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Introduct ion 

For t he  last twelve years, there  has been an increasing i n t e r e s t  i n  the  use 

of pulsed so&ces techniques f o r  the  study of neutron migration, thermalization.  

and absorption i n  matter. For instance, about twenty d i f fe ren t  determinations of 

t he  di f fus ion parameters of ordinary water and ice ,  more than t h i r t y  experiments 

on various "organic" moderators - many of them as a function of temperature - and 

nine experiments on graphite have been published. Many of t he  da ta  determined i n  

t h i s  way a re  i n  disagreement and it appears doubtful i f  t h e i r  use i n  reactor  de- 

s ign  has j u s t i f i ed  t h i s  b ig  e f fo r t .  There is  no doubt, however, t h a t  these s tud ies  

have - probably more than any other c lass  of experiments - contributed t o  improve 

our understanding of the  k ine t i c  behaviour of neutrons i n  matter. I n  par t icular ,  

they have stimulated important developments i n  t ranspor t  and thermalization theory 

some of which w i l l  be reviewed a t  t h i s  conference [I]. Furthermore, neutron kinet-  

i c s  s tud ies  with pulsed sources have proved t o  be a useful  - and ra ther  inexpensive - 
f i e l d  f o r  student t r a i n ing  and i n  f a c t  a growing percentage of the  work is  being 

oarried out a t  univers i ty  laborator ies .  Finally,  the good success which the  pulsed 

source technique is  having fo r  r e ac t i v i t y  determinations on reaetor  systems would 

probably not have been encountered without t he  important developments i n  instrumen- 

t a t i o n  and analys is  techniques achieved during the  ea r ly  s tud ies  on non-multiplying 

media. 



I n  t h i s  paper we sha l l  t r y  t o  sumrnarize some recent.developments i n  t h i s  

f i e l d ,  especial ly t o  review the  Progress made since the  l a s t  major in ternat ional  

conference which was held a t  Brookhaven i n  1962 [2/. We s h a l l  mainly deal  with 

decay rneasurements on therrnalized neutron f i e l d s  (section 2) t o  &ich by f a r  t he  

biggest research ac t i v i t y  has been devoted. I n  section 3, t r ans ien t  phenomena i n  

moderators - i.e. experirnents t o  measure slowing-down and therrnalization times - 
w i l l  be considered. Section 4 w i l l  deal  with the  f a i r l y  new f i e l d  of "quasi- 

asymptotic" decay of monoenergetic neutron f luxes i n  heavy sca t t e r ing  substances. 

T h i s  is not a repor ter  type conference, arid a considerable number of inäivid- 

ual  contributions are  t o  be presented. In  order not t o  an t i c ipa te  too much the  

following Papers we sha l l  r e s t r i c t  ourselves t o  areas which w i l l  no t .be  otherwise 

covered. The paper w i l l  therefore be f a r  from a complete survey. 

The Decay of a Thermalized Neutron Field 

Under ce r ta in  l imitat ions,  which a re  now f a i r l y  well understood theore t i ca l ly  

[3], a thermalized neutron f i e l d  i n  a rnoderator is i n  a t r ue  asymptotic state and 

decays s t r i c t l y  exponentially with time. The c lass ica l  approach is t o  measure the  

time constant Cr of t h i c  decay and to corre la te  it with t he  geometrical buckling B* 

of the  assernbly. The resu l t ing  Cr vs. arrve is  analysed i n  terms of the  di f fus ion 

parameters of the  rnoderating material. Instead of varying the  s i z e  of t he  system, 

one a l so  van vary the  concentration N of an added non-l/v absorber; analysing t h e  

resu l t lng  cx vs. N curve yie lds  parameters charac te r i s t i c  f o r  the  thermalization 

propert iec of the  sca t t e r ing  medium. There a re  closely r e l a t ed  s ta t ionary tech- 

niques, i .e.  measurement of the  diffusion length as  a function of concentration 

of a l/v o r  non-l/v absorber. The a vs. method is hampered by th ree  bas ic  

d i f f i c u l t i e s :  The first of them is a purely experimental one, viz., the  precise 

determination of Cr i n  the  presence of non-asymptotic neutrons and background. The 
second problem is a theore t i ca l  one and consists  i n  the  calcuia t ion of t he  geo- 

metrical  buckling from the  given dimensions of the  sca t t e r ing  medium. Thirdly, 

the re  i s  t he  problern of analysing the  a vs. curve properly. The d i f f i c u l t y  t o  
define the  geometrical buckling does not necessari ly a r i s e  i n  cr vs. N o r  s ta t ion-  

ary poisoning experiments since they can be perforrned on nearly i n f i n i t e  media. 

The other two problems, however, a r i s e  i n  both l a t t e r  techniques i n  an analogous 

f orrn . 



2.1 Problems a r i s i ng  i n  CY determinations. 

Due t o tk i r ex t r eme ly  good thermalization properties, an asymptotic spectrum 

is rapidly  established i n  hydrogenous moderators. " ~ a i t i n g  time" problems thus 

do not ser iously  e f f ec t  ~2 measurements i f  care is  taken t o  eliminate higher s p a t i a l  

modes. Room re tu rn  background can be annoying but t he  assemblies can be ea s i l y  shield- 

ed since thej! tend t o  be qui te  small. Another source of backgrouna, a s  noted by 

S i l ve r  B], rnay be photoneutrons from the  decay of 7.35 sec  N~~ produced by the  

0 l 6 ( n , p ) ~ I 6  react ion on t he  oxygen present i n  water. This react ion has a threshold 

a t  9.6 MeV and w i l l  occur i f  the  neutron source employs the  H3(d,n)He4 reaction.  

Other authors d id  not f i nd  t h i s  background troublesome; it can cornpletely be elimi- 
2 nated by use of a H ( d , n ) ~ e ~  or  other low energy neutron source. Using lower energy 

sources has the  advantage t h a t  shielding against  roorn re tu rn  neutrons becomes simpler, 

and it is f o r  t h i s  reason t h a t  Ogrzewalski e t  a l .  [5] used a f a s t  chopper a t  a 

research reactor  a s  a neutron source. It should be kept i n  mind, however, t h a t  the  

elirnination of higher s p a t i a l  rnodes w i l l  be the  more d i f f i c u l t  the  lower the  source 

neutron energy is. 

The s i t ha t i on  i s  qu i te  d i f fe ren t  i n  crys ta l ine  moderators l i k e  beryllium and 

graphite where t he  trapping of low energy neutrons creates  a ser ious  l i m i t  beyons 

which the  decay constant cannot grow. This l imi t ing  value, l i m  V C„ i s  anout 
V - 0  

2600 sec-' i n  graphite and 900 sec-' i n  beryllium; the  correspondingrcri t ical  

values of t h e  buckling a re  about 15 1om3 and 40 10-) respectivelg.  

The above f igures  f o r  l i r n  V C a re  based on very old  measurements of the  scat -  
V - 0  t 

t e r i ng  Cross sect ion below the  Bragg cutoff and rnay therefore be greatly i n  e r ro r  

[U. Nevertheless, it is obvious t h a t  a t  very high bucklings no clean asymptotic 

rnode w i l l  ex i s t .  This is  borne out i n  Fig. 1 where the  decay of the  neutron aensfty 

i n  a beryllium block of = 73 10 '~  i s  plot ted  according t o  Fullwood, 

Slovacek and Gaerttner fi]. The decay i s  nearly exponential a t  t ims between 

and 700 usec a f t e r  the  pulse in jec t ion  but tends t o  be slower l a t e r  On. I n  order / 
t o  demonstrate t h a t  t he  l a t t e r  e f f e c t  cannot be a t t r ibu ted  t o  improper backgrourid 

substraction,  these  authors measured i n  t he  same setup the  neutron decay i n  a 

polyethylene assernbly whose s i z e  was chosen t o  give approximately the  same decat. 

r a t e .  This showed up t o  be purely exponential a s  may be Seen i n  Fig. 1. A s i m i l a r  

experirnent on a srnall graphite s tack was performed by K'iichle B]. He folz?~? a 

similar deviat ion from a pure exponential decay but the  s t a t i s t i c a l  zccuracy of the 

data  was not su f f i c i en t  t o  back up any far-reaching conclusion. 



Being aware of these d i f f i cu l t i e s ,  most recent experimenters on c rys ta l l ine  
2 

media have confined t h e i r  measurements t o the  low B range. They have a l so  estab- 

l i shed c r i t e r i a  i n  order t o  make Sure t h a t  the  observed decay corresponds t o  a 

t r u e  asyrnptotic s t a t e .  Especially, the  waiting time which mustelapse a f t e r  t he  

pulse in jec t ion  before the  evaluation of the  decay curve f o r  CX may begin has been 

determined by several  groups working on graphite 19 - lg. Fig. 2 shows the  

waiting time required t o  obtain good exponential decay i n  graphite according t o  

Serdula 1121. 

Recently,there is some confl ict ing information. Davis, de Juren and Reier 

(lg have used a paraff in  shie ld  around t h e i r  graphite s tacks  i n  addit ion t o  the  

usual cadmium lining.  Furthermore, t h e i r  experimental area w a s  shielded by walls  
3 of C- f i l l e d  with borated water. Using a $ (d ,n )~e  neutron source and co l l i -  

mating these neutrons d i rec t ly  on t h e i r  graphite assemblies i n  order t o  avoid 

d i r ec t  leakage of source neutrons i n to  the  experimental area, Davis, de Juren and 

Reier obtained clean exponential decay curves a f t e r  waiting times of 1 msec o r  l e s s  

even a t  bucklings as  high as  10 1 0 - ~  -They s t a t e  t h a t  "waiting times prob- 

ably are  an a t i f a c t  of the shielding and the  i n i t i a l  neutron energy ra ther  than 

a property of a graphite stack i n  space". Zhezherun e t  a l .  [14] were able t o  

observe clean exponential decays over up t o  four decades i n  beryllium systems at 
4 bucklings up t o  110 1 0 - ~  This corresponds t o  C1 values up t o  10 sec-', 

i .e .  f igures  highly above the  c r i t i c a l  l i m i t  s t a t ed  before! This is i n  d i r ec t  

contradict ion t o  the  above mentioned experiment of the  R.P.I. group and a l so  vio- 

l a t e s  the  c r i t i c a l  l i m i t  theorem t o  an extent which would be d i f f i c u l t  t o  explain 

from ineccuracies i n  the measured low energy Cross section. 

2.2 On the  def in i t ion  of the  geometric buckling. 

Defining the geometrical buckling i s  done i n  a most straightforward manner 

i f  the  f u l l  space-time d i s t r ibu t ion  can be measured and analysed i n  terms of 

Fourier modes. Such measurements are  conveniently performed on ra ther  large  

systems. Experiments on graphite [12, 127 have proved t h a t  t he  r e l a t i on  

d = *V is a very good approximation f o r  the  extrapolated endpoint, i rrespec- 

t i v e  of the  buckling. For very small water systems, a strong dependency of the  

extrapolated endpoint on the  s ize  and shape of the sca t t e r ing  medium is borne out 
2 by the  remarkable differentes i n  the  a vs. B curves measured on " f l a t "  and on 

"cubic" systems L15 - 1_87 whose bucklings were calculated using the  simple formula 
2.13 D. d = 7 . Theoretical calculat ions of the  extrapolated endpoint i n  H 0 show 

2 2 
t h a t  it decreases with increasing B due t o  the  di f fus ion cooling e f f ec t  [lg; 



these  calculat ionc have par t ly  been ver i f i ed  by experiments [18]. However, i n  

order t o  explain t he  rneasured discrepancies on f l a t  and on cubic systems, the  

extrapolated endpoint had t o  increase again considerably a t  high bucklings. An 

increase of the  extrapolated endpoint f o r  very t h i n  s labs  has indeed been pre- 

d ic ted from an exact one-group theory treatrnent of the  one-dimensional case [20, 

211. Also, it is known t h a t  i n  one-group theory, i n  the l i m i t  of very small 

dimensions s labs  and spheres show a qui te  d i f fe ren t  behaviour of the  decay con- 

s t an t .  I n  order t o  resolve the  discrepencies observed on srnall water systems, a 

rnultigroup t ranspor t  theory treatment of the  three-dimensional case would be of 

great  help. Unfortunately, d i r ec t  rneasurernents of t he  space - time neutron 

S i s t r ibu t ion  i n  these very srnall systems a re  not possible f o r  experimental reasons. 

2 2.3 Analysis of a vs. B measurernents. 

2 The usual prccedure of evaluating rneasured a vs. B curves is t o  approxirnate 

thern by a n  expression 

by a l e a s t  Square f i t t i n g  method. Sorne authors use weight fac to rs  on the individual  

Cx values (preferably c 1/ai2) i n  order t o  take care of t h e i r  varying accuracy, 
i 

others  do not. It has been noted several  times t h a t  the  diffusiori parameters 

derived i n  t h i s  way may vary by several  times the  rnost probable s t a t i s t i c a l  e r r o r  
2 

according t o  the  length of the  B in te rva l  used, t he  way i n  which weight fac to rs  
6 were applied, o r  according t o  whether a B form was included or not. This is 

2 especia l ly  the  case i n  graphite where the  a vs. B curves rneasured by some authors 

were i n  agreernent whilst the  derived di f fus ion parameters were not. The rnost 

popular explanation f o r  these  discrepancies i s  t h a t  the  above procedure r e s u l t s  i n  
2 a "global" f i t  which represents the  h o l e  rneasured a vs. B region i n  the  bes t  

possible way, thus not y ie lding necessari ly the  rnost probable d i f fus ion parameters. 

Several authors have therefore  used d i f fe ren t  evaluation procedures. For instance, 

i f  the  absorption Cross sect ion i s  known, t he  simpler r e l a t i o n  

is  f i t t e d  t o  Lhe corrected data.  Other authors use i t e r a t i v e  procedures where the  

weight given t o  an experimental point i s  dependent on the  influence which the  

di f fus ion parameter t o  be deterrnined has on (2. Most of tnese procedures, however, 

do not seern t o  be f r e e  of ambiguities, and f o r  the  time being the  author would 

prefer  a l e a s t  Squares f i t t i n g  accordirg t o  equ. (1) with appropriate weighing of 

the  individual  points. 



I n  view of these d i f f i cu l t i e s ,  the  proposal has been made t o  compare 
2 measured u: vs. B curves - a f t e r  the elementary correction f o r  density and 

temperature deviations - d i r ec t l y  among themselves o r  with the  theore t i ca l ly  

predicted curves. Apart of the  f a c t  t ha t  experimentalists w i l l  not l i k e  t h i s  

proposal s ince they want t o  produce meaningful physics data  instead of unana- 

lysed curves, there  are several  objections against t h i s  procedure: Our main 

i n t e r e s t  i n  these comparisons i s  t o  See the  e f fec t  of d i f fus ion cooling, i .e.  

t h e  deviat ion of the  data  from the  s t ra igh t  l i n e  behaviour. We a i m  a t  a 

theore t i ca l  predfction of these e f fec t s  ( i .e .  of the  coeff ic ients  C and F) to,  

say, 15 - 25 $. I n  order t o  rea l i ze  these small differences between measured 

and predicted di f fus ion cooling by d i rec t  comparison of calculated and measured 
2 

CY vs. B curves, the  accuracy of the  theore t i ca l  value of D. must be very high, 

say, 1 $. This high accuracy i n  the theoret ica l  predict ion of D. seems d i f f i c u l t  

t o  reach, especial ly i n  c rys ta l l ine  moderators where t he  sca t t e r ing  Cross sect ion 

may vary s l i gh t l y  according t o  varying grain s ize .  For t he  l a t t e r  reason, d i r e c t  

comparisons between various experimental curves may show a l a rger  disagreement 

i n  the  amount of d i f fus ion cooling than actual ly  ex i s t s .  I n  l i qu id  moderators 

with a well-defined chemical composition, comparisons between experimental curves 

are  reasonable whereas comparisons with theory may be hampered by inaccurate . 

knowledge of Do. 

2.4 Some recent data  on ordinary water. 

Some r e s u l t s  of previous experiments are  p lot ted  i n  Fig. 3 .  Shown a t  
2 1 2 B > 0 a re  the  r e s u l t s  of pulsed experiments by Küchle [15]. A t  (= - B ) 0, 

t h e  r e s u l t s  of a careful  poisoning experiment by S t a r r  and Koppel A6;1 are  plotted.  

It had been assumed so  f a r  t h a t  measurements i n  the  upper l e f t  quadrant of t h i s  

coordinate system were not possible. However, a s  Joes t  and Memrnert [24] have 

pointed out, t h i s  region is  accexXble t o  experiments by measuring the  di f fus ion 

length L i n  a non-stationary neutron f i e l d  which is  excited by a neutron source 
-C& - 

with a time behaviour S ( t  ) e , 0 = Qi r vC . Their statement is easy t o  
a -m prove: Assume an i n f i n i t e  medium with a plane source S ( t  ) - e a t  z = o. Than 

i n  d i f fus ion  theory approximation, the  flwc 0 ( ~ , t , z )  w i l l  be governed by 

where H is t h e  thermalization Operator. Since cr: C vC t h e  homogenous solutionc; 
a J 

of equ. (3 )  w i l l  decay f a s t e r  than the  source term and t h e  asymptotic time behaviour 



-C& 
of the  neutron f l u x w i l l  be -ea. Putt ing O(E,t,z) = @(E,=) e , we 

obt a i n  

which is iden t ica l  t o  a s ta t ionary di f fus ion problem i n  a moderator with 

C " = C - cl/v. It is thus Seen t h a t  the  t r i c k  of using an exponentially 
a a 

decaying source expands t he  region of poisoning experiments r ea l l y  u n t i l  

Arai and Küchle [23] have recently performed measurements of t h i s  type on 

water. I n  order t o  r ea l i z e  an exponentially decaying source, they used a g a p h i t e  

assembly together with a large  water r e f l ec to r  (Fig. 4) .  The neutrons from a 

14 MeV source were in jected i n to  t h e  graphite stack whose s i ze  was such t h ~ t  - 
a f t e r  die-away of t he  t rans ien t s  - the  composite system decayed with a time 

constant a: (V C ) 
a H20b The neutron density w a s  measured i n  the  H 0 as  a 

2 
function of distance from the  graphite - H 0 Interface  with a small BF counter. 

2 3 
Time gates were used i n  order t o  suppress the  t ransients .  ?he resu l t ing  decoy 

is exponential with distance and - a f t e r  a small correction f o r  l a t e r a l  leakage - 
yields  t he  di f fus ion length of t he  time-deaayhg neutron f i e ld .  The resu l t ing  

values of 1/i2 as  a function of u: are  included i n  Fig. 3 .  The f u l l  curve is  the 

r e s u l t  of a least-squares 4-parameter f i t  of a l l  t h e  data. Tne corresponding 

di f fus ion parameters are  (at 20' C) 

vC = 4782+ 15 sec-' 2 
a - D. = 35,630 + 80 cm sec-' - 

4 C = 3420 + 170 cm sec-' 6 -1 F = 214 + 139 cm sec - 
The high s t a t i s t i c a l  accuracy of these parameters indicates  a good in te rna i  

consistency of the  data, t h e  authors nevertheless recornrnend t o  increase t h o  

e r ro r  l i m i t s  by a fac tor  of three.  I n  t ab le  1, these data are  compared with 

various recent calcuiat ions of the  di f fus ion parameters f o r  H 0. 
2 

Table 1 Measured and calcuiated di f fus ion parameters 

i n  H20 a t  20' C 

~ ~ ( c m ~ s e c - l )  

37,045 

37,570 

remarks 

calculated by Ghatak and 
Honeck E55 using Nelkin 
model 

calculated by Clendenin 
[26] using Nelkin modell) 

C (cm4sec-I) 

3361 

3380 

6 F (cm sec-') 

169 

210 



Rom a n  inspection of the table, the following conclusions can be 
2). drawn . 

calculated by Clendenin 
using Radkowski model 

calcuiated by 'Xallfelz 
[$?i'"' using Goldman - 
Nelkin model 

calculated by Kallfelz 
1227 using the Haywood - 
Thorson scattering law 

Experiment of Arai and 
Küchle [23] 

calculated by Springer 
e t  al .  [29] from Cs(E) 
and Ü (E) 

/ 

38 J 230 

37,400 

33,900 

35 J 630 
+ 80 - 

35,300 
+ P  - 

a)  The diffusion cooling coefficients predicted using e i ther  the 

Nelkin or the Goldman-improved Nelkin model a,gree very well among 

2770 

3350 

3080 

3420 2 170 

- 

themselves and with the prediction derived from the experimental 

scattering law of water. A l l  these predictions are i n  good 

agreement with the experimental value. 

2 50 

144 

218 

214 f: 139 

- 

P 

b) The diffusion coefficient as predicted by the Nelkin model is  

about 4 - 5 $ higher than the experimental value. A s  Koppel and 

Young [2u have pointed out, the agreement between the Nelkin model 

prediction and the measurement of neutron Cross sectioncand spectra 

i n  H 0 is  considerably improved i f  the anisotropy of the rnolecular 
2 

vibrations is accounted for  i n  the model. Their modification of 

the Nelkin model reduces the predicted D. by about 4 $J i.e. practi- 

cally removes the discre.pancy between experiment and theory completely! 

These calculatio s were done a t  23'~. The value of D was therefore 9 decreased by 400 Cm sec''; C and F were not corrected. 0 

2, It was shown by Arai that  the experimental diffusion par-ters change only 
very s l ight ly  if instead of Küchle's pulsed data, those of Lopez and Beyster [lg 
are uced. Also, no large change occurs i f  the region > 0.4 cm-2, where the 
discrepancies i n  the vs. B2 curves have been observed, is  not used for  the 
evaluation procedwe. 



The diffusion coefficient as derived from the experimental scattering 

law for  water is  about 4 $ lower than the dlrect ly  measured value. This 

discnepancy ik not very disturbing i n  view of the f ac t  t ha t  DO depends 

very c r i t i ca l ly  on the low 13 portion of the s ( ~ T ,  B) function which 1s 

d i f f i cu l t  t o  measure accurately, Springer e t  al, [2g caref'ully rneacured 

/ Ü (E), the average cosine of the scattering angle as a m c t i o n  of inci- 

dent energy, and computed D. from Ü (E) and Zs(E) by averaging 1 
/ 3xs (E) (l-,u(E) ) 

over an equilibrium Maxwellian, The r e su l t  is also well compatible with 

the Arai and Küchle experiment. 

C)  The Radkowski kerne1 czlculations predict a diffusion cooltng coef- 

f ic ien t  about 12% lower and a diffusion coefficient about 8% nigher than 

the experiment . 

2.5 New data on various rnoderators. 

Or~an ic  substances 

Some &ta on Dowthemn AB diphenyl and benzene a t  room temperature are 

given i n  tables  2, 3 and 4. It is seen tha t  r'or each of these moderators, there 

are fortunately two measurements *ich are i n  reasonably good agreement. D. uid 

C were calculated by Kallfelz [2v using experimental scattering l a w  data 

measured by Gläser [%]. I n  the case of diphenyl, a vaiue of D. calculated from 

the measured z ~ ( E )  and Ü (E) by Springer e t  al. is also l i s ted .  / 

Table 2 Diffusion parameters i n  Dowtherm A 
a t  room temperature 

I 
C (cm 4 sec-') 

11,900 2100 

16,50027000 

12,200 

V za(sec-l) 

2870 - + 40 

2985 2 85 

Remarks 

rneasured by Küchle [lg 

measured by Brom [lg 

calculatedby 
Kallfelz 

~ ~ ( c m ~ s e c - ' )  

49,200 + 600 

51,00021650 

51,500 



Tabie 3 Diffusion parmeters  i n  benzene 
a t  room temperature 

Table 4 Diffusion parameters i n  diphenyl 
a t  room temperature ( a t  a density 1.053 g crn -3 

Rernarks 

measured by ~ a 1  e t  a l  . 
measured by Küchle and 
Kussmaul 

calculated by Kal l fe lz  ,&W 

vz (sec-') 
a 

2886 - + 111 

3120 - + 503) 

It i s  Seen t ha t  the  diffusion cooling coefficients based on the  experimental 

sca t te r ing  law are i n  the r igh t  order of magnitude. The valuecof D derived 
0 

from the scat ter ing law i n  dipheriyl and benzene are  about 15% too high. The 

reason for  t h i s  discrepancy 1s probably the  Same as  discussed a t  the  end of 

sect ion 2.4. 

Without much further comment we mention some other recent experiments on 

organi C moderators : Yurowa e t  a l  . (3g have perf ormed temperature-dependent 

experiments over a large T range on benzene, diphenyl, diphenylmethane, diphenyl- 

ether,  gasoil ,  isopropyldiphenyl, anisole and tetradecane. Fron1 these experi- 

ments, they were able t o  derive a simple re la t ionship  

~ ~ ( c m ~ s e c - ' )  

48694 2 1373 

48500 + - 800 

55500 

- 
v ~ ~ ( s e c " )  

3700 2 150 

3470 - + 280 

- 

f o r  the  dependency of the diffusion coefficient  D on t he  absolute temperature T. 
0 

Here p and p, are the densi t ies  of the l iqu id  a t  temperatures T and T respec- 
0' 

t ive ly ,  whereas A m d  a are  character is t ic  constants Mich were determined f o r  

each of t he  above l iquids.  P& e t  a l .  [W] measured t he  di f fus ion parameters 

of benzene, toluene, xylene, cyclohexane, hexane a t  2 2 ' ~  and of diphenyl at 85'~. 

For t h e  Same substances, they measured the  t o t a l  cross section a s  a function of 

energy between 2 arid 100 meV and derived the  di f fus ion coeff ic ient  by use of the  

4 
C (cm sec'') 

13869 2 3849 

13300 + 2400 

8260 

C (cm4sec-') 

7700 + - 1800 

13 ,70~2900  

10,340 - 

- 

D o (cm2sec-l) 

42,120 + 1160 

43,370 + - 1800 

48,500 

3 )  This would yie ld  a microscopic absorption cross section of 348 mill ibarn 
per H atorn. Presumably, impurities were present i n  the  l iqu id .  

Remarks 

measured by Bayer, Cerven~i 
and S chäferlingova 

measured by h d h ,  Bod and 
PAl B17 
calculated by Kal l fe lz  

calculated by Springer e t  al. 
697 from \(E) and,Ü(~) 

48,50O+ioOO - 



classical Radkowski prescription. Agreement within better than 20 $% between 

the calculated and measured values of D. was found. Measurements on diphenyl 

a t  77 '~  and i n  MIW a t  30°c were reported by Blackshaw and Waltner fiq, on 

liquid annnonia by Charles [3v and on heptane between 17,!j0c and 8 0 ' ~  by 

Nilsson and Sjöstrand [SI. Sorne new resul t s  on terphenyl and paraffin are 

quoted i n  [39]. 

Graphite 

Table 5 lists some more recent data on graphite. 

Table 5 Diffusion parameters of graphite (1.6 density) 
a t  room temperature 

4 6 ~ ( c m ~ s e c - l )  C (cm sec-') F (cm secm1) Remarks 

/ z;d.Rei chardt 
2.11$.02*105 1$5 105 -20+10.10~ - 4-~5'* B 1 fit 12-10 -3 cm -2 

- 

2 . 1 ~ . 0 1 ~ 1 0 5  3w • 1 ~ 5  - 3-PT. f i t  
B L 18.9 Exp. of S tar r  

. 10r3cm-2 and Price (91 

3-par. f i t  

2.26+0.27*io5 - 9+.438+ .8*105 -6.9 - 
7 

4-par. f i t  
-57.70 10 -3 -2 ~ ~ 6 1 2 . 8 ' 1 0  cm 

2.18770.008 1 105 3-par. f i t  
~~5 5.3010 cm  EX^.^) of 

-0 105 Davis, 
P - -' 1 de Juren and 

2.X110.009~ - 10' +12.75 4-par. f i t  
10 .107 

2.178' 105 24.6 lo5 -8.3-10 7 caiculation by Honeck m] 
using Parks model 

')A rneasurement of the stationary diff'usion length was included i n  the 
evaluation procedure . 



3 A l l  parameters have been reduced t o  a density of 1.6 g/cm . For comparison, 

the theoreticai vaiues predicted by Honeck on the basis of the Parks 

model are included. The following comments can be maäe on the data i n  t h i s  

table: Apart  of the data measured most recently by Davis, de Juren and Reier, 
2 the four other o vs. B curves, i f  plotted together, are i n  a reasonably good 

agreement. The differences are essentialiy due t o  different methods of 

evaluation. I f  Klose, Küchle rud b i c h a r d t  nould evaluate t h e i r  experimerrt 

by a three-parameter fit up t o  r 12 ~ o - ~ c ~ I I - ~ ,  they xould obtain DO=s 2.17 
5 2 5 4 10 Cm sec-' and C * 40 10 w sec' ,  i.s. resu l t s  compatible with those of 

the following three authors. Hmver, Kiose, Küchle and Reichardt found tha t  a 
-3 -2 three-parameter leas t  squares f i t  did not m r k  vew w e i l  above ~~r 6 10 cm , 

-3 -2 i .e . above = 6 10 cm , they found a continuous increase of the vaiue of C 
-3 -2 with the length of the B2 intervai used i n  the evaluation. Above = 6.10 cm , 

6 it was necessary t o  inclu.de a negative B tenn i n  order t o  perform a consistent 
6 analysis. The existente of a negative B term in graphite is predicted by theory; 

the experiments of Starr,  Hone& anb Vi l l i e r s  Av on the  average asymptotic 
2 - 

velocity as a f'unction of B i n  graphite a lso give strong evidence fo r  a negative 
6 

B' term. Neither S tar r  anä Price nor Sagot and Tell ier  found it necessary t o  

include such a term i n  the analysis of the i r  a vs. B2 curves; they used, however, 

a different evaluation technique than Kiose, Kitchle and Reichardt. The r e su l t s  

of ~ e r d u l a ' s  anaiysis seem t o  confirm the resuits of Kiose, Küchle and Reichardt, 

the s t a t i s t i c a i  accuracy however is very low. Davis, de Juren and Reier have also 
2 mentioned that a 4-parameter f i t  is superior t o  a 3parameter f i t  above B = 6 

-3 -2 6 10 an . However, they report a posit ive B term. The reason fo r  t h i s  discrep- 
2 ancy is probably the fac t  t ha t  in  this most recent detennination an Cr vs. B curve 

2 was found which looks quite different a t  high B values. This is shown i n  Fig. 5 
wfiere t h e s d a t a  are compared with those of S ta r r  anti Price. The difference i n  the  

experimental setup, as was mentioned i n  section 2.1, is the increased shielding 

and the fac t  t ha t  2.5 MeV neutrons wre used; the procedure was different since 

Davis, de Juren and Reier used short uait ing times. 

S m a r i z i n g ,  the Situation i n  graphite appears t o  be still very dark, partly 
due t o  the different  resu l t s  of evaluation procedures, partly due t o  the deviations 

2 2 -3 -2 i n  the a vs. B curves above B = 6 10 crn . One possible - though improbable - 
explanation might be d d v e d  from a recent paper of Ghatak and ~oneck  These 



authors note t h a t  the  c r i t i c a l  l i m i t  f o r  t he  eigenvalues i n  graphite as  

derived from the  Parks model is  1000sec-I instead of the  value = 2600sec-I 

derived from the  measured cross section. This may be due t o  inaccuracies i n  

t he  Parks model o r  i n  t he  measured cross section. I f  t he  l a t t e r  were t r ue  and 

1000 sec-' the  actual  c r i t i c a l  l i m i t ,  no s tab le  asymptotic mode would ex i s t  fo r  
2 B2 2 5 10-~  i .e. only the  region 0 -= B -= 5 1 0 - ~  Cmm2 could be used 

f o r  analysis. 

Heavy wat e r  

Recer~t r e s d t s  on D 0 a t  room temperature a re  summarized i n  t ab le  6. It 2 
is  seen t h a t  t he  measurements are  i n  a reasonable agreement among thernselves 

and t h a t  the  parameters are  well represented by t h e  theore t ica l ly  predicted 

parameters. The l a t t e r  a re  f o r  pure C20 and should be s l i gh t l y  decreased which 

makes t he  agreement even bet ter .  Oanguly, Cobb and Waltner have a l so  reported 

di f fus ion p a r a t e r  measurements i n  t he  temperature range 10 - 50' C. 

Table 6 Diffusion parameters of D20 (99 8%) 
a t  room temperature 

D, ( cm2se C-' ) I C (cm 4 sec-') I Remarks 

2 . ~ 0 . 0 1  105 5 . 2 y . 2 5  105 3-par. f i t ,  Exp . by Kussmaul 
l.)*l0-3~ B: and Meister B27 

45-10' cm- 

2.04%o.044*105 - 

I J 

2.0&0.,?5= - 10 3.725.5-10 5 3-par. f i t 6 )  
60~10-3 B2 1 Exp. by Ganguly, 

100 10'3crn'~ Cobb and Waltner 

2.0jff->.0i3*10~ 

~ . ~ O & O . B I * ~ O ~  

calculated by Springer e t  a l .  1291 
from Z s ( ~ )  and Ü (E) 
20° C / 

3-par. f i t  5) 
16.10-3 B~ I Exp. by Malaviya 

85' 1.0-3cm-2 and Profio D31 
210 C 

4. i&0. i8*io5 

2.069 105 

3-par. ~ * I o - ~ B ; '  f i t  I 
Exp. by Westfall 

W *  10-3cm-~ and Waitner E77 
28O C 

4.852 io5 
5 ... 5.13 . 10 

calcula t ion by Honeck using 
incoherent sca t te r ing  model f o r  D20 



Other moderators 

I n  t ab le  7, some more recent data reported on various other moderators 

are  l i s t ed .  Many data on measurements published before 1962 are  summarized 

i n  p4v. 

Table 7 Diffusion parameters of variouc moderators 

The new Russian experirnents on beryllium and on beryll iuv oudde indicate  

a much higher amount of d i f fus ion cooling than previous experirnents. The Czech 

data on water m i c e  a t  O'C are  impressive since they reveal  the  strong e f f ec t  

which the  phase t r a n s i t i s n  has on the  thermalization power. A similar obser- 

vation was made by the  Russim group. 

2.6 ~riedman'  s method. 

Ref . 

, [141 

[lv 

11461 

BIL/ 

The most elementary thermalization property of a sca t te r ing  medium is the  

4 
~ ( c m  sec-') 

' 10 
3.6&0.20' 

4.12+0.27 - 
*105 

4200+1OOO - 

8300+2000 - 

6600tioo0 - 
2OO(h1000 - 

i ne l a s t i c  part  of t he  P component of i ts  sca t te r ing  law, i.e.. t he  quantity 
0 

+ 1 

o (E' -. E) = ( os (E' -E, cos a O )  d cos a0 s 
-1 

2 ~ ( c m  sec-') 

1.05 
1.21(+0.013 

1.56b0.01 - 
10 

32,400 - +1000 
- 

34,600 + i O O  

26,6Oo2900 

950-400 

5 )  - 1 2 ao = 10 sec assumed i n  evaluation o f a  vs. B curve 

- 
vza(sec-') 

262+1 - 1 

174+6 - 

474090 

4 4 p 8 0  

4656b200 - 

2 6)a  = 0 assumed i n  evaluation of vs. B curve 
a 

Temperature 

20°c 

20°c 

OOC 

OOC 

-80°c 

- 1 96OC 

Material 

Be 

Be0 

water 

i ce 

i ce 

i ce 

Density 

1 . ~ 9 g c m - ~  

2. ~ g g c m - ~  

0.917gcm-' 



A s  is  well known, the  c l a s s i c a l  puised source technique is not the  idea l  

method t o  measure quan t i t i e s  which depend sens i t ive ly  on t he  above 5 (E1-E). 
2 

S 

Rather, ai vs. B curves a re  a l so  strongly dependent on the  t ranspor t  proper- 

t i e s  of the  medium, viz., the  e l a s t i c  sca t t e r ing  angular d i s t r ibu t ion .  

Especial ly the di f fus ion cooling coeff ic ient  is a complicated function of 

both the  t ranspor t  and the  thermalization propert ies,  Early attempts have 

been made t o  separate both e f f ec t s  i n  a simple way, f o r  instance the  famous 

Nelkin (4g formula 

has frequently been used where M is  the  second moment of t he  sca t t e r ing  l a w  
2 

i n  an equilibrium Maxwellian, 

and p 1s the  exponent i n  t he  approximate re la t ionship  

However, equ. (6) holds only approximately, it depends sens i t ive ly  on the  

assumption t h a t  htr (E) can be represented by equ. (8). I n  order t o  derive M 
2 

from a measured C, p must be accurately known. Thus it 1s d i f f i c u l t  t o  derive 
2 d i r ec t  information on thermalization propert ies from measured Cr vs. B curves 

and people have searched f o r  other su i t ab le  methods. 

An obvious approach is  t o  measure the  decay of a thermalized pulse i n  an 

i n f i n i t e  medium which contains a non-l/v absorber. While iri the  presence of a 

l/v absorber o r  i n  a non-absorbing medium the  asymptotic spectrum is s t r i c t l y  

Maxwellian, a non-l/v absorber w i l l  deform the  asymptotic spectrum. Simply, the  

spectrurn w i l l  be 'lcooler" f o r  ua decreasing slower than l /v and "hotter" f o r  5 
a 

decreasing f a s t e r  than l/v. Whereas t h e  r e l a t i on  between t he  decay constant Cu 

as a fbaction of the  absorber concentration N 1s l i nea r  i n  case of a pure l/v 

absorber, it w i l l  ac tual ly  show a downward curvature a s  a r e s u i t  of the  f a c t  

t h a t  the  apparent absorption Cross sect ion becomes smaller. This downward 

curvature w i l l  be t he  stronger t he  stronger t he  deviat iorsof U (E) from the  l/v 
a 

law are,  it is a l so  great ly  inf'luenced by the  i so t rop ic  pa r t  of the  thermali- 

zat ion kernel. 



Althougl?. measurements of t h i s  type have been done several  times i n  t he  

past  D g ,  501, the  f i r s t  author who real ized the  f u l l  pos s ib i l i t i e s  of t h i s  

approach was F'riedman L51 - 527. He described the  a vs. N r e la t ionsh ip  i n  

an i n f i n i t e  medium by the  expression 

where % = ( V  Z (V) )  describes the  f ixed l/v ahsorption of t he  "solvent". 
a l/v 

a is the  blaxweli averaged absorption Cross section of the  added absorber, 

and the  higher coeff ic ients  b, C ... depend on the  thermalization propert ies 

of the  solvent and the  non-l/v behaviour of U (E). Describing the  deviat ions 
a 

of the  asymptotic spectrum @(E) frorn the  equilibrium Maxwellian by means of 

an expancion i n to  Laguerre polynomials of o d e r  unity, 
- 

Friedman could express b (and i n  principle the higher terms C, d, e t c . )  i n  

terms of matrix elements 

(with H = i so t rop ic  thermalization operator) and 

Since the  S a r e  well-known i f  I,(E) was careful ly  measured, b (and C, e t c .  ) 
k 

can be calculated t o  an accuracy depending only on the  accuracy of the  yik, 

i . e .  on the  i so t rop ic  pa r t  of t he  sca t t e r ing  law. Conversely, i f  b was derived 

from a f i t  of the  cl vs. N curve, information on the  yikcan be obtained. The 

r e l a t i on  between b and the  y and S is  however complex. I f  one assumes t h a t  
i k  k 

t he  two Laguerre polynornials k = 0 and k = 1 a r e  su f f i c ien t  i n  order t o  describe 

t he  disturbed spectrum 7 ) ,  t h e  r e l a t i on  between b and the  y matrix simply 

' I  This assumption, a s  is well known, corresponds t o  t he  "shi f ted  neutron 
temperature concept" . 



becornes 

l and y can be irnrnediately derived. A s  one can ea s i l y  show, y - - M  and 
11 1 1 - 4  2 

we thus have a simple method f o r  the  determination of the  second moment of the  

sca t t e r ing  kernel.  

Experirnentally, t he  rnethod is  not as  simple as  t h i s .  The rneasurernents are  

not perforrned a t  i n f i n i t e  geometry. I n  order t o  eliminate the  e f f ec t s  of 

d i f fus ion on CX, CY is  determined a t  each absorber concentration as  a function 
2 

af B and an extrapolat ion t o  B ' ~  = 0 is rnade. Friedman investigated aqueous 

soiut ions  of Cd, Sm, Gd and Sm-Gd mixtures. He perforrned measurements i n  t he  
-2 range 0.096 < C 0.15 cm . The paramount problem i n  t h i s  type of 

measurement is  the  el imination of s p a t i a l  rnodes i n  the  ra the r  l u g e  vessels  

f i l l e d  with strongly absorbing solutions.  Unfortunately, no decay curves a r e  

shown i n  h i s  publications. Frorn t he  rneasurements on the  above mentioned solu- 
- 1 t lons ,  he derived M = 0.84 .t 0.1 cm f o r  H 0 using equ. (14). By a s i m i l a r  

2 - 2 
method, Verdaguer e t  a l .  found M2 = 1.46 - + 0.43 cm-' f o r  water. Both 

r e s u l t s  a re  much lower than those derived by equ. (6) from"standard" pulsed 
- 1 experiments and &ich a re  - 3  cm . The value calculated on t he  bas is  of t he  

Nelkin model is  3.2 Cm''. Gläser (59 has calculated M frorn the Haywood- 
2 - 1 Thorson experimental sca t t e r ing  law of water and found M = 3.1 cm . Thus 

2 
there  is  strong evidence against  t he  M values derived by Friedman's method. 2 
T h ~ r e  rnight be an e r ro r  i n  the  above value due t o  the  use of the  approxirnate 

equ. (14) ins tead of t he  more accurate o r ig ina l  equation. However, Calame [56] 
has calculated accurate b values on the  bas is  of t he  Nelkin model, comparing h i s  

r e s u l t  w3.th those derived from equ. (14) shows t h a t  the approxirnation is a very 

good one. The explanation of t he  discrepancies rnight be 

- e r ro r s  i n  t he  input values of d (E) used f o r  the  determination of 
a 

t he  Sk. According t o  Calame, who d id  some numerical experiments, 

t h i s  is  not very probable; 

- e r ro r s  i n  t he  C l  determination due t o  higher s p a t i a l  modes; 

- e r ro r s  i n  t he  extrapolat ion t o  Zero buckling. 

It would be extremely usefül t o  invest igate  these questions fu r the r  since 

bas ical ly  t h i s  method appears very a t t r a c t i ve .  The proposal t o  perform a 



s p a t i a l  Fourier analysis  on large  D20 systerns appears t o  be excellent  

t o  rneet sorne of these objectives. 

2.7 Buckling deterrninations by the  pulsed technique. 

2 
It is well known t h a t  once the  a( vs. B r e l a t i on  is known f o r  a substance, 

2 
bodies of a rb i t ra ry  shape c&.n be b u i l t  frorn Lhis rnoterial and t h e i r  B be 

deterrnined by a( measuremnts. Such investigatl.ons have been done frequently, 

but since t h e i r  r e su l t s  clre of a highly special ized nature, not many r e s u i t s  

have been published i n  the  Open l i t e r a tu r e .  The i r i terest  rnainly l i e s  i n  the  

e f fec t  of oddly-shaped control  elernents and i n  streaming e f f ec t s  caused by 

holes and voids i n  hornogenous media. 

3. Transient Phenornena 

3.1 Measurernents of the  slowing-down time t o  de f i n i t e  energies. 

Depending on the  ava i l ab i l i t y  of sui table  resonance detectors,  slowfng-down 

time rneasurernents t o  de f in i t e  energies i n  the epithermal and near-thermal ranga 

can be made. Such experirnents have been done using I n  (1.46 eV), Pu (0.3 GY), 

Cd (0.178 eV) and Sm (0.0976 eV) as  a resonance detector; sorne authors have 

a l so  used a th ick  cadmium indicator which has an "edge" i n  the  absorption Cross 

sect ion a t  0.5 eV. 8, Resonance capture indicat ion is e i t h e r  "positive1', i.e. 
I I  by observation of capture y-rays o r  f i ss ions ,  o r  negative", i . e .  by obcervation 

of the  neutron transrnission through the resonance absorber. I n  any case, a 

time-dependent react ion r a t e  curve of the  type i l l u s t r a t e d  i n  Fig. 6 is obtained. 

Z'here w e  several  ways t o  desive a slowing-down time from t h i s  curve: Most 

authors consider the  time displacement of the  rnaxirnum a s  the  proper slowing-down 

time while some authors use the  average displacernent. Which of the  two def i -  

n i t ions  is  used is  i r r e l evu i t  i f  the  proper theore t i ca l  value is used i n  the  

cornparison. Theoretical calculat ions f o r  the  time-energy d i s t r i bu t i on  of neutrons 

slowed down by f r ee  nuclei  a t  r e s t  were perforrned by Ornstein and ühlenbeck B], 
~ y a d ' k i n  and Batal ina [61] and by Koppel among others. The idea l  expeyiment 

i s  perforrned by rneasuring the  space-integrated resonance react ion r a t e  i n  a su f f i -  

c ien t ly  large  sca t t e r ing  medium. I f  local ized resonance absorbers a re  used, t he  

') Using t he  slowing-down time spectrometer, time-dependent capture r a t e s  i n  
resonances i n  the  high eV and low keV range have a l so  been observed [5g; 
t h i s  technique is however outside the  scope of t h i s  review. 



resu l t s  are affected by diffusion times. Corrections fo r  t h i s  effect  can be 

made but are d i f f i cu l t  t o  formulate. 

The most recent rneasurements of t h i s  type reported are those of Zhezherun 

e t  a l .  [lv. These authors observed the neutron trancmission through indium, 

cadmium and samarium as well as the time-dependent f iss ion ra te  of a Pu chamber 

shielded by Sm and Cd. Their experimental resu l t s  (slowing-down tirnes defined 

by the displacement of the r n a x i m u m  of the resonance reaction ra te  curves) are 

summarized i n  table  8. Theoretical values for  slowing-down by free nuclei a t  

Table 8 Slowing-down tirnes i n  Be and Be 0 [14] 

r e s t  are shown for  comparison and it is Seen tha t  while for  1.46 eV the agreernent 

is excellent, t h i s  theory underestirnates the experimental values the rnore the 

lower the resonance energy drops. This is  of Course a consequence of the thermal 

rriotion of the moderator atorns and of the i r  chemical binding which is very strong 

i n  Be and Be 0. 

Some experiments on slowing down t o  Cd and In  energies have been performed 

recently i n  H20 and D20. Since slowing down proceeds very f a s t  i n  thess 

Energy ( e ~ )  

i .46 

0.3 

0.178 

0.096 

moderators, especially i n  H 0, the experiments are d i f f i cu l t  t o  perform and 
2 

require a high tirning accuracy fo r  the source burst and the neutron detection 

equipmnt. Results of Profio and Eckard fiv are shown i n  table 9. Slowing-down 

t ( us) i n  Be 0 / 

times were defined by the displacement of the max i rnum.  It is Seen that  agreement 

Experiment 

9.5 2 1 

26 - + 2 

51 2 3  

88 - + 5 

t ( us) i n  Be / 

between measured and calculated values is  good except the C d W  value. This 

difference is attributed t o  diffusion time effects  (which were not corrected for )  

Theory 

9-3 

19.2 

20.3 

3 . 8  

Experiment 

7.5 2 1 

17.5 2 1 

40 2 3 

73 2 5 

rather than t o  effects  of chernical binding or thermal motion. Möller a?d 

Theory 

7 02 

15.7 

20.4 

27.6 

Sjöstrand [@I] found independently tha t  chernical binding and thermal rnotion play 

no important role i n  the slowing-down t o  the cadmium edge i n  H20. 



Table 9 Slowing-down tirnes i n  H20 and D20 fiv 

Profio and Eckard have suggested t o  use time-dependent react ion r a t e  

measurements i n  rnoderating assemblies as  a more general t oo l  f o r  reactor  

physics studies.  For instance, they suggest t o  determine res'onance capture 

p robab i l i t i e s  i n  t h i s  way and t o  separate the  thermal and epithermal ac t iva t ion  

of f l u x  indicators  from the  time dependency. No work of t h i s  type has been 

published so  f a r .  

3.2 Investigatlon of time-dependent neutron thermalization 

H20 

D,O 

The most powerful t o o l  f o r  investigating the  time-dependent neutron ther-  

malization is t he  de ta i l ed  measurernent of the  time-dependent spectrum using a 

pulsed source and synchronized chopper. This method necess i ta tes  very strong 

neutron sources and a time-of-flight spectrometer and does not belong t o  t he  

c l a s s  of simple pulsed source experirnents reviewed i n  t h i s  paper 'I. Consider- 

ably simpler - though l e s s  informative - are  measurements of t he  approach t o  

equilibrium of ce r ta in  spec t ra l  indices a f t e r  the  in jec t ion  of a fast source 

burst .  Three d i f fe ren t  kinds of spec t ra l  indices have been i n  use, viz., 

t (  usec) calculated / 

- t h e  average neutron velocity, a s  determined by the  counting r a t e  

I n  resonance 

0.6 

4 

t (  usec) measured / 

r a t i o  between a t h i ck  (black) and a t h i n  (l/v) BF counter; 
3 

Cd edge 

1 -65 

8 

In  resonance 

0 . 7 5 + 0 . 5  - 

4 . 0 + 1 . 0  - 

- t h e  average cross sect ion of non-l/v absorbers l i k e  Cd and Gd a s  

Cd edge 

1 . 7 5 + 0 . 5  - 

10.5+1.0  

measured by the  in tens i ty  of capture y-rays; 

- t h e  e f fec t ive  cross sect ion of l/v absorbers as determined by a 

transmission experiment. 

Cf. t h e  review a r t i c l e  of M.J. Poole fiY 



The interpretation of these time-dependent spectral  indices is d i f f i cu l t .  

Early workers have assumed that  the spectrum a t  any time could be described by 

a Maxwellian and have derived a time-dependent neutron temperature T( t )  from 

t h e i r  measured spectral  indices. Using the elementary relat ion 

T ( t )  - T ( t  = < P )  - e-t/tth (15) 

values of a "thermalization time" tül were deduced. Later On, it became 

evident that  the effective temperature concept was inappropriate since the 

spectra deviate greatly from pure mamell distribution, especially i n  moderators 

with strong chemical binding. Then, the "energy mode concept" was 'introduced 

i n  which it 1s assumed tha t  the time-dependent spectrum @ ( ~ , t )  can be repre- 

sented by a superposition of separate modes, viz., 

-X t -X t 
@ as 

(E) . e" + (P1 (E) e 1 + Og (E) e 2 + ...* 
a is the fundamental mode decay constant which is  usually observed i n  pulsed 

source experirnents whereas the higher modes characterize the t ransients  during 

the thermalization process. The h 1,S.. . are dependent on the thermalization 

power of the moderator and in particular h is considered t o  be a characteristic 
1 

quantity. l / A  is sometimes called "thermalization t i m e  constant". I f  the 
1 

fundamental mode decay cok tan t  a is known, the contribution of the fundamental 

mode t o  a time-dependent spectral  index can be "peeled off" and hl can be 

determined. This evaluatioqlmwever, presupposes tha t  a representation of the 

time-dependent spectmun by separate modes is possible. Unfortunately, theory 

has recently shown [25, 661 t ha t  i n  most crystall ine moderators, especiaily i n  

graphite and beryllium, - no such representation is possible. I n  these media, the 

furdamental mode decay constant is  the only discrete eigenvaiue below the c r i t i -  

ca2. l imit  - and even tha t  only at, sufficiently srnall bucklings as repeatedly 

s tatad - wi-iilst all other eigensolutions belong t o  the continuum which extends 

above the c r i t i c a l  l i m i t ,  none of these can be isolated. Fortunately, i n  H20 

a t  l eas t  L1 and X2 are predicted t o  be discrete. 

The experimental resu l t s  re f lec t  the d i f f i cu l t i e s  i n  the evaluation procedure. 

I n  water, Möller and Sjöstrand [64, 677 were able t o  isolate  the tirst energy 
1 

mode by reaction r a t e  measurements on Cd and M, they found X 4 ,usec for  a 1 



1 
large geometry. Theoretically, on the basis  of the Nelkin model - = S.'i/usec 

X1 
is predicted [6u which agreec renarkably well. I n  graphite, several  new 

r e s u l t s  ex i s t  which are discrepant: Serdula [12] determined time-dependent 

neutron temperatures by neutron transmission through s i l v e r  absorbers. He 

in terpre ted h i s  data  according t o  equ. (15) and determined t a s  a function of 
2 

t h  
2 

B i n  the  range 4 c  B < 14.5 1 0 - ~  Extrapolating t o  = - 0, ttn - 
750 5 200 usec was found. Küchle and Schweikert performed transmission 

/ 
measurements through s i l v e r  absorbers and analysed t h e i r  data  according t o  

2 
equ. (16). !I'heil values of X1 vs. B are  shown i n  Fig. 7; note t h a t  some of 

2 1 
them are  7 2600 sec-'. Extrapolating t o  B = 0, - = 550 + 50 usec was found. 

1 1  - / 
Sta r r ,  Honeck and de V i l l i e r s  measured the average neiltron beloci ty  a s  a 

function of time f o r  graphite Stacks i n  the  buckling range 1.77 ... 15.05 ' 

I O - ~  Cm-*, Although the  main purpose of t h e i r  experiment was the  determination 

of the asymptotic average velocity, they t r i e d  t o  derive information on the  

speed of the  thermalization process. It was found t ha t  the  average velocity 

approaches i t s  asyrnptotic value nearly exponential with a time constant of about - 
2 525 usec which was found t o  be qui te  independent of B . I n  view of the  large  / 

d i s c r e p a ~ c i e s  of these various r e su l t s  and furthermore i n  view of the f a c t  t h a t  

rio c lear  de f in i t ion  of the  therrnalization time can be given a t  present, the  

problem of time-dependent thermalization i n  graphite must be considered a s  s t i l l  

largely  ur:solved. The only conclusion which can be drawn from more recent  s tud ies  

is  t ha t  the  time scale  of the thermalization process i n  graphite i s  about 2 t o  

3 times slower than observed i n  the  very f i r s t  s tudies .  The reasons f o r  t h i s  

ha% e been previously discussed [69]. 

I n  the  framework of t h e i r  very careful  work on di f fus ion and slowing-down 

i n  Be and Be 0, Zhezherun e t  a l .  L147 have determined time-dependent neutron 

temperatures by the  transmission method. Using equ. (15) and extrapolat ing t o  

i n f i n i t e  geometry, t - 185 + 20 usec ( ~ e )  and tth = 204 + 20 usec ( B ~ o )  was t h  - - / - / 
found. No deta i led  theore t i ca l  analysis  of these  values - which are  higher than 

previously determined t f igures  - has been performed so f a r .  t h  

4. Pulsed Neutron Studies i n  the  Fast Neutron M g e  

I n  view of the  increasing i n t e r e s t  i n  f a s t  reactor  physics and with the  

ava i l ab i l i t y  of intense nanosecond-bunched f a s t  neutron generators, some groups 

have l a t e l y  s t a r t ed  t o  apply the  pulsed technique t o  the  study of neutron 

d i f fus ion  and moderation i n  the  keV and MeV range. There a re  several  poss ib i l i -  



t i e s  i n  t h i s  f ie ld,  for  instance measurements of the time-dependency of in- 

e l a s t i c  moderation, time-of-flight measurements of the neutron spectrum or 

studies of monoenergetic neutron diffusion. We sha l l  r e s t r i c t  ourselves t o  the 

l a t t e r  application. 

The pioneer work i n  t h i s  f i e l d  w a s  done by Beghian and h i s  collaborators a t  

MiT [70, 711. This group studied the time decay of monoenergetic neutron f ie lds  

(energy range 0.8 - 1.6 MeV) i n  assemblies of iron, bismuth, lead and i n  natural 

uranlum. Apart of iron which w i l l  be discussed below, these are very heavy 

materials and the slowing-down by e l a s t i c  collision can be neglected a t  leas t  

t o  a good approximation. I f  ine las t ic  scattering 1s disregarded for  the moment, 

the time-dependency of the diffusion of a burst of f a s t  monoenergetic neutrons 

can be described by usual one-group theory. After decay of spa t ia l  harmonics, 

the neutron f i e l d  w i l l  therefore die away exponentially with time and the decay 

constant w i l l  be given by 

th.m Md DO are the rernoval cross section (see below) and the diffusion 

coefficient, evaiuated a t  the proper energy. CT 1s the well-known transport 

theory correction t o  elementary diff'usion theory, 

for  isotsopic scattering according t o  Sjöstrand [72]. 

The experimental arrangement used by Beghian e t  ai.. 1s shown i n  Fig . 8. 

Monoenergetic neutrons were produced by bombarding -50 keV thick lithium 

Sergets wlth monoenergetic protons from a pulsed van de Graaff generator. 

lleutrons emerging from the assemblies were detected by a 1" X 1" plast ic  

scin+*FlLation counter. This was biased i n  such a way tha t  neutrons which had 

unde~gone an ine las t ic  scattering process and thus had los t  an appreciable 

m u n t  of energy were not detected. C as defined by equ. (17) thus represents r 
removal processes, 1.e. absorption as well as ine las t ic  scattering, and is  

essent iai ly  equal t o  the nonelastic Cross section 1°) usually determined by 

spherical she l l  transmission measurements. A typical  decay curve for  a lead 

1°) Since the biased sc in t i l l a t ion  detector 1s not an ideal  threshold detector, 
there remains an appreciable detection probability fo r  neutrons which have 
been inelast ical ly  scattered forning low-ly ip  excited s ta tes .  For instance, 
scattering processes leadlng t o  the 44 keV 2 level i n  U 238 are not regis- 
tered as removals and the measured C must be interpreted accordingly. r 



3 block 8 X 8 X 8 inch a t  1.24 MeV is shown i n  Fig. 9 and it is Seen tha t  

the decay is nearly exponential, allowing a value of a t o  be derived. An 
2 

C% vs. B curve i n  uranium a t  E = 0.84 MeV is shown i n  Fig. 10. The f u l l  

curve is  a leas t  Squares fit according t o  equ. (17). Since three experimen- 

ta l  points are not sufficient t o  determine three parameters, a calculated 

value of D. derived from scattering data of U 2 9  was used. From t h i s  

evaluation, U = 0.76 + 0.08 barn was obtained; t h i s  is roughly consistant 
r 

with ur = 0.6 + - 0.14 which is  obtained by adding up U and the ine las t ic  
n, Y 

cross sections Sor the excitation of the 700 keV and (partly) for  the 150 keV 

level. Similar resu l t s  were obtained for  lead. 

I n  the case of iron the e l a s t i c  rnoderation cannot be neglected ( A  = 56). 

This has two consequences on the observed neutron decay: F i rs t ,  due t o  the 

decreasing neutron velocity, the decay of the neutron density w i l l  not be 

s t r i c t l y  exponential. Rather, the decay constant w i l l  slowly decrease with 
2 time (since the D. B term normally represents the main contribution t o  CX). - 

This effect  was considered t o  be negligible by Beghian e t  a l .  Secondly, since 

the sens i t iv i ty  of the neutron detector decreases markedly with the neutron 

energy, the counting r a t e  w i l l  decrease fas te r  than the neutron density. 

Beghian e t  a l .  were able t o  show that  t h i s  effect  can be described by intro- 
b * n  ducing an additional "effective e l a s t i c  rernoval cross section" terrn, C = -, - P 'tr 

in to  equ. (17). Here AE is  the average energy loss  i n  an e l a s t i c  collision, 

i s  the transport man free path and b is  a constant characteristic for  the 

shape of the detectors' energy-dependent efficiency curve. Correcting the 

measured data i n  t h i s  way, the measured rernoval cross sections were found t o  

agree w i t h  other measurements. 

Recently, Messner a t  Karlsruhe has s tar ted sirnilar experiments i n  the low 

kilovolt  range. The objectives of h i s  work are t o  measure capture cross sections 

and t o  investigate the effect of the cross section resonance structure on inte- 

gral neutron behaviour. The f i r s t  of these objectives was mainly in i t i a t ed  by 

the lack of rel iable  methods t o  measure keV capture cross sections absolutely. 

I n  these experimnts, monoenergetic neutrons a t  energies below the threshold fo r  

ine la s t i c  scattering are injected into assemblies of heavy absorbers l i ke  

uranium, tantalum, antimony or gold. The experimental setup i s  s i m i l a r  t o  the 
7 7 one shown i n  Fig. 8. The Li (p,n)Be reaction under 0' a t  threshold (E = 3 keV) 

45 ' has been used so far but sorne feas ib i l i ty  studies using the Sc (p,n) Ti  45 
reaction a t  threchold (E = 5.5 keV) have been performed. The detector i s  a 



. 6 
i loaded giass cc in t i l l a t o r ;  it has a very high s ens i t i v i t y  f o r  y-rays and 

thus a ra the r  poor signal-to-noise r a t i o ,  no be t t e r  solut ion has been found 

so fzi. A decay curve observed i n  lead which was used as a t e s t  case is 

shown i n  Fig. 11. 

A closer inspection of the  dacay curve a f t e r  background correction shows 

t h a t  it is not exponential. This i s  due t o  the  e f f ec t  of e l a s t i c  rnoderation 

which becornes appreciable a f t e r  a su f f i c ien t ly  long time. I n  the  par t i cu la r  

example shown i n  Fig. 11, the  decay w a s  observed up t o  800 nsec a f t e r  the  pulse 

in ject ion.  A neutron of = 30 keV undergoes about 60 co l l i s ions  during t h i s  time 

i n t e rva l  i n  lead, whereby its average velocity w i l l  decrease by about 35%. Of 

the two resu l t ing  e f f ec t s  on the  observed decay rnentioned above, the  f i r s t  one - 
i . o .  the  reduction of the  decay r a t e  - is considered t o  be the  rnore irnportant 

onel'). Since e l a s t i c  rnoderation a t  k i lovol t  energies is a r a t he r  transparent 

process, it is f a i r l y  simple t o  correct  the  rneasured time decay i n  order t o  

account f o r  e l a s t i c  rnoderation. I n  [73], a correction fac to r  F ( t )  is calculated 

which y ie lds  

~ ( t )  depends on the  sca t t e r ing  and absorption cross sect ions  of the  medium which 

must be known a t  l e a s t  t o  first order. Arai has m i t t e n  an on-line cornputer 

Programme t o  calcuia te  t h i s  f ac to r  and t o  correct  measured data  imrnediately. It 

is Seen i n  Fig. 11 t h a t  a f t e r  t h i s  correction t he  measured dens i t i e s  d i e  away 

exponentially. 

2 
Fig. 12 shows a prelirninary CY vs. B curve which was observed i n  t h i s  way on 

U 238 12). No upward curvature a s  i n  t he  work of Beghian e t  a l .  is observed here; 

t h i s  is due t o  t he  f a c t  t h a t  Lt is  rnuch l a rge r  i n  the  keV than i n  the  MeV region. 
7 2 ?ha slope of the  s t r a i gh t  l i n e  yie lds  D. = 9.1 ' 10 crn sec-' which i s  rnuch 

smaller than what would be expected on the  bas i s  of the  known t o t a l  cross section.  

reason fo r  t h i s  discrepancy is  unclear a t  present. The extrapolat ion t o  Zero 

buckling yie lds  0,- 0.44 barn i n  rough agreernent with what rnight be expected on 

the  bas i s  of the  known uranium cross sections.  

6 3 11) This is so because the  Li (n,CY)H cross sect ion is  assumed t o  be s t i l l  
nearly l/v i n  t h i s  energy range. 

I*) Actualiy. the  experiment was performed on natura l  uranium, but the  e f f ec t  
of U 235 is considered t o  be negligible.  



\ 

In analysing these experiments, the resonance structure of the cross 

sections must be taken into account. The treatment is considerably simplified 

by the fact  tha t  i n  the range of energies and mass numbers considered here, 

the widths of the individual resonances are s m a l l  as compared t o  the average 

energy loss  i n  an e l a s t i c  collision. Therefore, simple approximations can be 

used. Under certain simplifying assumpt ions, the following relat ions can 

be derived for  the diffusion parameters: 

Here, the Square brackets mean averaging over an energy interval which is  

large enough t o  contain many resonances, but small enough so the average values 

do not change appreciably. <za> and <(3 are 'Ynfinite dilution" average 

values of the type l i s t e d  normally i n  cross section tables. f c  and f t  are the 

self-shielding factors as defined by Abagjan e t  a l .  841,  viz., 

Values of f and f c  are tabulated for  many nuclides i n  [741]. 
t 

For U 238 a t  30 keV, f t  and f c  are very close t o  1 and the self-shielding 

ef fec ts  are easi ly  elirninated. I n  going t o  lower energies, the self-shielding 

factors  however decrease considerably; a t  5 keV, for  instance, -, 0.55 and 
fc. 

f t  = 0.7 fo r  U 238. Since a t  these low energies (.Ea > and (,Yt > c m  be 

accurately deterrnined by other methods, pulsed source methods might be able t o  

determine self-shielding factors i n  a rather straightforward manner. 

13) Isotropic scattering i n  the laboratory system was assumed here. 



5. Summary and Conclusions 

It has been shown tha t  although a considerable amount of work on the asymp- 

t o t i c  decay of thermalized neutron f i e lds  has been done, some of the basic 

problems s t i l l  seemto be uncolved. This concerns the question of the decay 
2 constant i n  small crystall ine media, the shape dependency of B i n  small water 

2 systems, and the analysis technique for  u: vs. B curves. In some regions, good 

Progress has been made. So i n  many cases there 1s agreement between different  

measurements on l iquid moderators and i n  H 0 the accuracy of the experiments - 
2 

&ich are, however, largely poisoning experiments of the stationazy type - is  

suff ic ient  t o  permit very detailed comparisons with theory. Friedman's method 

has been shown t o  be a very usefui tool, there are however large discrepmcies 

between theory and experiment which represent a challenge t o  experimenters. 

Slowing-down time measurements above 0.5 eV are now available for  a few 

moderators and generally corroborate the elementary theory for  slowing-aown 

by free nuclei a t  res t ,  Thermalization time measurements i n  water seem t o  be 

i n  a good s t a t e  wfiile measurements i n  graphite suffer from the fac t  tha t  no 

reasonable def ini t ion of a themnalization time is presently offered from 

theoreticians. 

The new f i e l d  of quasi-asymptotic decay of f a s t  monoenergetic neutron 

f i e lds  deserves further attention. Much more developments i n  the theory and 

i n  the techniques of these experiments are required. In  view of the steadily 

improving techniques f o r  fast neutron d i f fe rent ia l  Cross section measurements, 

it is somewhat doubtful i f  the pulsed technique w i l l  resul t  i n  substantial  

improvements of f a s t  reactor data. Rather, it w i l l  contribute t o  a be t te r  

understanding of the behaviour of f a s t  neutrons i n  matter. 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig* 3 

Fig. 4 

Fig. 8 

Fig. 10 

Fig. 11 

Fig. 12 

Neutron d i e  away i n  beryllium and i n  a t e s t  assembly of 
polyethylene se lected t o  give approxirnately t he  saune 
decay time (from m). 
Time a f t e r  neutron pulse required f o r  t he  attainment of an 
asymptotic spectrwn as  a function of buckling (from L l u ) .  

2 The enlarged CI vs. B curve f o r  H20. 

Experimental arrangement of Arai and Küchle f o r  measurement 
of d i f fus ion length i n  a time-dependent neutron f i e l d  i n  H20. 

2 
a! vs. B curves observed i n  graphite 
Ci : S t a r r  and Price [g] 0 : Davis, de Juren and Reier [lv 
Neutron f l ux  d i s t r ibu t ion  a t  0.3 eV as a function of time i n  
beryllium as  observed with a Sm-Cd shielded Pu f i s s i on  chamber 
(from [iv). 
The f i r s t  higher eigenvalue h i n  graphite a s  a function of 
geornetrical buckling. Note that the  two la rges t  values of 
h are  above t he  " c r i t i c a l  l i m i t " .  
1 

Experimental setup used by Beghian e t  a l .  f o r  f a s t  
neutron f l u x  decay s tud ies  on iron. 

Decay of 1.24 MeV neutron f l u x  i n  lead as observed by 
Beghian e t  a l .  [7g. 

2 a vs. B curve i n  U 238 a t  0.84 MeV ( ~ e g h i a n  e t  a l .  [Tl]). 

Decay of 30 keV neutron f i e l d  i n  a 15 X 20 X 30 cm 3 
lead block. 

2 
Q: vs. B curve f o r  30 keV neutrons i n  natura l  uranium. 



Fig.1. Neutron die-away in buyllium and in a test 
assmbly of polyethylcrw selectcd to give approximatdy thth. 
Same &cay time ( from [7J 1 



Fig.2. Time after neutron pulse required for the attainment of an asyrnptotic 
spectrum as a function of buckling.(frorn[12] ). 



Rg. 3 The enlarged d vs. 82 
curve tor H,O 
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Fig.4 Ewwimental arrangement of Arai and Küchle for mwsurement 
of diffusion Length in a time-depmdent neutron fidd in H20 
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Fig.6 Neutron f lux distribution at 0.3. eV as a function .of time 
in beryllium as observed with a Sm-Cd shielded Pu fission chambw 
(from [I41 ). 
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sec' 

Fig.7. The tirst higher eigenvalue A, in graphite as a function 
of geometrical buckling. Note that the two largest va lues of XI 
are above the "crit ical limit ': 



Paraffin I ron Photomultiplier 
Li Target Collimator Assem bl y Detector 

Fig. 8 Experimental setup used by Beghian et 01 [71] for 
fast neutron fiux decay studies on iron 
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C Neutron Energ 1.24MeV l ' k , - - t ,622~10 sec 

Fig 9 Decoy of 1.2& MeV Neutron Flux in lead a s  
observed by Beghian e t  a1.1711 

o Measured p i n k  for 6,- Ci76 b 
o Calculatcd pcint fa a;= 076b 
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Fig.10 d vs ~ ~ c u r v e  in ~ ~ ~ ~ a t  0.84 M& 
(Beghian et aIA711 








