmO₂: Na₂O₂ = 1:3,00

- ⁽²²⁾ P. H. CORDFUNKE, J. Inorg. Nucl. Chem. 24, 303 (1962).
- (23) P. E. DEBETS and B. O. LOOPSTRA, J. Inorg. Nucl. Chem. 25, 945 (1963).
- ⁽²⁴⁾ J. J. CHERNYAEV, V. A. GOLOVNYA and G. V. ELLERT, Russ. J. Inorg. Chem. 5, 719 (1960).

⁽²⁰⁾ W. H. ZACHARIASEN, Paper 20.4 of "The Transuranium Elements", N.N.E.S., Div. IV, 14B, McGraw-Hill, New York (1949).

⁽²¹⁾ T. J. CHAPELLE, L. B. MAGNUSSON and J. C. HINDMANN, Paper 15.6 of "The Transuranium Elements", N.N.E.S., Div. IV, **14B**, McGraw-Hill, New York (1949).

angewandt wird. Dieses überschüssige Na_2O_2 reagiert bei der Hydrolyse des Reaktionsproduktes mit dem Am(VI) unter Gasentwicklung gemäß

$$2 \text{AmO}_{2^{++}} + \text{O}_{2^{2-}} \rightarrow 2 \text{AmO}_{2^{+}} + \text{O}_{2^{/}}$$

Im Vergleich zu der Reduktion des Am(VI) durch das Peroxid spielen im System Na₂O/AmO₃ die Disproportionierung des nach obiger Reaktion gebildeten Am(V) sowie die strahlenchemische Selbstreduktion von Am(VI) und Am(V) nur eine untergeordnete Rolle. Hingegen sind diese Effekte bei der Beurteilung der Absorptionsspektren der gelösten Substanzen des Systems Li₂O/AmO₃ zu berücksichtigen. Auch in diesem System werden AmO₂- bzw. Li₃AmO₄-freie Reaktionsprodukte nur dann erhalten, wenn ein Überschuß von etwa 0,3 Mol Li₂O über das jeweils benötigte Molverhältnis angewandt wird.

 α -Na₄AmO₅ konnte jedoch auch bei größerem Na₂O- Überschuß nicht AmO₂frei erhalten werden. Die Identifizierung erfolgte daher nur über die röntgenografische Phasenanalyse anhand der für α -Na₄XO₅ charakteristischen Reflexe und deren relativen Intensitäten.

2.2. Analysenmethoden

Bei den ternären Oxiden des Neptuniums und Plutoniums mit Alkalien wurde nach der Reaktion nur der Anteil an Transuranoxid quantitativ bestimmt, der Alkaligehalt als Differenz zu 100% berechnet.

Neptunium und Plutonium wurden entweder gravimetrisch als XO_2 durch Verglühen der durch Fällung einer X(IV)- Salzlösung mit Ammoniak erhaltenen XO_2 ·aq-Niederschläge oder durch Extraktion von $[(n-C_3H_7)_4N][XO_2(NO_3)_3]$ nach der Methode von MAECK *et al.*⁽²⁵⁾ bestimmt.

Die quantitative Bestimmung des Americiums erfolgte durch Messung der γ -Aktivität eines aliquoten Teil der gelösten Substanz mittels eines NaJ(Tl)-Bohrlochkristalls. Aus zuvor beschriebenen Gründen war eine quantitative Americiumbestimmung bei den meisten Reaktionsprodukten jedoch wenig zweckvoll.

Die Bestimmung der Wertigkeit des Transurans in den Reaktionsprodukten erfolgte über die Aufnahme von Absorptionsspektren der in verdünnten Säuren gelösten Substanzen mittels eines "Cary Model 14 Recording Spectrometers". Dabei kann auch ein Peroxidgehalt der Reaktionsprodukte nachgewiesen werden. Das beim Auflösen von-eventuell vorhandenem-Peroxid gebildete H_2O_2 reagiert in der Kälte in verdünnten Säuren sehr schnell mit Np(VI) zu Np(V) und mit Pu(VI) zu Pu(IV). Np(V) und Pu(IV) können ihrerseits durch charakteristische Absorptionsbanden bei einem Gehalt von 1% bzw. 3% an der Gesamttransuran-Konzentration eindeutig nachgewiesen werden. Damit ergibt sich aus dem Fehlen der X(< VI)-Absorptionsbanden der gelösten Reaktionsprodukte sowohl die vollständige Überführung des XO₂ in X(VI) als auch Peroxidfreiheit der erhaltenen Substanzen.

Die Röntgenaufnahmen wurden in einer 114,6 mm Röntgenkamera mit $Cu_{K\alpha}$ -Strahlung durchgeführt. Die Röntgendiagramme wurden nach der asymmetrischen Methode von Straumanis ausgewertet und die Gitterkonstanten nach den Methoden von NELSON-RILEY⁽²⁶⁾ und TAYLOR-FLOYD⁽²⁷⁾ bestimmt.

⁽²⁵⁾ W. J. MAECK, M. E. KUSSY, G. L. BOOMAN and J. F. REIN, Analyt. Chem. 33, 998 (1961).

⁽²⁶⁾ J. B. NELSON and D. P. RILEY, Proc. Phys. Soc. London. 57, 160 (1945).

⁽²⁷⁾ A. TAYLOR and R. W. FLOYD, Acta Crystallogr. 3, 285 (1950).

2.3. Analysenergebnisse

Tabelle 2 enthält eine Zusammenstellung von Analysenergebnissen über die Systeme $Me_2O/XO_3(Me = Li, Na; X = Np, Pu)$.

		•	
Substanz	% XO3	% Me ₂ O*	XO ₃ : Me ₂ O
Na ₂ NpO ₄	gef.: 81,8% NpO₃	18,2% Na ₂ O	1:1,02
-	ber.: 82,13% NpO ₃	17,87% Na₂O	1:1,00
Na ₄ NpO ₅	gef.: $69,5\%$ NpO ₃	30,5 % Na ₂ O	1:2,02
•	ber.: 69,68 % NpO ₃	30,32% Na ₂ O	1:2,00
Na ₆ NpO ₆	gef.: $60,8\%$ NpO ₃	39,2% Na ₂ O	1:2,96
•	ber.: 60,51 % NpO ₃	39,49% Na₂O	1:3,00
Na₄PuO₅	gef.: 70,5% PuO ₃	29,5% Na₂O	1:1,94
	ber.: 69,83% PuO₃	30,17 % Na ₂ O	1:2,00
Na ₆ PuO ₆	gef.: 60,3 % PuO ₃	39,7 % Na₂O	1:3,05
	ber.: 60,68 % PuO ₃	39,32 % Na₂O	1:3,00
Li₄NpO₅	gef.: 83,1% NpO ₃	16,9% L1₂O	1:1,94
•	ber.: 82,67% NpO ₃	17,33 % Li ₂ O	1:2,00
Li ₄ PuO ₅	gef.: 83,1 % PuO ₃	16,9 % Li2O	1:1,95
	ber.: 82,76% PuO ₃	17,24 % Li ₂ O	1:2,00
Li ₆ NpO ₆	gef.: 76,4% NpO ₃	23,6% Li2O	1:2,95
-	ber.: 76,07% NpO ₃	23,93 % Li ₂ O	1:3,00
Li ₆ PuO ₆	gef.: 76,4% PuO ₃	23,6% Li ₂ O	1:2,97
	ber.: 76,20% PuO ₃	23.80 % Li ₂ O	1:3,00

TABELLE 2.—ANALYSENDATEN DER TERNÄREN OXIDE DER SYSTEME Me_2O — XO_3 (Me = Li, Na; X = Np, Pu)

* als Differenz zu 100%

3. ERGEBNISSE

In den einzelnen Transuranoxid-Alkalioxid-Systemen wurden—außer α -Na₄UO₅ die folgenden 17 ternären Oxide dargestellt und ihre Existenz durch chemische und röntgenografische Methoden bewiesen:

System NpO ₃ —Li ₂ O :	Li_4NpO_5 , Li_6NpO_6 ;
System NpO ₃ —Na ₂ O :	Na ₂ Np ₂ O ₇ , α -Na ₂ NpO ₄ , β -Na ₂ NpO ₄ , α -Na ₄ NpO ₅ , β -Na ₄ NpO ₅ , Na ₆ NpO ₆ ;
System PuO ₃ —Li ₂ O :	Li_4PuO_5 , Li_6PuO_6 ;
System PuO ₃ —Na ₂ O :	α -Na ₄ PuO ₅ , β -Na ₄ PuO ₅ , Na ₆ PuO ₆ ;
System AmO ₃ —Li ₂ O :	Li ₄ AmO ₅ , Li ₆ AmO ₆ ;
System Na ₂ O—AmO ₃ :	α -Na ₄ AmO ₅ , Na ₆ AmO ₆ sowie im
System Na ₂ O—UO ₃ :	α -Na ₄ UO ₅

Bei Versuchen, in welchen das eingesetzte Verhältnis $Me_2O: XO_2$ kleiner war als dem ternären Oxid mit dem niedrigsten $XO_3: Me_2O$ -Verhältnis entsprach, wurde stets eine Bildung dieses ternären Oxids beobachtet, während die überschüssige eingesetzte Menge XO_2 sich nicht veränderte, wie sich durch chemische (z.B. Lösen in verdünnten Säuren) und röntgenografische Methoden nachweisen ließ. Explizit ausgedrückt bedeutet dies, daß z.B. die Reaktionen $PuO_2 + Na_2O_2$ (1:1) und (2:1) in oxydierender Atmosphäre verliefen nach:

$$2 \operatorname{PuO}_2 + 2 \operatorname{Na}_2 \operatorname{O}_2 \xrightarrow{O_2} \operatorname{Na}_4 \operatorname{PuO}_5 + \operatorname{PuO}_2 \text{ bzw.}$$
$$4 \operatorname{PuO}_2 + 2 \operatorname{Na}_2 \operatorname{O}_2 \xrightarrow{O_2} \operatorname{Na}_4 \operatorname{PuO}_5 + 3 \operatorname{PuO}_2$$

Die ternären Oxide der sechswertigen Transurane mit Lithium und Natrium sindwie schon bei den entsprechenden ternären Oxiden mit den Erdalkalien^(23,29)-tiefer gefärbt (dunkelgrün bis schwarzbraun-schwarz) als die entsprechenden Uranate (VI). Dies ist aufgrund der geringeren Bindungsabstände Metall-Sauerstoff auch zu erwarten.

3.1. Eigenschaften der Alkalitransuranate (VI)

3.1.1. Thermische Stabilität. Beim Vergleich ternärer Oxide derselben formalen Zusammensetzung ist in der Reihe U(VI)-Pu(VI)-Am(VI) eine abnehmende thermische Stabilität zu beobachten. Betrachtet man die thermische Stabilität von Alkalitransuranaten (VI) als Funktion des Metall:Basenverhältnisses, so ergibt sich für Neptunium und Plutonium, daß der Typ Me₄XO₅ die größte Stabilität aufweist und nicht Me₆XO₆ mit dem höchsten Basengehalt. Dies ist nicht auf die Verflüchtigung von Alkalioxid bei der Reaktion Me₆XO₆ \rightarrow Me₄XO₅ + Me₂O zurückzuführen, da für X = Np und partiell auch für X = Pu bei tieferen Temperaturen wieder eine Rückreaktion beobachtet werden konnte. Me₄XO₅ besitzt im System Me₂O/XO₃ das Gitter mit der höchsten Symmetrie, d.h. auch mit der größten Gitterenergie und dies dürfte der ausschlaggebende Faktor für die thermische Stabilisierung sein.

Um einen übersichtlichen Vergleich der thermischen Stabilität der Alkalitransuranate (VI) zu erhalten, sind im folgenden die Darstellungs- und Zersetzungstemperaturen neben den Zersetzungswegen für die Systeme Me_2O/XO_3 (Me = Li, Na; X = Np, Pu, Am) aufgeführt. Angaben über die thermische Stabilität der entsprechenden Uranate (VI) sind russischen Arbeiten^(2.30) zu entnehmen.

a. Thermische Stabilität im System $Li_2O-XO_2-O_2$ (X = U, Np, Pu, Am)

Molverhältnis	$1:2 \xrightarrow{T_1} \text{Li}_4 XO_5 \xrightarrow{T_3} \text{Li}_3 XO_4 \xrightarrow{T_4} XO_2$
XO ₂ :Li ₂ O	$\uparrow T_2$
	$1:3 \xrightarrow{T_5} Li_6 XO_6$

Hierbei bedeuten:

$T_x(^{\circ}C)$	U	Np	Pu	Am
$T_1 \sim T_5$	400-500	400-500	400-500	350-400
T_2	≥ 500	700	800	440
T ₃		1000	900	550
T_4		>1100	1100	650

⁽²⁸⁾ C. Keller, Nukleonik 5, 89 (1963).

⁽²⁹⁾ C. Keller, Nukleonik 4, 271 (1962).

(30) V. I. SPITSYN, E. A. IPPOLITOVA, K. M. EFREMOVA and Y. P. SIMANOV, Issled. v Obl. Khim. Urana, Sb. Statei 121 (1961). Ref.: Chem. Abstr. 57, 3067b (1962). b. Thermische Stabilität im System Na₂O-NpO₂-O₂

Molverhältnis NpO₂: Na₂O

$$2:1 \xrightarrow{> 400^{\circ}} NpO_{2} \xrightarrow{> 400^{\circ}} NpO_{2} \xrightarrow{} Na_{2}NpO_{7} \xrightarrow{1000^{\circ}} NpO_{2}$$

$$1:1 \xrightarrow{400^{\circ}} (Na_{2}Np_{2}O_{7}) \xrightarrow{> 500} \alpha - Na_{2}NpO_{4} \xrightarrow{800^{\circ}} \beta - Na_{2}NpO_{4}$$

$$1:2 \xrightarrow{400^{\circ}} \alpha - Na_{4}NpO_{5} \xrightarrow{> 500^{\circ}} \beta - Na_{4}NpO_{5}$$

$$1:3 \xrightarrow{400^{\circ}} \alpha - Na_{4}NpO_{5} \xrightarrow{500^{\circ}} Na_{6}NpO_{6}$$

c. Thermische Stabilität im System Na_2O — PuO_2 — O_2

Molverhältnis $PuO_2: Na_2O$

$$1:2 \xrightarrow{ca.400^{\circ}C} \alpha \text{-Na}_{4}\text{PuO}_{5} \xrightarrow{500^{\circ}} \beta \text{-Na}_{4}\text{PuO}_{5} \xrightarrow{900^{\circ}} \text{Na}_{3}\text{PuO}_{4} \xrightarrow{1000^{\circ}} \text{PuO}_{2}$$

$$\uparrow 750^{\circ}$$

$$1:3 \xrightarrow{ca.400^{\circ}} \alpha \text{-Na}_{4}\text{PuO}_{5} \xrightarrow{500^{\circ}} \text{Na}_{6}\text{PuO}_{6}$$

d. Thermische Stabilität im System Na₂O-AmO₂-O₂

Molverhältnis

$$\begin{array}{ccc} AmO_{2}:Na_{2}O & AmO_{2} \\ 1:3 \xrightarrow{<300^{\circ}} \alpha-Na_{4}AmO_{5} \xrightarrow{-350^{\circ}} Na_{6}AmO_{6} \xrightarrow{700-750^{\circ}} Na_{3}AmO_{4} \xrightarrow{>700-750^{\circ}} Na_{2}AmO_{3} \\ & & & & & & \\ \hline 1:2 \xrightarrow{<300^{\circ}} \alpha-Na_{4}AmO_{5} \xrightarrow{>300^{\circ}} Na_{6}AmO_{6} \xrightarrow{+} AmO_{2} \end{array}$$

In inerter Gasatmosphäre liegt die Zersetzungstemperatur für den Übergang der Stufe X(VI) zu X(V) bzw. X(IV) erwartungsgemäß niedriger. So beträgt z.B. T_3 im System Li₂O-NpO₂-O₂ 850-900°C und im System Li₂O-PuO₂-O₂ 600-650°C.

Aufgrund der erhaltenen Ergebnisse läßt sich auch die Nichtexistenz von Na₆UO₆⁽³²⁾ erklären. Aus den Zersetzungstemperaturen für Na₆XO₆ in der Reihe Na₆NpO₆—Na₆PuO₆—Na₆AmO₆ kann man für Na₆UO₆ eine Bildungstemperatur von 500–550°C abschätzen, bei welcher die Reaktion $3Na_2O + UO_3$ jedoch nur α -Na₄UO₅ liefert.

Der Übergang α -Na₂XO₄ $\rightarrow \beta$ -Na₂XO₄ erfolgt für X = U bei 930°C, für X = Np dagegen schon bei 800°C, wobei zu bemerken ist, daß die Strukturumwandlungen von Na₂XO₄ und Na₄XO₅ stets monotrop verlaufen. Die β -Modifikation von Na₂XO₄ besitzt hierbei die geringere Dichte. Bei dieser Umlagerung ist eine Aufweitung der X-2O₁-Abstände und Verkürzung der X-4O₁₁-Abstände zu beobachten. Die niedrigere Umwandlungstemperatur für Np im Vergleich zu U bestätigt die von anderen Untersuchungen her bekannte Abnahme der Stabilität der XO₂²⁺ Gruppe in der Reihe U-Np-Pu-Am.

Die Reduktion der Alkalitransuranate (VI) mit Wasserstoff oberhalb 400°C führt stets direkt zum Metalloxid und Alkalioxid bzw.-hydroxid. Die intermediäre Bildung eines Alkalitransuranates (V) oder-(IV) während der Reaktion wurde nicht beobachtet. Die Reduktion der Alkalimono- und Diuranate (VI) im Wasserstoffstrom beginnt bei 500° C.⁽³¹⁾ Bei Reaktionstemperaturen oberhalb 1200°C ist stets UO₂ das Endprodukt der Reduktion. Bei niedrigen Reaktionstemperaturen werden jedoch die entsprechenden Alkaliuranate (V) erhalten. Durch Zusatz von Alkalioxid zu den niederbasischen Uranaten (VI) vor der Reduktion mit Wasserstoff erhält man im Falle des Lithiums und Natriums entsprechend höhersauerstoffkoordinierte Uranate (V).⁽³²⁾

3.2. Hydrolysenverhalten

Das hydrolytische Verhalten der Alkaliuranate (VI)⁽³³⁾ ist im Vergleich zu den entsprechenden Alkalitransuranaten (VI) sehr verschieden. Die Hydrolyse von Na₄UO₅ sowie Li₄UO₅ und Li₆UO₆ führt zu Präparaten, die der analytischen Zusammensetzung Me₂U₂O₇ nahe kommen^(15.32). Wichtig zu bemerken ist hierbei, daß bei der Hydrolyse kein Uran in Lösung geht.

Ein ähnliches Verhalten wie die Uranate (VI) zeigen die ternären Oxide des Systems Na₂O/NpO₃. Die Hydrolyse von Na₂NpO₄, Na₄NpO₅ und indirekt auch Na₆NpO₆ führt zur Bildung eines röntgenamorphen Niederschlags, der nach Tempern bei 200°C die Röntgenreflexe von Na₂Np₂O₇ aufweist. Behandelt man dagegen die ternären Oxide Li₄XO₅ (X = Np, Pu, Am), Me₆XO₆(Me = Li, Na; X = Np, Pu, Am) sowie Na₄PuO₅ mit Wasser oder verdünnten Alkalien, so tritt bis zu einer Konzentration von 0,2–2 mg X(VI)/ml quantitative Lösung ein. Die maximale Konzentration. Bei höherer Metallionenkonzentration tritt Niederschlagsbildung auf. Der primär röntgenamorphe Niederschlag zeigt nach kurzzeitigem Erhitzen auf 200°C im Röntgendiagram die Reflexe von XO₂.

Die wässrigen Lösungen von Me_4XO_5 und Me_6XO_6 sind gelbbraun bzw. grün gefärbt und enthalten die Ionen der Transurane in molekularer, keineswegs in kolloidaler Form, wie aus den Absorptionsspektren und dem Verhalten gegenüber Ultrafiltern zu erkennen ist. Hierbei zeigen die Lösungen der ternären Oxide Me_4XO_5 und Me_6XO_6 ein vollständig verschiedenes Verhalten, das auf das Vorliegen verschiedener Ionenspecies zurückzuführen ist, was seinerseits durch unterschiedliche Kristallstrukturen der gelösten ternären Oxide bedingt ist.

Bringt man die Transuranate (VI) des Typs Me_4XO_5 mit Wasser oder 1 n MeOH in Lösung, so ergeben sich Lösungen, deren Absorptionsspektren vollständig mit den Spektren der Lösungen identisch sind, die man durch Zugabe des entsprechenden Alkalihydroxids zu XO_2^{2+} -Lösungen erhält. Diese Prozesse sind reversibel, d.h. durch Zugabe von Säuren bzw. Alkali lassen sich die Ionenspecies gegenseitig ineinander überführen. α -Na₄NpO₅ und β -Na₄NpO₅ bilden hierbei in sofern eine Ausnahme, als bei Zugabe von Wasser zu Na₄NpO₅ sofort Hydrolyse und Niederschlagsbildung eintritt. Auch bei Zugabe von NaOH zu Np(VI)-Salzlösungen erfolgt

⁽³¹⁾ E. A. IPPOLITOVA, Y. P. SIMANOV, L. H. KOVBA and I. A. MURAVEVA, Issled. v Obl. Khim. Urana, Sb. Sattei 131 (1961). Ref.: Chem. Abstr. 57, 3036i (1962).

⁽³²⁾ R. SCHOLDER and H. GLÄSER, Z. anorg. Chem. 327, 15 (1964).

⁽³³⁾ N. Z. PECHUROVA, E. A. IPPOLITOVA and L. H. KOVBA, Issled. v Obl. Khim. Urana, Sb. Statei 126 (1961) Ref.: Chem. Abstr. 57, 3065f (1962).

oberhalb pH 7 die Ausfällung eines Niederschlags, sodaß hier gegenseitige Übereinstimmung herrscht. Die Veränderungen der Ionenspecies bei Zugabe von Alkali zeigen sich sehr deutlich in den Absorptionsspektren von Pu(VI). Die im sauren Gebiet bei 833 m μ liegende Hauptabsorptionsbande von PuO₂²⁺ verschiebt sich bei Zugabe von Alkalihydroxid in das Gebiet längerwelligerer Absorption. Konform damit geht eine Aufspaltung dieser Bande. Diese Verschiebung und Neubildung von Absorptionsbanden ist auf die Bildung von Komplexen mit zusätzlichen [Pu-O]-Bindungen zurückzuführen. Dabei handelt es sich um [Pu-OH]-Komplexe und

ABB. 1.—Absorptionsspektrum des in Wasser (I) bzw. in 1 n HCl (II) gelosten β -Na₄PuO₅.

nicht um [Pu—O—Pu]-Brückenkomplexe, da in letzterem Falle bei stärkerer Alkalität Kolloidbildung und Niederschlagsbildung zu erwarten wäre.

Abbildung 1 zeigt das Absorptionsspektrum von Na₄PuO₅ in Wasser (I) bzw. in 1 n HCl(II) bei 1,9 mg Pu/ml. Beim Auflösen von Me₆XO₆ in 1 n MeOH erhält man primär rein grüne Lösungen mit charakteristischen Absorptionsspektren. Diese Lösungen sind jedoch thermodynamisch nicht stabil. Sie wandeln sich in diejenigen Lösungen um, die man durch Auflösen von Me_4XO_5 erhält. Diese Umwandlung ist irreversibel, d.h. die primären Lösungen von X(VI) können nur durch Auflösen von Me₆XO₆ erhalten werden und nicht aus Lösungen von X(VI) durch Zugabe von Alkalihydroxid. Die Geschwindigkeit der Umwandlung der Ionenspecies nimmt in der Reihe Np-Pu-Am zu, sodaß sich beim Lösevorgang von Me₆AmO₆ die primären Ionenspecies nicht exakt nachweisen lassen. Ebenso ist eine Zunahme der Umwandlungsgeschwindigkeit mit abnehmender (OH)-Konzentration zu beobachten, d.h. die Lösungen von Me₆XO₆ in Wasser sind instabiler als die Lösungen in 1 n MeOH. Die Umwandlungen sind von höherer als von 1. Ordnung. Im Falle der Speciesumwandlung der gelösten NachNpOc ist diese Umwandlung mit der Bildung eines Niederschlags verbunden (Fällung aus homogener Lösung), der nach Tempern bei 200°C im Röntgendiagramm die Reflexe von Na2Np2O7 zeigt. Abbildung 2

zeigt das Absorptionsspektrum der wässrigen grünen Lösung von Li_6NpO_6 (ca. 0,1 mg Np/ml) etwa 10 Minuten nach dem Lösevorgang.

Der Effekt der Speciesumwandlung der gelösten Alkalitransuranate (VI) des Typs Me_6XO_6 läßt sich unter der Annahme erklären, daß die oktaedrischen, isolierten $[XO_6]$ -Komplexe des Me_6XO_6 -Kristallgitters als ganze Einheit in Lösung gehen, da bei diesem Vorgang keine [X-O-X]-Bindungen gelöst zu werden brauchen. In Lösung tritt nun eine Veränderung dieser $[XO_6]$ -Gruppe ein, die über die Anlagerung von H⁺ an die [X-O]-Bindung zu hydroxylhaltigen Ionenspecies mit ungleichen [X-O]-Abständen führt. Mit dieser Annahme steht auch die zeitliche Umwandlungsgeschwindigkeit als Funktion des pH im Einklang.

ABB. 2.—Absorptionsspektrum von Li₆NpO₆ in Wasser.

Die Existenz einer einzigen [X—O]-Bindungsart, d.h. der Nachweis eines [XO₆]-Oktaeders (andere Koordinationszahlen als 6 sind für X(VI) sehr unwahrscheinlich) ist aus dem IR-Spektrum des festen Li_6NpO_6 zu schließen. Unter Benutzung der Konstanten für Uran und einer Umrechnungsformel von JONES und PENNEMAN⁽³⁴⁾ läßt sich nach der Badger-Regel^(35.36) ein [Np—O]-Abstand von 2,10 \pm 0,05 berechnen. Infolge partieller Hydrolyse des Li_6NpO_6 konnte jedoch kein reines IR-Spektrum erhalten werden.

Während bei Np(VI), Pu(VI) und Am(VI) Hydroxokomplexe in Lösung stabil sind, lassen sich von U(VI) Komplexe, die Hydroxylgruppen enthalten, nur in fester Form isolieren; einige Beispiele dafür sind: $(NH_4)[UO_2(OH)CO_3(NH_2OH)_2]$, $K[UO_2(OH)_3(NH_2OH)_2]$ und $Na_2[UO_2(OH)_4(NH_2OH)_2]$.⁽²⁴⁾ Dieser Befund ist nicht überraschend, da in einer homologen Reihe die Tendenz zu Bildung von Komplexen, die Hydroxylionen enthalten, mit abnehmendem Ionenradius zunimmt. Ein Beweis

⁽³⁴⁾ L. H. JONES and R. A. PENNEMAN, J. Chem. Phys. 21, 542 (1953).

⁽³⁵⁾ R. M. BADGER, J. Chem. Phys. 2, 128 (1934).

⁽³⁶⁾ R. M. BADGER, J. Chem. Phys. 3, 710 (1935).

hierfür ist die Bildung von Hydroxokomplexen des Yb, Lu, In und Sc des Typs Na_3 [X(OH)₆],⁽³⁷⁻³⁹⁾ während die leichten Seltenen Erden keine derartigen Komplexe bilden.

3.3. Strukturelle Untersuchungen

3.3.1. Ternäre Oxide der Zusammensetzung Me₂X₂O₇ und Me₂XO₄. Verbindungen der Zusammensetzung X:Me = 1: ≤ 2 konnten nur im System Na₂O/NpO₃ erhalten werden. Na₂Np₂O₇ ist isotyp mit Na₂U₂O₇. Die Struktur ist eine Defektstruktur des Ca(UO₂)O₂-Typs. Im Gitter des Na₂Np₂O₇ liegen hexagonale Schichten der Zusammensetzung UO_{3.5} = (UO₂)O_{1.5} vor.

Die Gitterkonstanten der rhomboedrischen Elementarzelle betragen:

$$a = 6,312 \pm 0,008 \text{ Å}$$

 $\alpha = 36^{\circ} 8' \pm 2'$
 $ho (ber) = 6,70 \text{ g}\cdot\text{cm}^{-3}$

Unter der Annahme der gleichen Sauerstoffparameter in $Na_2U_2O_7$ und $Na_2Np_2O_7$ berechnen sich folgende Np-O-Abstände:

$$Np - 20_I = 1,91 \text{ Å}$$

 $Np - 60_{II} = 2,35 \text{ Å}$

Die Indizierung der ersten 15 Reflexe von $Na_2Np_2O_7$ zeigt Tabelle 3 (die vollständige Indizierung der im Verlaufe dieser Arbeit beschriebenen Np- und Pu-Verbindung ist in⁽⁴⁰⁾ aufgeführt).

				-
<i>hkl</i> rhomb.	<i>hkl</i> hexag.	$\sin^2 \theta$ gef.	$\sin^2 \theta$ ber.	I gef
111	003	0,0173	0,0171	3
100	101	0,0540	0,0536	4
110	012	0,0594	0,0593	5
222	006	0,0689	0,0684	2
211	104	0,0826	0,0821	3
221	015	0,0994	0,0992	2
322	107	0,1452	0,1448	2
333	009	0 1 5 40	0,1539	
110	210	0,1549	0,1551	4
210	113	0.1520	0,1722	<i>.</i>
332	018	0,1730	0,1733	3
111	021	0,2089	0,2092	2
200	202	0,2145	0,2144	2
321	116	0,2234	0,2235	4
220	024	0,2365	0,2372	2

TABELLE 3.— $\sin^2 \theta$ —Werte und Intensitäten für Na₂Np₂O₇

⁽³⁷⁾ B. N. IVANOV-EMIN, L. A. NISEL'SON and A. T. IVOGLINA, Russ. J. Inorg. Chem. 5, 1372 (1960).

⁽³⁸⁾ B. N. IVANOV-EMIN and L. A. NISEL'SON, Russ. J. Inorg. Chem. 5, 972 (1960).

⁽³⁹⁾ B. N. IVANOV-EMIN and L. A. NISEL'SON, Russ. J. Inorg. Chem. 5, 937 (1960).

(40) L. KOCH, KFK-Bericht 196 (1964).

 α -Na₂NpO₄ und β -Na₂NpO₄ besitzen jeweils ein orthorhombisches Kristallgitter. Sie sind mit den entsprechenden Verbindungen des Urans isotyp. Der strukturelle Unterschied zwischen beiden Modifikationen besteht darin, daß β -Na₂UO₄ tetragonale bzw. pseudotetragonale (UO₂)O₂-Schichten aufweist, während α -Na₂UO₄ unendliche (UO₂)O₂-Ketten besitzt. Die Gitterkonstanten der beiden Verbindungen sowie die damit berechneten Np--O-Abstände zeigt Tabelle 4. Die Indizierung der ersten 15 Reflexe von α -Na₂NpO₄ und β -Na₂NpO₄ ist in den Tabellen 5 und 6 angegeben.

	Gitter	konstante	en (Å)*	Ato	omabstände	(Å)†	ρ ber.
Verbindung	a	Ь	с	NpNp	Np-201	Np4011	(g. cm ⁻³)
α -Na ₂ NpO ₄ β -Na ₂ NpO ₄	9,685 5,936	5,705 5,785	3,455 11,652	3,46 4,14	1,89 1,92	2,22 2,07	6,04 5,76

TABELLE 4.-GITTERKONSTANTEN UND ATOMABSTÄNDE FÜR Na2NpO4

* jeweils $\pm 0,005$ Å

 \pm jeweils \pm 0,02 Å

TABELLE 5.—BERECHNETE UND GEFUNDENE $\sin^2 \theta$ -werte und abgeschätzte Intensitäten für die ersten 15 Reflexe von α -Na₂NpO₄

		• · · · · · · · · · · · · · · · · · · ·	
hkl	$\sin^2 \theta$ gef.	sin ² 0 ber.	I gef.
110	0,0246	0,0245	5
200	0,0255	0,0253	2
001	0,0500	0,0497	2
020	0.0715	0,0730	
111	0,0735	0,0742	1*
310	0.0753	0,0752	_
201	0,0752	0,0750	5
220	0,0981	0,0983	2-3
400	0,1015	0,1014	2
021	0,1229	0,1228	2-3
311	0,1252	0,1249	3
221	0,1480	0,1480	4
401	0,1511	0,1511	2
130	0,1704	0,1706	2
420	0,1738	0,1744	2

* diffus

3.3.2. Ternäre Oxide der Zusammensetzung Me_4XO_5 . Die ternären Oxide des oben genannten Typs mit Natrium als Alkalimetall und X = U, Np, Pu besitzen zwei Modifikationen, während die entsprechenden Lithiumverbindungen (X = U, Np, Pu, Am) und Na₄AmO₅ nur in einer Modifikation auftreten.

 α -Na₄XO₅ besitzt NaCl-Struktur mit statistischer Verteilung von Na⁺ und X⁶⁺ auf die Plätze des Na⁺ im Kochsalzgitter, womit die exakte Schreibweise (Na_{0.8}, X_{0.2})O wäre. Auch bei langen Belichtungszeiten konnten keine Reflexe auf den Röntgendiagrammen gefunden werden, die eine geordnete Verteilung der beiden Metallionen im Kristallgitter anzeigen. Aufgrund der niedrigen Darstellungstemperaturen wurden nur Röntgendiagramme mit stärker diffusen Linien erhalten. Tabelle 7 enthält die Gitterkonstanten von α -Na₄XO₅. Mit der Darstellung gelang die synthese eines noch fehlenden Formeltyps der allgemeinen Reihe mit Kochsalzstruktur Me_nX⁽ⁿ⁺²⁾⁺O_{n+1}(4 > n > O).

		•	
hkl	$\sin^2 \theta$ gef.	$\sin^2 \theta$ ber.	I gef.
002	0,0178	0,0175	3
111	0,0394	0,0390	5
200	0,0677	0,0674	1-2
004	0,0703	0,0700	1-2
020	0,0713	0,0711	1
113	0,0745	0,0740	4
202	0,0856	0,0850	1-2
022	0,0890	0,0885	1-2
220	0 1205	0,1385	• •
204	0,1385	0,1375	2-3
024	0,1416	0,1416	1
115	0,1447	0,1440	2-3
222	0,1564	0,1560	3
006	0,1579	0,1576	1
311	0,1743	0,1739	2-3

Tabelle 6.—Berechnete und gefundene $\sin^2 \theta$ -werte sowie abgeschätzte Intensitäten für die ersten 15 Linien von β -Na₂NpO₄

Tabelle 7.—Gitterkonstanten und Atomabstände für α -Na₄XO₅

		Atomabst	Atomabstände (Å)*		
Substanz	a (Å)	X0	X—X	(g. cm ⁻³)	
Na₄UO₅	4,766 ± 0,005	2,38	3,37	5,03	
Na ₄ NpO ₅	4,739 - 0,005	2,37	3,35	5,10	
Na ₄ PuO ₅	$4,718 \pm 0,005$	2,36	3,336	5,20	
Na₄AmO ₅	4,70 ± 0,01	2,35	3,32	5,27	

* jeweils $\pm 0,01$ Å

Li₄XO₅ und β -Na₄XO₅ besitzen ebenfalls ein Gitter, das sich vom Kochsalzgitter ableiten läßt. Das Grundgerüst des Li₄XO₅- und β -Na₄XO₅-Gitters—das bisher schon beschriebene Na₄UO₅ ist somit als β -Na₄UO₅ zu bezeichnen—ist das jenige von α -UF₅,⁽⁴¹⁾ welches ebenfalls nahe mit der Kochsalzstruktur verwandt ist. Im tetragonalen Gitter dieses Typs liegen kettenförmige Schichten vor, die über die Spitzen der [XO₆]-Oktaeder parallel der c-Achse miteinander verbunden sind.

Die Abweichung des β -Na₄XO₅ von der Grundstruktur des NaCl-Gitters ist dabei bedeutend größer als die Abweichung für Li₄XO₅. Dies ergibt sich z.B. aus dem c/a-Achsenverhältnis, das für eine unverzerrte NaCl-Überstruktur (a = $\sqrt{2} \cdot a_{\text{NaCl}}$) $1/\sqrt{2} = 0,706$ ist. Die kleinen Li-Atome rufen nur eine geringere Abweichung (c/a = 0,662) hervor, während die größeren Na-Atome schon eine bedeutend stärkere Verzerrung hervorrufen (c/a = 0,61).

(41) W. H. ZACHARIASEN, Acta Crystallogr. 2, 296 (1949).

Die Punktlagen für Me₄XO₅ betragen (Raumgruppe $C_{4h}^{5} - I4/m$)⁽⁸⁾

```
2 X in (a)
8 ne in (h)
8 O_I in (h)
2 O_{II} in (b)
```

Die Atomparameter betragen (8,41):

für α-UF₅
$$x = 0.113; y = 0.315 (8F_1)$$

für Li₄UO₅ $x = 0.244; y = 0.097$ für 8O₁
 $x = 0.180; y = 0.419$ für 8Li
für β-Na₄UO₅ $x = 0.280; y = 0.097$ für 8O₁
 $x = 0.197; y = 0.383$ für 8Na

Tabelle 8 enthält die Gitterkonstanten der in diesem Typ kristallisierenden ternären Oxide, Tabelle 9 die Indizierung der ersten 15 Reflexe von β -Na₄PuO₅. Aus Tabelle 8 ist zu ersehen, daß das Verhältnis c/a innerhalb einer homologen Reihe nahezu konstant bleibt. Dies läßt den Schluß zu, daß auch die Gitterparameter für Me^I und O₁ innerhalb einer Reihe nicht sehr unterschiedlich sind.

Tabelle 8.—Gitterkonstanten und Atomabstände für Li_4XO_5 und β -Na₄XO₅.

	Gitterkons	stanten (Å)		Atomabs	tände (Å)*	ρ ber.	
Substanz	а	с	c/a	$U-4O_I$	$U-2O_{II}$	(g. cm ⁻³)	Lit.
LI ₄ UO ₅	6,721 ± 0,001	4,451 = 0,002	0,662	2,00	2,225	5,73	(7)
Li₄UO₅	6,736	4,457	0,662	1,99*			(8)
Li ₄ NpO ₅	6,698 _ 0,002	4,432 ± 0,003	0,662	1,99	2,216	5,76	
Li ₁ PuO ₅	6,677 - 0,002	$4,421 \pm 0,003$	0,662	1,985	2,210	5,84	
L1 ₄ AmO ₅	6,666 ± 0,003	$4,410 \pm 0,003$	0,662	1,98	2,205	5,89	
β -Na ₄ UO ₅	7,536 - 0,005	4,630 ± 0,005	0,614	2,11	2,32	5,18	(7)
β-Na₄UO₅	7,576	4,641	0,613	1,99			(8)
β -Na ₄ NpO ₅	7,515 _ 0,005	$4,597 \pm 0,005$	0,612	2,10	2,30	5,23	
β-Na₄PuO₅	7,449 ± 0,005	4,590 ± 0,005	0,616	2,09	2,295	5,36	

* aus IR—Aufnahmen

† jeweils +0,01 Å

In einer ersten Veröffentlichung russischer Autoren⁽²⁾ wurde für Li₄UO₅ und Na₄UO₅ eine orthorhombische Struktur angenommen, ohne daß jedoch nähere strukturelle Angaben gemacht wurden. Diese Struktur scheint jedoch wenig wahrscheinlich, wenn man den Raumbedarf des Sauerstoffs in den verschiedenen Uranaten (VI) mit zum Vergleich heranzieht (Tabelle 10). Der mit einem Ionenradius von 1,32 Å für O²⁻ berechnete, theoretische Raumbedarf des Sauerstoffs beträgt 18,4 Å³ für die oktaedrische Anordnung. Aus den Werten der Tabelle 10 ist eindeutig zu ersehen, daß die Raumbeanspruchung innerhalb einer Alkalireihe unabhängig vom Metall: Alkaliverhältnis nahezu dieselbe ist, während die Werte bei Annahme der orthorhombischen Struktur für Na₄XO₅ außerhalb eines möglichen Streubereichs liegen. Dies ist besonders bei den Li-Verbindungen augenscheinlich, da die kleinen

1218

hkl	sin² θ gef.	sin ² 0 ber.	I gef.	I ber. (rel.)
110	0,0218	0,0214	5	102
101	0,0393	0,0389	5	104
200	0,0432	0,0428	3	46
211	0,0824	0,0817	5	82
220	0,0859	0,0856	1	19
310	0,1075	0,1070	4	29
002	0,1134	0,1128	2	7
301	0,1249	0,1245	2	23
112	0,1349	0,1342	3	20
202	0,1562	0,1556	2	17
321	0,1676	0,1673	3	30
400	0,1715	0,1712	1	7
222	0,1990	0,1984	1	11
411	0,2100	0,2101	3	21
420	0,2143	0,2140	2-3	10

TABELLE 9.—BERECHNETE UND GEFUNDENE $\sin^2 \theta$ -Werte sowie Intensitäten für die ersten 15 Linien von β -Na₄PuO₅.

TABELLE 10.—RAUMBEDARF DES SAUERSTOFFATOMS IN Uranaten (VI)

Substanz	Raumbedarf (Å) ³ pro O-Atom
α-Na ₂ UO ₄	24,3
β -Na ₂ UO ₄	25.2
α -Na ₄ UO ₅	27,0
β -Na ₄ UO ₅ (tetrag.)	26,2
β -Na ₄ UO ₅ (orthorhomb.)	31,4 (!!!)
α -Li ₂ UO ₄	20,5
β-Li₂UO₄	18,7
Li_4UO_5 (tetrag.)	20,0
Li ₄ UO ₅ (orthorhomb.)	27,2 (!!!)

Lithium-Ionen gut in die Lücken der oktaedrischen Kugelpackung passen und deshalb keinen "eigenen" Raum benötigen. Bei den entsprechenden Na-Verbindungen ist dagegen schon ein merkbarer "Eigenplatzbedarf" des Na⁺ vorhanden, da der Na⁺-Ionenradius größer ist. Immerhin ist der Raumbedarf des Na⁻ nur ca. 40%[(0,98/1,32)³] des Raumbedarfs des Sauerstoffs, so daß es bei den Natriumuranaten (VI) auch noch sinnvoll ist, das ganze Elementarzellvolumen zumindest formal dem Sauerstoff zuzuordnen.

3.3.3. Ternäre Oxide der Zusammensetzung Me₆XO₆. Die ternären Oxide Me₆XO₆ (Me = Li, Na; X = Np, Pu, Am) sind isotyp mit Li₅ReO₆ bzw. β -Li₆ReO₆.⁽⁴²⁾ Eine genaue Strukturuntersuchung der Verbindungen dieses Typs steht noch aus. Die gefundenen sin² θ -Werte für Li₆AmO₆ und Na₆AmO₆ erhalten die Tabellen 11 und 12, für die Werte der Np- und Pu-Verbindungen siehe.⁽⁴⁰⁾

Aus dem Gang der Metall-Sauerstoffabstände von $Me_2XO_4(X-2O_1 + X-4O_{II})$ über $Me_4XO_5(X-4O_1 + X-2O_{II})$ nach Me_6XO_6 ist für den $[XO_6]$ -Oktaeder ein einziger Abstand X-6O₁ mit 2,20 \pm 0,10 Å zu erwarten, was die Bildung von [X-O-X]-Brücken ausschließt. Die Annahme einer einzigen [X-O]-Bindung ist aus den

⁽⁴²⁾ R. SCHOLDER, K. L. HUPPERT and P. P. PFEIFFER, Angew. Chem. 75, 375 (1963).

sin² gef.	I	sin ² gef.	I
0,0252	4	0,1336	5
0,0296	3	0,1430	3
0,0324	4	0,1581	2
[.] 0,0404	3	0,1888	1
0,0549	1	0,2074	2
0,0753	4	0,2252	2
0,0912	3	0,2514	3
0,0997	3	0,2661	1
0,1190	2	0,2764	3
0,1336	1		

TABELLE 11.— $\sin^2 \theta$ -Werte und Intensitäten für Li₆AmO₆

TABELLE 12.— $\sin^2 \theta$ -Werte und Intensitäten für Na₆AmO₆

sin ² gef.	I	sin ² gef.	Ι
0,0206	4	0,1291	1
0,0238	3	0,1327	1
0,0261	4	0,1368	2
0,0325	4	0,1533	2
0,0443	2	0,1679	2
0,0610	2	0,1687	1
0,0737	2	0,1759	1
0,0796	5	0,1777	1
0,0822	2	0,1835	1
0,0957	1	0,2030	1
0,1046	5	0,2115	3
0,1088	5	0,2153	4
0,1158	2	·	

IR-Spektrum von Li_6NpO_6 zu schließen, was auf einen isolierten $[XO_6]$ -Oktaeder im Kristallgitter schließen läßt, d.h. in Me_6XO_6 treten nur [X-O-Me]-Bindungen und keine [X-O-X]-bzw. [Me-O-Me]-Bindungen auf.

3.4. Strahlenchemische Effekte

Bedingt durch die Eigenaktivität der Transuranisotope erfolgt im Gitter ihrer Verbindungen eine laufende Bildung von Frenkelfehlstellen. Pro α -Zerfall werden 1500⁽⁴³⁾ bzw. 4500⁽⁴⁴⁾ Frenkelfehlstellen gebildet. Verglichen mit diesen Werten spielen die Strahlenschäden durch "inneren" β -oder γ -Zerfall nur eine sehr untergeordnete Rolle, besonders da das Rückstoßatom, das beim α -Zerfall den größten Gitterschaden verursacht, hier nur einen geringen Impuls erhält.

Die gebildeten Frenkelfehlstellen verursachen eine Änderung der Dimensionen der Elementarzelle. Dabei erfolgt die Ausdehnung in der Achsenrichtung des Gitters, in der die Einlagerung der versetzten Atome erfolgt. Da die Flächenbelegung bei nichtkubischen Substanzen in den einzelnen Achsenrichtungen meist verschieden ist,

(43) G. M. KINCHIN and R. S. PEASE, Rep. Progr. Phys. 18, 1 (1955).

(44) P. M. HURLEY and H. W. FAIRBAIRN, Bull. Geol. Soc. Amer. 64, 659 (1953).

erfolgt eine richtungsabhängige Änderung der Gitterkonstanten (z.B. bei Bestrahlung von Graphit mit Neutronen).

Abbildung 3 zeigt die Änderung von a bzw. c des tetragonalen Li₄AmO₅ als Funktion der Lagerzeit. Das größere $\Delta a/a$ gegenüber $\Delta c/c$ ist bedingt durch geringere Flächenbelegung in der *a*-Achsenrichtung, wie sich auch aus der Kristallstruktur ergibt. Die Rückstoßatome des α -Zerfalls lagern sich daher bevorzugt in diese Gebiete geringerer Flächenbelegung ein, was einen erhöhten $\Delta a/a$ Wert gegenüber $\Delta c/c$ ergibt. Während für $\Delta c/c$ sich nach kurzer Zeit ein Sättigungswert einzustellen

ABB. 3.--Änderung der Gitterkonstanten des Li₄AmO₅ als Funktion der Lagerzeit.

scheint, ist ein solcher $\Delta a/a$ noch nicht abzusehen, da $\Delta a/a$ nahezu gleich stark weiter zunimmt. Nach einer Lagerzeit von 50 d beginnt $\Delta c/c$ jedoch wieder abzunehmen und erreicht nach etwa 200 d den Wert Null, d.h. c besitzt wieder den Ausgangswert. Eine weitere Verfolgung diese Effekts dürfte kaum möglich sein, da durch die starke Gitterstörung nur noch schwache, verbreiterte Röntgenreflexe auf stark erhöhtem Untergrund erhalten werden. Tabelle 13 zeigt für zwei charakteristische, nebeneinanderliegende Reflexe die Peaklage nach verschiedenen Lagerzeiten. Abbildung 4 zeigt die Strichdiagramme der Röntgenaufnahmen von Li₄AmO₅ sofort nach der Darstellung und nach 190 Tagen Lagerzeit. Aus beiden Darstellungen ist die Gitterverönderung deutlich zu erkennen.

Eine die Auswertung der Diagramme stark beeinträchtigende Verbreitung der Röntgenreflexe bei Li₄AmO₅ konnte erst nach 200 d ($8,4 \cdot 10^{18} \alpha$ -Zerfälle/cm³-Li₄AmO₅ = $2 \cdot 10^{22}$ Frenkeldefekte/cm³Li₄AmO₅) in größerem Ausmaße festgestellt werden. Nach den Berechnungen müßte dann etwa jedes fünfte Gitteratom versetzt sein. Die beim Durchgang der α -Teilchen bzw. der Rückstoßatome durch das Kristallgitter gebildeten "thermal spikes" bedingen durch die in ihnen herrschenden hohen Temperaturen bei Substanzen mit geringer Wärmeleitfähigkeit⁽⁴⁵⁾ eine partielle Ausheilung der Gitterdefekte, wodurch die Bildung von inhomogenen Zonen zumindest verzögert wird. Da ein derartiger Ausheilprozeß jedoch erst bei hohen integralen

(45) G. DIENES and G. H. VINEYARD, Radiation Effects in Solids. Interscience, New York (1957).

Lagerzeit (Tage)	θ(002)	<i>θ</i> (310)	θ(310–002)
0	20,43	21,44	1,01
5	20,41	21,40	0,99
15	20,38	21,37	0.99
21	20,36	21,31	0.95
28	20,35	21,30	0,95
41	20,37	21,27	0,90
50	20,38	21,28	0,90
59	20,38	21,26	0,88
71	20,39	21,20	0,81
110	20,40	21,12	0,72
180	20.34	21.01	0.58

TABELLE 13.—RÖNTGENREFLEXVERSCHIEBUNGEN DES Li_4AmO_5 nach verschiedenen Lagerzeiten für zwei charakteristische Reflexe

ABB. 4.—Strichdiagramme von Li₄AmO₅ nach verschiedenen Lagerzeiten.

Strahlendosen einen Effekt ausüben wird, ist bei geringen Strahlendosen, z.B. kurze Lagerzeit bei innerer Bestrahlung, eine Proportionalität zwischen $\Delta x/x$ und $(dN/dt)_{\alpha} \cdot t$ festzustellen, wie sich auch aus Abbildung 3 ergibt.

4. DISKUSSION

In der Reihe U(VI)–Np(VI)–Pu(VI) besitzen wir eine Folge von sechswertigen Ionen, welche sich nur durch geringe Differenzen im Ionenradius unterscheiden und denen als gemeinsames Strukturprinzip in wässriger Lösung die XO_2^{2+} -Gruppe zugrunde liegt. Aus Vergleichen der Redoxketten XO_2^{2+}/XO_2^+ , XO_2^{2+}/X^{4+} und XO_2^{2+}/X^{3+} ergibt sich in der Reihe U—Np—Pu—Am eine sehr starke Abnahme der Beständigkeit von X(VI) in wässriger Lösung. Diese Stabilitätsabnahme von X(VI) wurde auch bei den festkörperchemischen Untersuchungen über die Alkalitransuranate (VI) festgestellt, wenngleich auch in einzelnen Fällen deutliche Unterschiede in der Stabilität einzelner Wertigkeitsstufen vorliegen. So ist z.B. in wässriger Lösung Np(V) weitaus die stabilste Wertigkeitsstufe, während bei den Alkalineptunaten die ternären Oxide mit Np(VI) am beständigsten sind und sich Alkalineptunate (V) nur schwer in reiner Form darstellen lassen. Aus den Ergebnissen über die thermische Stabilität der Alkalineptunate (VI) und -plutonate (VI) ergibt sich weiterhin, daß für die Stabilisierung weniger ein möglichst hohes Basenoxid: Metalloxid-Verhältnis verantwortlich ist als eine möglichst hochsymmetrische Struktur mit großer Gitterenergie, wie aus dem Beispiel der erhöhten thermischen Stabilität von Me₄XO₅ gegenüber Me₆XO₆ hervorgeht.

Eine neutrale oder alkalische Lösung von Me_6XO_6 enthält Ionenspecies der sechswertigen Transurane, die bisher nicht bekannt waren und die auch durch Auflösen von ternären Oxiden der Transuranate (VI) mit isolierten $[XO_6]$ -Oktaedern erhalten werden können. Es dürfte sich hier mit großer Wahrscheinlichkeit um $[XO_6]^{6-}$ -Ionen handeln, die in Lösung einer Protonolyse zu hydroxylhaltigen Species unterliegen. Derartige hydroxyhaltige Ionenspecies erhält man sowohl durch Zugabe von Alkalihydroxid zu X(VI)-Lösungen als auch bei der Auflösung von $Me_n^{I}X^{VI}O_m$ (m < 6).

Aus der Isotypie der Uranate (VI) mit den entsprechenden Transuranaten (VI) sind weitgehend ähnliche Strukturanordnungen zu folgern. Während in den Verbindungstypen Me₂X₂O₇, Me₂XO₄ und Me₄XO₅ stets kürzere [X-O_I]-Abstände neben den [X-O_{II}]-Abständen vorhanden sind, welche sich annähernd durch Addition der einzelnen Ionenradien ergeben, besitzt der Typ Me₆XO₆ 6 gleiche [X-O_{II}]-Abstände mit einem [X-O]-Abstand, der sich aus den einzelnen Ionenradien in etwa additiv zusammensetzt. Derartige [XO₆]-Oktaeder ohne [X-O-X]-Brücken liegen auch den ternären Oxiden der Zusammensetzung Ba₃XO₆(X = U, Np, Pu) zugrunde.

Als Übersicht zur Festkörperchemie des Urans und der Transurane enthält Tabelle 14 eine schematische Gesamtdarstellung der Alkaliuranate (VI)- und Transuranate (VI).

	l	J	N	Ip.	F	' u	Α	m
Тур	Li	Na	Li	Na	Li	Na	Lı	Na
Me ₂ X ₃ O ₁₀								_
$Me_2X_2O_7$	÷			4		_	_	
α -Me ₂ XO ₄		-				-		
β -Me ₂ XO ₁	-		-			-	-	
α-Me₄XO₅					_			
β -Me ₄ XO ₅			-		<u> </u>	<u></u>		-
Me ₆ XO ₆				+	4.			-

 TABELLE 14.—ALKALIURANATE (VI) UND—TRANSURANATE (VI) DES

 LITHIUMS UND NATRIUMS (+: darstellbar, -: nicht existent)

Anerkennungen—Herrn Prof. Dr. SEELMANN-EGGEBERT danken wir für die stetige Unterstützung dieser Arbeit, der Deutschen Forschungsgemeinschaft für die Überlassung eines Röntgengerätes "Kristalloflex II".

4

DIE REAKTION DER TRANSURANOXIDE MIT ALKALIOXIDEN—II

TERNÄRE OXIDE DER FÜNFWERTIGEN TRANSURANE UND DES PROTACTINIUMS MIT LITHIUM UND NATRIUM*

C. KELLER, L. KOCH und K. H. WALTER Lehrstuhl für Radiochemie, Technische Hochschule Karlsruhe und Institut für Radiochemie, Gesellschaft für Kernforschung m.b.H. Karlsruhe, Kernforschungszentrum

(Received 25 September 1964)

Zusammenfassung—Durch thermischen Abbau der Alkalitransuranate (VI), durch Symproportionierung aus Alkalitransuranaten (VI) + Transurandioxid sowie durch Oxydation von XO_2/Me_2O -Mischungen wurden folgende ternäre Oxide mit fünfwertigem Transuran erhalten: Li₃XO₄(X = Np, Pu, Am), Na₃XO₄(X = Np, Pu, Am) und Li₇XO₆(X = Np, Pu, Am). Verbindungen des Typs MeXO₃ konnten nicht dargestellt werden. Oberhalb charakteristischer Temperaturen zersetzen sich die genannten Alkalitransuranate (V) zu XO₂ + Me₂O, wobei die thermische Stabilität in der Reihe Np–Pu–Am abnimmt. Im Falle des Na₃AmO₄ erfolgt die Zersetzung über Na₂AmO₃ als Zwischenprodukt. Chemische und strukturelle Eigenschaften der Alkalitransuranate (V) werden einzeln und im Vergleich mit den entsprechenden Uranaten (V) diskutiert.

Um weitere Vergleichsmöglichkeiten zu erhalten, wurden durch thermische Reaktion von Pa_2O_5 mit Me_2CO_3 folgende Alkaliprotactinate (V) dargestellt: LiPaO_3, Li_3PaO_4, Li_7PaO_6, NaPaO_3 (GdFeO_3-Struktur) und Na_3PaO_4(Li_3SbO_4-Struktur).

Abstract—The following ternary oxides, containing pentavalent transuranium elements, were obtained by thermal decomposition of alkali-transuranates (VI), by symproportionation of alkali-transuranates (VI) + transuranium-dioxide, and by oxidation of transuranium-dioxide-alkali-oxide mixtures: Li₃XO₄(X = Np, Pu, Am), Na₃XO₄(X = Np, Pu, Am) and Li₇XO₆(X = Np, Pu, Am). Compounds of the type MeXO₃ could not be synthetized. The above-mentioned alkali-transuranates (V) decompose into XO₂ + Me₂O above characteristic temperatures, the thermal stability decreasing in the order Np-Pu-Am. In the case of Na₃AmO₄, thermal decomposition leads to Na₂AmO₃ as an intermediate compound. The chemical and structural properties of the alkali-transuranates (V) are discussed and compared with the corresponding uranates (V).

To obtain further data in this line, the following alkali-protactinates (V) were prepared by thermal reaction of Pa_2O_5 with Me_2CO_3 : LiPaO₃, Li₃PaO₄, Li₇PaO₆, NaPaO₃(GdFeO₃-structure) and Na₃PaO₄(Li₃SbO₄-structure).

1. EINLEITUNG

IM RAHMEN von Untersuchungen über die thermische Stabilität von Alkalitransuranaten (VI) fanden wir bei mehreren ternären Oxiden, daß oberhalb charakteristischer Temperaturen Sauerstoffabgabe erfolgt unter Bildung von Reaktionsprodukten, die das Transuranelement in der fünften Wertigkeitsstufe enthielten.⁽¹⁾ In dieser Arbeit sollen die Ergebnisse der speziellen Untersuchungen über die Alkalitransuranate (V) besprochen werden, wobei weiterhin zum Vergleich noch einige Angaben über entsprechende ternäre Oxide des Pa(V) aufgeführt werden. Tabelle 1 enthält

^{*} Diese Arbeit wurde im Rahmen der Assoziation zwischen der Europäischen Atomgemeinschaft und der Gesellschaft für Kernforschung m.b.H. Karlsruhe auf dem Gebiet der schnellen Reaktoren durchgeführt.

⁽¹⁾ C. KELLER, L. KOCH und K. H. WALTER, J. Inorg. Nucl. Chem. 27, 1205 (1965).

die bisher bekannten ternären Oxide des fünfwertigen Urans mit Lithium und Natrium. Durch magnetische Untersuchungen an $LiUO_3$ und $NaUO_3$ wurde die fünfte Wertigkeitsstufe des Urans eindeutig bestätigt.⁽⁶⁾

Substanz	Struktur	Literatur	Gitterkonstanten (Å)			
Substanz	Shuktur	Enclatur	a	b	с	α
Li ₂ O·2U ₂ O ₅	Fluoritstruktur	2	10,70			
LiUO3	Ilmenitstruktur	2	5,901			54°36′
LiUO ₃	hexagonale Struktur	3	5,418		7,521	
Li ₃ UO ₄	tetragonale Kochsalz- Überstruktur	4,10	4,49		8,5	
Li7UO6	Li ₇ BiO ₆ -Typ	4				
NaUO ₃	orthorhomb. Perowskit	2	5,775	5,905	8,25	
NaUO ₃	rhomboedr. Perowskit	5	4,129	-		88°36′
Na ₃ UO ₄	Kochsalzstruktur	4	4,77			

TABELLE 1.-TERNÄRE OXIDE DES FÜNFWERTIGEN URANS MIT LITHIUM UND NATRIUM

2. DARSTELLUNGS- UND UNTERSUCHUNGSMETHODEN

2.1. Darstellungsbedingungen

Sämtliche Untersuchungen wurden mit Mengen von 5-20 mg stets in Glove-Boxen durchgeführt. Für die Darstellung der Alkalitransuranate (V) erwiesen sich folgende Reaktionswege als am vorteilhaftesten (X = Np, Pu, Am):

(a) Symproportionierung aus X(VI) und X(IV) z.B.:

$$Na_6NpO_6 + NpO_2 \xrightarrow{Vakuum-Ampulle}{8 h, 500^{\circ}C} 2Na_3NpO_4;$$

(b) Thermische Zersetzung von ternären Oxiden mit X(VI): die thermische Zersetzung von Alkalitransuranaten (VI) führt mit Ausnahme der Verbindungen des Systems Na_2O/NpO_3 zur Bildung von Alkalitransuranaten (V). Beispiele für diese Darstellungsweise sind:

$$\begin{array}{c} \text{Li}_{6}\text{NpO}_{6} \xrightarrow[4 \text{ h}, 900-1000^{\circ}\text{C}]{} \text{Li}_{3}\text{NpO}_{4} + 1,5\text{Li}_{2}\text{O} + 0,25\text{O}_{2}\\ \text{Na}_{4}\text{PuO}_{5} \xrightarrow[6 \text{ h}, 950^{\circ}\text{C}]{} \text{Na}_{3}\text{PuO}_{4} + 0,5\text{Na}_{2}\text{O}\\ \text{Li}_{6}\text{AmO}_{6} \xrightarrow[6 \text{ h}, 550^{\circ}\text{C}]{} \text{Li}_{3}\text{AmO}_{4} + 1,5\text{Li}_{2}\text{O} \end{array}$$

(c) Oxydation einer Mischung $Me_2O_y + XO_2$ bei (α) exakter Dosierung des Oxydationsmittels z.B.

$$Na_2O_2 + 2NpO_2 + 2Na_2O \xrightarrow{Vakuum-Ampulle}{8 h, 500^{\circ}C} 2Na_3NpO_4$$

 (β) strömendem Oxydationsmittel z.B.

$$3\text{Li}_2\text{O} + 2\text{AmO}_2 \xrightarrow{[\text{O}_2]}{8 \text{ h, } 600^{\circ}\text{C}} 2\text{Li}_3\text{AmO}_4$$

⁽²⁾ W. RÜDORFF, S. KEMMLER und H. LEUTNER, Angew. Chem. 74, 429 (1962).

- ⁽³⁾ L. M. KOVBA und A. N. GOLUBENKO, Zh. Strukt. Khim. 1390 (1960).
- (4) R. SCHOLDER und H. GLÄSER, Z. anorg. Chem. 327, 15 (1964).

⁽⁵⁾ E. A. IPPOLITOVA und L. M. KOVBA, Dokl. Akad. Nauk. SSSR 138, 605 (1961).

⁽⁶⁾ W. RÜDORFF und M. MEINZER, Z. anorg. Chem. 292, 197 (1957).

(d) Umsetzung von Li_3XO_4 mit Li_2O zur Darstellung von Li_7XO_6

$$\text{Li}_3\text{PuO}_4 + 2\text{Li}_2\text{O} \xrightarrow{\text{Vakuum-Ampulle}}{6 \text{ h, }600^\circ\text{C}} Li_7\text{PuO}_6$$

Die Reduktion der Alkalitransuranate(VI) mit Wasserstoff führt direkt zu X(IV), eine intermediäre Zwischenstufe mit X(V) wurde nicht beobachtet, obwohl die Darstellung einiger Uranate(V) durch Reduktion von Uranaten(VI) möglich ist.

Als beste Methoden zur Darstellung der einzelnen Alkalitransuranate (V) erwiesen sich für:

- Li_3NpO_4 : Methoden a + b;
- Li_7NpO_6 : Methode c(β) bei 900°C und geringem Sauerstoffpartialdruck,
- Na₃NpO₄: konnte nicht in reiner Form erhalten werden; die Präparate enthielten stets wechselnde Mengen NpO₂; das reinste Präparat ($\sim 5\%$ NpO₂) wurde nach Methode a erhalten;
- Li_3PuO_4 : Methoden b + c(β) bei 700-900°C,
- Li₇PuO₆ : konnte nicht in reiner Form dargestellt werden, das reinste Präparat wurde nach Methode d erhalten,
- Na₃PuO₄: Methoden b + c(β) bei 700–900°C,
- Li₃AmO₄: Methoden $b + c(\beta)$ bei 500-600°C,
- Li_7AmO_6 : Methode c(β) bei 750°C und geringem Sauerstoffpartialdruck,
- Na₃AmO₄: Methoden b + c(β) bei 700–800°C

Bei der Darstellung von Li₇XO₆ (X = Np, Pu) durch Oxydation einer XO₂/Li₂O-Mischung war die Anwendung eines geringen Sauerstoffpartialdruckes (~1 mm Hg) aus experimentellen Gründen notwendig. Im reinen Sauerstoffstrom bildet sich bei der gleichen Reaktion nur Li₃XO₄, das überschüssige Li₂O reagiert mit dem Tiegelmaterial (Au, Pt) unter Bildung von Auraten oder Platinaten. Bei geringem Sauerstoffpartialdruck sind diese ternären Oxide der Edelmetalle thermisch nicht stabil, sodaß das gesamte Li₂O(2-5 mg) für die Reaktion mit dem XO₂ zur Verfügung steht. Eine Verwendung von Sinterkorund- oder ThO₂-Schiffchen scheidet infolge Diffusion des Li₂O in das Tiegelmaterial aus. Derartige Nebenreaktionen spielen in der Festkörperchemie mit Makromengen nur eine untergeordnete Bedeutung, bei den Festkörperreaktionen im Mikromaßstab können diese Reaktionen jedoch ein falsches Bild vortäuschen. Für die Versuche mit geringem Sauerstoffpartialdruck wurde handelsüblicher Stickstoff mit etwa 1% Sauerstoff verwendet.

Zur Darstellung der röntgenografisch reinen Verbindungen Me_3AmO_4 und Li_7XO_6 mußte ein über dem berechneten Verhältnis X:Me liegender Anteil Me_2O verwendet werden, da die Präparate sonst noch die Reflexe von XO_2 bzw. Li_3XO_4 enthielten.

Die Darstellung der ternären Oxide des Protactiniums mit den Alkalien erfolgte durch thermische Reaktion stöchiometrisch eingewogener Mischungen aus $Pa_2O_5 + Me_2CO_3$ in Luft bzw. Sauerstoffatmosphäre bei 700–1000°C.

2.2. Analysenmethoden

Eine quantitative Analyse der dargestellen ternären Oxide war aus zuvor beschriebenen Gründen nur bei Li_3NpO_4 , Li_3PuO_4 und Na_3NpO_4 sinnvoll. Die Bestimmung des Neptuniums und Plutoniums erfolgte dabei gravimetrisch als XO_2 (Ergebnisse der Analysen siehe Tabelle 2). Die Wertigkeit des Transuranelementes in den Reaktionsprodukten wurde nach Auflösung der Substanzen in verdünnter Perchlorsäure durch Absorptionsspektrophotometrie mittels eines "Cary Model 14 Recording Spectrophotometers" bestimmt.

TABELLE 2.—ANALYSENDATEN FÜR $Me_3XO_4(Me = Li, Na; X = Np, Pu)$, dargestellt durch thermischen Abbau von Me_4XO_5 bei 900–950°C

Substanz	%XO _{2,5}	%Me ₂ O*	XO _{2,5} : Me ₂ O
Li ₃ NpO ₄	gef.: 86,4% NpO _{2.5}	13,6% Li ₂ O	1:1,46
	ber.: 86,07% NpO _{2.5}	13,93% Li2O	1:1,50
Li₃PuO₄	gef.: 86,2% PuO _{2.5}	13,8% Li ₂ O	1:1,49
	ber.: 86,16% PuO _{2.5}	13,84% Li2O	1:1,50
Na ₃ PuO ₄	gef.: 75,2% PuO _{2.5}	24,8% Na ₂ O	1:1,48
• •	ber.: 75,00% PuO _{2,5}	25,00% Na2O	1:1,50

* als Differenz zu 100%

Die Alkalineptunate (V) und –Plutonate (V) enthielten nach den Ergebnissen der Absorptionsspektrophotometrie > 98 % X(V), Li₃AmO₄ und Li₇AmO₆ > 96 % Am(V), während Na₃AmO₄(93 % Am(V)) einen scheinbar höheren Gehalt Am(III) besaß. Dieser scheinbare Gehalt ergibt sich durch die Reduktionswirkung von H₂O₂ (aus überschüssigem Na₂O₂ des Reaktionsprodukts) auf das Am(V) des gelösten Na₃AmO₄. Die röntgenografischen Aufnahmen wurden in 114,6 mm Debye-Scherrer-Kameras mit Cu_{Ka}-Strahlung durchgeführt. Die Auswertung der Röntgendiagramme erfolgte nach der asymmetrischen Methode von Straumanis, die Bestimmung der Gitterkonstanten nach den Angaben von NELSON-RILEY⁽⁷⁾ bzw. TAYLOR-FLOYD.⁽⁸⁾

3. ERGEBNISSE

3.1. Ternäre Oxide der fünfwertigen Transurane

3.1.1. Chemische Eigenschaften. Bei der festkörperchemischen Untersuchung des Systems $Me_2O/XO_{2.5}$ (Me = Li, Na; X = Np, Pu, Am) wurden nur ternäre Oxide der Zusammensetzung Me_3XO_4 und Li_7XO_6 erhalten. Dies ist insofern etwas überraschend, als die Uranate (V) des Typs $MeUO_3$ mit Ilmenit- bzw. Perowskitstruktur sehr stabil sind.

So ergab die Reaktion

$$XO_2 + 0.5 \text{ Me}_2O \xrightarrow{[O_2]}{400-900^\circ C}$$
 "MeXO₃"

nur die Bildung von Me_3XO_4 , während die restliche Menge XO_2 unverändert blieb. Ebenso führte die thermische Zersetzung von Me_3XO_4 nicht über eine Alkalioxidabgabe zu $MeXO_3$. Auch die Versuche, partiell $MeXO_3(X = Np, Pu)$ durch die Symproportionierungsreaktion

$$Me_4XO_5 + XO_2 \xrightarrow{Vakuum-Ampulle}{400-900^{\circ}C}$$
 "MeXO₃" + Me₃XO₄

zu erhalten, verliefen nicht in dieser Form. Demgegenüber führten die Versuche im System $PaO_{2.5}/Me_2O$ zu Ergebnissen, die mit denen im System $UO_{2.5}/Me_2O$ weitgehend übereinstimmen.

⁽⁷⁾ J. B. NELSON und D. P. RILEY, Proc. Phys. Soc. Lond. 57, 160 (1945).
 ⁽⁸⁾ A. TAYLOR und R. W. FLOYD, Acta Cryst. 3, 285 (1950).

Die Neptunate (V) und Plutonate (V) des Typs Me_3XO_4 sind gegen kaltes Wasser stabil. Dagegen bilden Li_3AmO_4 und Na_3AmO_4 mit Wasser molekulare Lösungen, die jedoch keine diskreten Absorptionsbanden zeigen. Allerdings ist die Löslichkeit von Me_3AmO_4 in Wasser gering. Die thermische Zersetzung der Alkalitransuranate (V) führt mit Ausnahme von Na_3AmO_4 selbst bei den niedrigst möglichen Reaktionstemperaturen direkt zu dem entsprechenden Transurandioxid. Bei der thermischen Zersetzung von Na_3AmO_4 zu AmO_2 bildet sich als Zwischenprodukt Na_2AmO_3 mit vierwertigem Americium.

Die thermische Stabilität der ternären Oxide nimmt ab in der Reihe Np-Pu-Am. Die Verbindungen des Natriums sind thermisch stabiler als die entsprechenden Li-Verbindungen, allerdings mit Ausnahme der ternären Oxide des Americiums gemäß den Reaktionsfolgen

und

$$Li_{3}AmO_{4} \xrightarrow{1000^{\circ}C} AmO_{2}$$
$$Na_{3}AmO_{4} \xrightarrow{s00^{\circ}C} Na_{2}AmO_{3}$$

Der Effekt, daß der Typ Li_3XO_4 ebenfalls eine höhere Stabilität aufweist als der Typ Li_7XO_6 liegt darin, daß die Zersetzung von Li_7XO_6 in der 1. Stufe durch die Verdampfung des abgespaltenen Li_2O erfolgt, sodaß das Gleichgewicht

$$Li_7XO_6 \rightarrow Li_3XO_4 + 2Li_2O$$

auf die rechte Seite verschoben wird. Eine Angabe über die Stabilität von X(V) in Li_7XO_6 in Sauerstoffatmosphäre ist daher kaum möglich. Die ternären Oxide des Systems $Li_2O-PuO_{2.5}$ zeigen eine etwas überraschende thermische Instabilität. Versuche zur Darstellung von Li_7PuO_6 durch Reaktion von $Li_3PuO_4 + Li_2O$ (Überschuß) bei 850°C in O₂-Strom ergaben stets das mit Li_7PuO_6 isotype Li_8PuO_6 mit vierwertigem Plutonium. Auch bei der Reaktion $Li_3PuO_4 + Li_2O$ bei 600°C in der evakuierten Ampulle wurde stets ein Abbau des Pu(V) zu Pu(IV) gefunden (Bildung von PuO_2). Da bei niedrigeren Temperaturen die Geschwindigkeit der Festkörperreaktion zu gering ist, konnte Li_7PuO_6 nicht in reiner Form erhalten werden. Eine Reindarstellung von Li_7AmO_6 –abgesehen von einem Li_2O –Überschuß- ist daher möglich, weil hier –infolge geringerer thermischer Stabilität des Am(VI)- die Darstellung schon bei 750°C in sauerstoffhaltiger Atmosphäre möglich ist.

3.1.2. Strukturelle Eigenschaften. Die ternären Oxide des Typs Li_3XO_4 (X = Np, Pu, Am) sind isotyp mit Li_3UO_4 , das nach Blasse (10) ein tetragonal-verzerrtes Kochsalzgitter mit einer 3:1-Ordnung der einwertigen und fünfwertigen Kationen besitzt. Die Gitterkonstanten dieser Verbindungen sind in Tabelle 3 aufgeführt.

Die Verbindungen des Typs Li_7XO_6 (X = Np, Pu, Am) zeigen nach Ausweis der Röntgendiagramme Isotopie mit Li_7BiO_6 , dessen Struktur ebenfalls von $BLASSE^{(10)}$ bestimmt wurde in Anlehnung an die Indizierung des Li_5ReO_6 von SCHOLDER und HUPPERT.⁽¹¹⁾ Die dementsprechend berechneten Gitterkonstanten für Li_7XO_6 (X = Pa, Np, Am) sind ebenfalls in Tabelle 3 enthalten. Eine einwandfreie Auswertung der Diagramme von Li_7PuO_6 , auf welchen ebenfalls die Reflexe von PuO₂ und

⁽⁹⁾ G. BLASSE, Z. anorg. Chem. 326, 44 (1963).

⁽¹⁶⁾ G. BLASSE, Z. anorg. Chem. 331, 44 (1964).

⁽¹¹⁾ R. SCHOLDER und K. HUPPERT, Dissertation K. Huppert T. H. Karlsruhe (1958).

Li₃PuO₄ enthalten waren, war nicht möglich. Berechnet man mit den Gitterkonstanten der Tabelle 3 das Molvolumen und setzt dieses Molvolumen gleich dem Raumbedarf des Sauerstoffs—was für Verbindungen mit Ionenradien der Metalle unter 0,9 Å durchaus gestattet ist⁽¹²⁾—so erhält man die in der letzten Spalte von Tabelle 3 angegebenen Werte. Der mit einem Ionenradius von 1,32 Å berechnete Raumbedarf des O^{2–}-Ions beträgt 18,4 (Å)³. Damit vergleichbare Werte wurden auch für nahezu alle Uranate und Transuranate (V + VI) erhalten;^(12,13) falls Abweichungen auftreten, dann höchstens zu höheren Werten des Raumbedarfs, jedoch nicht zu geringen Werten, wie sie stets für Li₇XO₆ gefunden wurden. Es ist daher zu vermuten, daß die angeführten Gitterkonstanten für Li₇XO₆ mehr denen einer Pseudozelle als denen der wahren Zelle entsprechen, da gleichfalls bei der Indizierung höherer Reflexe Schwierigkeiten auftreten (siehe z.B. auch in⁽¹²⁾).

Na₃NpO₄ und Na₃PuO₄ besitzen keine reine Kochsalzstruktur wie Na₃UO₄ (a = 4,77 Å),⁽⁴⁾ jedoch scheint eine niedersymmetrische NaCl-Überstruktur nicht ausgeschlossen. Etwas überraschend ist wieder, daß Na₃AmO₄ ein reines Kochsalzgitter besitzt mit $a = (4,75 \pm 0,01)$ Å, was gemäß (Na_{0,75}, Am_{0,25})O eine statistische Verteilung der Na⁺ und Am⁵⁺-Ionen auf die Gitterplätze des Na⁺ im Kochsalzgitter anzeigt. Überstrukturlinien, die eine geordnete Verteilung von Na⁴⁺ und Am⁵⁺ erforderlich machen würden, wurden nicht beobachtet.

Die Existenz von Na_3AmO_4 mit Kochsalzstruktur schließt das Vorliegen der in wässriger Lösung relativ stabilen AmO_2^+ -Gruppe im Festkörper aus.

3.2. Ternäre Oxide des fünfwertigen Protactiniums

Erste Untersuchungen zeigten, daß in den Systemen $PaO_{2.5}/Li_2O$ und $PaO_{2.5}/Na_2O$ mindestens folgende ternäre Oxide existieren:

- LiPaO₃ mit unbekannter Struktur,
- Li₃PaO₄ mit dem tetragonal verzerrten Kochsalzgitter des Li₃UO₄ (Tabelle 3);
- Li_7PaO_6 isostrukturell mit Li_7NpO_6 (Tabelle 3);
- NaPaO₃ mit orthorhombischer GdFeO₃-Struktur: $a = (5,82 \pm 0,01)$ Å; $b = (5,97 \pm 0,02)$ Å; $c = (8,36 \pm 0,02)$ Å;
- Na₃PaO₄ mit der tetragonal verzerrten Kochsalzstruktur ($a = b \sim \sqrt{2} \cdot a_K$, $c \sim 2 \cdot a_K$) des Li₃SbO₄⁽⁹⁾: $a = (6,86_5 \pm 0,01)$ Å; $c = (9,59_8 \pm 0,01)$ Å ($a/\sqrt{2} = 4,85_5$; c/2 = 4,80)

Überraschend an den Strukturen der Alkaliprotactinate (V) ist lediglich, daß LiPaO₃ nicht wie LiNbO₃ bzw. LiUO₃ Ilmenitstruktur besitzt. Tabelle 4 enthält die gefundenen sin² θ -Werte für LiPaO₃. Die aufgeführten ternären Oxide des fünfwertigen Protactiniums sind in Wasser und verdünnten Mineralsäuren unlöslich, d.h. es tritt Hydrolyse ein, wobei Pa₂O₅·aq als unlöslicher Niederschlag ausfällt. Nach Zusatz von Salzsäure + Flußsäure geht das hydrolysierte Pa₂O₅·aq jedoch in Lösung, ein äußeres Zeichen dafür, daß bei der Festkörperreaktion ein Aufschluß des Pa₂O₅ erfolgt. Schon MADDOCK und FLEGENHEIMER⁽¹⁴⁾ stellten fest, daß beim

⁽¹²⁾ C. KELLER, Kernforschungszentrum Karlsruhe, Bericht KFK-225 (1964).

⁽¹³⁾ L. M. KOVBA, Chim. i. Chim. Techn. (russ.) p. 220 (1960).

⁽¹⁴⁾ A. G. MADDOCK und J. FLEGENHEIMER Dissertation J. Flegenheimer Universität Cambridge, England (1959).

Die Reaktion der Transuranoxide mit Alkalioxiden----II

Verbindung	Citta	Gitterkonstanten (Å)				ρ (röntg.)	Raumbedarf
	Gittersymmetrie	а	с	α	c a	(g·cm ⁻³)	stoff-Ion
Li ₃ PaO ₄	tetragonal	4,52 + 0,01	8,48 + 0,01		1,88	6,06	21,7
L ₁₃ UO ₄	tetragonal	4,49 ± 0,01	8,46 ± 0,01		1,88	6,28	21,4
L ₁₃ NpO ₄	tetragonal	4,485 \pm 0,005	8,390 - 0,005		1,87	6,33	21,3
L ₁₃ PuO ₄	tetragonal	$4,464 \pm 0,002$	$8,367 \pm 0,005$		1,87	6,45	20,8
L ₁₃ AmO ₄	tetragonal	$4,459 \pm 0,005$	$8,355 \pm 0,01$		1,87	6,51	20,8
Li ₇ PaO ₆	hexagonal-	$5,55 \pm 0,02*$	15,84 ± 0,05		2,85		17,6
	rhomboedrisch	6,18 †		53°24′			
Li ₇ UO ₆	hexagonal-	5,52 ± 0,02*	15,80 ± 0,05		2,85		17,5
	rhomboedrisch	6,61 †		53 16'			
Li ₇ NpO ₆	hexagonal-	5,54 ± 0,02*	15,74 \pm 0,05		2,84		17,4
	rhomboedrisch	6,16 †		53°24′			
Li ₇ AmO ₆	hexagonal- rhomboedrisch	$5,54 \pm 0,02*$ $6,12 \dagger$	15,65 ± 0,05	53°50′	2,82		17,3

Tabelle 3.—Gitterkonstanten der ternären Oxide der Zusammensetzung Li_3XO_4 und Li_7XO_6

* hexagonale Gitterkonstanten.

† rhomboedrische Gitterkonstanten.

FABELLE	4SIN ² (9 -Werte	UND	RELATIVE	INTENSITÄTEN
FÜI	LiPaO ₃	$(Cu_{K\alpha} Stra$	ahlung	$z; \lambda = 1$,54178 Å)

sin² 0	Ι	
 0,0067	3	
0,0269	2	
0,0555	5	
0,0605	2	
0,0645	3	
0,0711	4	
0,0889	3	
0,1429	3	
0,1571	4	
0,1638	2	
0,1786	2	
0,1833	2	
0,1988	3	
0,2123	3	
0,2181	4	
0,2213	1	
0,2280	2	
0,2432	2	
0,2648	2	
0,2997	2	

Behandeln einer Na_2O_2/Pa_2O_5 -Schmelze mit Wasser die überstehende Lösung kein Protactinium enthält.

Als interessante Eigenschaft des LiPaO₃ ist festzustellen, daß dieses—im Gegensatz zu Li₃PaO₄ und Li₇PaO₆—starkes Eigenleuchten zeigt, sodaß Röntgenfilmaufnahmen nur nach Abschirmung dieser Strahlung erhalten werden konnten. Dieses Leuchten ist jedoch nicht durch Verunreinigungen bedingt, da das Reaktionsprodukt LiPaO₃ + Li₂O im Gegensatz zur physikalischen Mischung diese Eigenschaft nicht mehr zeigt. Dies schließt auch eine durch die Eigenradioaktivität des ²³¹Pa bedingte Lichterregung aus.

4. DISKUSSION

Die Untersuchungen über die Bildung von Alkalitransuranaten(V) zeigen im Vergleich mit den Uranaten (V) eine geringere Vielfalt der Reaktionsprodukte, da nur Verbindungen des Typs Me_3XO_4 und Li_7XO_6 erhalten werden konnten.

Während die thermische Zersetzung von Alkali-Uranaten (VI) nicht zu Uranaten (V) führt, sind---mit Ausnahme von Na_3NpO_4 --sämtliche Transuranate (V)--wenn auch nicht immer in reiner Form---durch thermische Zersetzung der Verbindungen mit X(VI) zu erhalten. Bei höheren Temperaturen ist bei den Alkaliuranaten (V) stets der Typ MeUO₃ stabil, die Alkalitransuranate(V) Me₃XO₄ zersetzen sich dagegen mit Ausnahme von Na_3AmO_4 direkt nach XO₂, wobei die thermische Stabilität erwartungsgemäß in der Reihe Np-Pu-Am abnimmt.

Die bisher erhaltenen Alkaliprotactinate(V) entsprechen in ihren Eigenschaften weitgehend den analogen ternären Oxiden des fünfwertigen Urans.

Anerkennungen—Herrn Prof. Dr. W. SEELMANN-EGGEBERT danken wir für die stetige Unterstützung dieser Arbeit, Herrn U. BERNDT für die Mithilfe bei den experimentellen Untersuchungen und der Deutschen Forschungsgemeinschaft für die Überlassung des Röntgengerätes "Kristalloflex II".