

Í

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Mai 1965

Gesellschaft für Kernforschung m. b.H. 347 Zentroibücherei

Institut für Angewandte Kernphysik

The Spin of the 2 sec Isomeric State of In

W. Ponitz

- 7. Okt 1965

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

1.E.1: 2.A.1

Ε

Gesellschaft für Kernforschung m.b.H. THE SPIN OF THE 2 sec ISOMERIC STATE OF Interei

W. PONITZ

Institut für Angewandte Kernphysik Kernforschungszentrum Karlsruhe

Received 17 November 1964

Abstract: The cross section ratios for the formation of the 2 sec and the 54 min isomeric states of In¹¹⁶ due to neutron capture in the three lowest resonances of the In¹¹⁶ compound nucleus were measured. A comparison of the results with the isomeric cross section ratios calculated by the γ -ray cascade statistics yields for the spin of the 2 sec state, a value $J_{m2} = 5$. The activation cross section for thermal neutrons was calculated from the isomeric cross section ratio in the 1.46 eV resonance to be $\sigma_{m2}(0.0253 \text{ eV}) = 81\pm8$ b.

NUCLEAR REACTIONS $In^{115}(n, \gamma)$, E = 1.4, 3.9, 9.1 eV; measured I_{γ} . In¹¹⁵ deduced $\sigma(In^{116} \text{ isomers})$. In¹¹⁶ deduced J. Natural target.

1. Introduction

Two isomeric states of indium 116 are known. The first isomeric state In^{116m1} $(T_{\pm} = 54.12 \text{ min})$ is a 5⁺ state ^{1,13}) with an excitation energy ²) of about 108 keV. This state decays by β -radiation to excited states of Sn¹¹⁶. The second isomeric state ^{3,4}) In^{116m2}($T_{\pm} = 2.16$ sec) decays by 163 keV γ -transitions to In^{116m1}. From the E3 character of this isomeric transition it has been concluded that this is a 8⁻ state. The spin value 8 was confirmed by the agreement between the excitation cross section of the 2 sec state for thermal neutrons measured by Fettweis 5) and the calculated one obtained by the cascade statistics theory from Huizenga and Vandenbosch⁶). However, the approximately 20 times larger cross section measured by Alexander et al.⁴) is only compatible with smaller spin values. In order to determine which of the two measured cross sections σ_{m2} is more accurate and to get urther information on the spin value of the second isomeric state of indium 116, he cross section ratios σ_{m2}/σ_{m1} in the three lowest resonances of the indium 116 compound nucleus were measured in the present work. In the first resonance 7) E = 1.46 eV), σ_{m2}/σ_{m1} was determined by two different methods. For the second and third resonances ⁷) (E = 3.9 and 9.1 eV), the isomeric cross section ratios were neasured relative to that in the first resonance.

2. Experimental Procedure and Results

Metallic indium foils were irradiated with neutrons of \approx 1.4, 3.9 and 9.1 eV using crystal spectrometer at the Karlsruhe reactor FR2. The γ -activity of the foil was

counted in a $10.2 \text{ cm} \times 15.2 \text{ cm} \text{ NaI(Tl)}$ crystal either with a single- or a 256-channel analyser.

2.1. DETERMINATION OF $(\sigma_{m2}/\sigma_{m1})_{1st res}$

For the determination of $(\sigma_{m2}/\sigma_{m1})_{1st res}$, the γ -ray spectra after irradiation times of 10 sec or 20 min were measured for several runs. The cross section ratio can be obtained from the counting rates N in the photopeaks of the 163 keV γ -rays and the γ -rays of one transition in the Sn¹¹⁶ spectrum in the following way:

$$\sigma_{m2}/\sigma_{m1} = \left(\frac{N}{\eta_{\gamma}P_{\gamma}\varepsilon fT}\right)_{2\,\text{sec}} \left/ \left(\frac{N}{\eta_{\gamma}P_{\gamma}\varepsilon fT}\right)_{54\,\text{min}} \right.$$
(1)

Here f is the γ -ray intensity per decay for the transition considered, η_{γ} the total detection efficiency of the NaI(Tl) crystal and P_{γ} its peak-to-total ratio⁸). The factor ε represents the γ -absorption in the foil⁹) and T is a factor dependent on irradiation and counting time. From the internal conversion coefficients ¹⁰) for the isomeric transition a value of f equal to 0.37 ± 0.03 was calculated. Eq. (1) was evaluated for the 408, 1085 and 1270 keV γ -peaks of the 54 min spectra. This yields the average value

$$(\sigma_{\rm m2}/\sigma_{\rm m1})_{\rm 1st\ res} = 0.52 \pm 0.05.$$

The error is mainly due to the errors of f.

Another determination of the cross section ratio was made by observing the increase of the Sn^{116} γ -activity in the first few seconds after a short-time irradiation due to the decay of the second to the first isomeric state. The counting rate of the 1085 and 1270 keV peaks after a 2 sec activation was measured. Thus the counting rate is

$$N(t) \approx A \mathrm{e}^{-\lambda \mathrm{m} \mathrm{1}t} - \mathrm{e}^{-\lambda \mathrm{m} \mathrm{2}t},\tag{2}$$

where A is related in a straightforward manner with σ_{m2}/σ_{m1} . The evaluation of eq. (2) yields

$$(\sigma_{\rm m2}/\sigma_{\rm m1})_{\rm 1st \ res} = 0.49 \pm 0.05$$

In this case the error depends mainly on statistical fluctuations of the counting rate.

2.2. RELATIVE DETERMINATION OF $(\sigma_{m2}/\sigma_{m1})_{2nd res}$ AND $(\sigma_{m2}/\sigma_{m1})_{3rd res}$

In order to determine σ_{m2}/σ_{m1} in the second and third resonance relative to the first resonance, the γ -rays with energies above 100 keV were measured after an irradiation time of 20 sec. These data allow the deduction of the ratio of γ -ray intensities of the decays of the 2 sec and 54 min isomeric states, respectively. The counting probabilities are eliminated by relating the ratio to that in the first resonance. The results are

$$\begin{aligned} (\sigma_{m2}/\sigma_{m1})_{2nd res}/(\sigma_{m2}/\sigma_{m1})_{1st res} &= 0.98 \pm 0.06, \\ (\sigma_{m2}/\sigma_{m1})_{3rd res}/(\sigma_{m2}/\sigma_{m1})_{1st res} &= 0.93 \pm 0.09. \end{aligned}$$

3. Discussion

It is possible to calculate the isomeric cross section ratios from the γ -ray cascade statistics ⁶). For this cascade model it is assumed that only E1 transitions occur and that the transition probability is proportional to the spin-dependent part of the nuclear level density $\rho(J)$ only, where

$$\rho(J) = \rho(0)(2J+1)\exp(-(J+\frac{1}{2})^2/2\sigma^2), \tag{3}$$

where $\rho(0)$ is the level density at the spin J = 0, σ is the spin cut-off parameter. One assumes furthermore that after $\overline{N}_{\gamma} - 1$ transitions of E1 character the last one follows with the lowest spin differences to the final states (\overline{N}_{γ} is the average multi-

Fig. 1. Comparison of calculated and measured isomeric cross section ratios.

plicity of the γ -ray cascade). In order to compare the experimental results with those of the cascade theory, the values $\overline{N}_{\gamma \, 1st \, res} = 4.4$ and $\overline{N}_{\gamma \, 2nd \, res} = 5.6$ (ref. ¹¹)), compound state spin values $J_{1st \, res} = 5$ and $J_{2nd \, res} = 4$ (ref. ¹²)) and the final state spin $J_{m1} = 5$ (refs. ^{13, 14}) were used. The isomeric cross section ratios were calculated for the two limiting values $\sigma = 2$ and $\sigma = 5$ of the spin cut-off parameter ¹⁵).

The ratio $(\sigma_{m2}/\sigma_{m1})_{2nd res}/(\sigma_{m2}/\sigma_{m1})_{1st res}$ thus calculated for various spin values of the 2-sec isomer is shown in fig. 1 and it is seen that the experimental value is compatible with a spin value $J_{m2} = 5$. The value of $(\sigma_{m2}/\sigma_{m1})_{1st res}$ itself allows us to determine the spin of the 2 sec state only by additional use of the value of $(\sigma_g/\sigma_{m1})_{1st res}$ measured by Albold ¹⁶) where σ_g is the formation cross section ^{17, 1}) for the ground state In^{116g}($T_{\pm} = 14.10$ sec). By this alternative method, which was previously used by Alexander *et al.*⁵), $J_{m2} = 5$ was found, in agreement with the result of the method discussed above.

The spin value 5 was assigned with the aid of a statistical theory which does not take into account individual properties of states and transitions. It would be possible to consider the influence of the low-lying states of the compound nucleus as was done in calculations of γ -ray spectra ¹⁸), but low-lying states of In¹¹⁶ and their γ -ray transitions have not been previously investigated. However, agreement between measured and calculated isomeric cross section ratios was observed in many cases ^{6, 19-21}). Furthermore, in this special case of equal final state spin values the assumption of E1 transitions in the γ -ray cascades is no restriction, as is easy to see.

Due to the overall constancy of the ratio σ_{m2}/σ_{m1} within experimental error, σ_{m2} for thermal neutrons can be calculated using σ_{m1} from earlier measurements with thermal neutrons ¹). The result is

$$\sigma_{m2} (0.0253 \text{ eV}) = 81 \pm 8 \text{ b}.$$

This is in agreement with $\sigma_{m2}(0.0253 \text{ eV}) = 92 \pm 14$ b measured by Alexander *et al.*⁴) and disagrees with $\sigma_{m2}(0.0253 \text{ eV}) = 4 \pm 1.5$ b measured by Fettweis⁵)

References

- 1) K. H. Beckurts et al., Nucl. Sci. Eng. 17 (1963) 329
- 2) J. Colard et al., J. Phys. Rad. 21 (1960) 863
- 3) P. H. Heckmann et al., Z. Phys. 163 (1961) 451
- 4) K. F. Alexander et al., Phys. Lett. 4 (1963) 302
- 5) P. Fettweis, Phys. Lett. 3 (1962) 40
- 6) J. R. Huizenga and R. Vandenbosch, Phys. Rev. 120 (1960) 1305
- 7) D. J. Hughes and R. B. Schwartz, BNL 325 (1958) p. 47
- 8) C. Weitkamp, Nucl. Instr. 23 (1963) 13
- 9) G. W. Grodstein, National Bureau of Standards Circular 583 (1957)
- L. A. Sliv and I. M. Band, Coefficients of internal conversion of gamma radiation (USSF Academy of Sciences, Moscow, Leningrad, 1956)
- 11) J. E. Draper and T. E. Springer, Nuclear Physics 16 (1960) 27
- 12) A. Stolovy, Phys. Rev. 118 (1960) 211
- 13) L. S. Goodman and S. Weber, Phys. Rev. 108 (1957) 1524
- 14) P. B. Nutter, Phil. Mag. 1 (1956) 587
- 15) M. Bormann and H. Neuert, Forts. Phys. 11 (1963) 277
- 16) E. Albold, to be published
- 17) A. Ducat and R. H. Thomas, Nuclear Physics 15 (1960) 525
- 18) E. S. Troubetzkoy, Phys. Rev. 122 (1961) 212
- 19) K. F. Alexander and H. F. Brinckmann, Ann. der Phys. 12 (1963) 225
- 20) B. Keisch, Phys. Rev. 129 (1963) 769
- 21) S. K. Mangal and P. S. Gill, Nuclear Physics 41 (1963) 372