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I. Introduction

The slotted iris structure has been proposed by Giordanoq)for the
acceleration of protons and this structure has been investigated
subsequently by a number of authors. However, expressions for the
quality factor and the shunt impedance have not been published so
far and a systematic optimization of this structure has not been
performed. This may be due to the fact that a rigorous treatment
is not feasible and aiso computer programs which have been developed
for structures with rotation symmetry around the axis cannot be

applied.

The slotted iris structure is of particular interest for a supercon-

ducting high energy linear accelerator for protons. Because of its

relative mechanical simplicity it seems possible to coat this structure

with a superconducting layer and to cool away the dissipated power.
In order to learn more about the properties of the slotted iris
structure extensive measurements have been performed by Eschelbacher

in this laboratory.

For an interpretation of these results approximate expressions for
the relevant guantities will be derived in this paper. For this pur-
pose a cavity consisting of a number of cells will be treated as a
chain of individual cells with the coupling introduced additionally.
Since it is hard to achieve resonance coupling in a conventional
slotted iris structure we shall consider here only weak coupling.
In this case the n-mode seems to be most advantageous (Smiths)) and
hence only this mode will be discussed. However, most of the results
can be applied to a =n/2 mode structure with resonant coupling.
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II. Computation of the Fields and the Resonance Frequency

First the field in an individual cell with drift tubes but without
coupling slots will be caleulated. The geometrical dimensions of
the cell are defined in fig. 1. The thickness of the cell walls is

neglected.

A rigorous solution of Maxwell's equation cannot be found analyti-
cally for such a cavity. An approximate treatment for reentrant
cavities based on a variation prindiple hés been developed by Bernierq).
Independent solutions for .thé regions rta and a £r4R are deduced

and these are matched approximately at the boundary r = a.

For the acceleration of particles we are interested only in a mode

with an axial electric field. For a cavity without drift tubes tﬁe

simplest is the TM mode for which

010
E, = -iZyJ,(kr); B = Ep= 0 o
and H = Jj(kr); Hr = Hz =0 |
where Zq, =VII§7€§'= 37752 and Jo(kr) and J1(kr)’are the

Bessel functions. For the wave number we have k = 2n/A =W/c.

If drift tubes are inserted the field lines are distorted. However,
if the cavity is short (L/R<1) this distortion will not change the

main features of this mode. Then the solutions for the fields in

the two regiouns are+)
4 - -o
r£a E, = lAZOJO(er’
Hy = AJ, (kr) (2)
2., < R
afr<R E, = —1ZOLO(kr)
Hy = Lq(kr) -3 -

+) The normalization and the units are irrelevant, since they do not
enter into the frequency, coupling coefficient and Q-value.



The functions Ln are linear combinations of Bessel and Neuman

functions. They are defined by
L (kr) = J (kr)Ny(kR) - N (kr)J,(kR) (3)

Obviously one has LO(kR) = 0 since the electric field vanishes at

the cavity wall.

If the gap between the drift tubes disappears (g = 0) the boundary

condition on the inner cavity wall requires

Lo(ka) =0 | (4)

The solution of (4) yields the resonance frequency w,= kc of the
cavity. If we write k =Tgq /R then Toqis the first zero of the
function L (x) which depends on the ratio a/R. To4 has been tabulated”’
but for the range of a/R which is of interest here a good approximation

is given by

KR = Tgy=

' a |
- {2,40,4- 0137 (7 ) % (4a)

0,87 (%)+ 0.023

oie

For drift tubes with a finite gap the condition (4) cannot be satis~
fied rigorously. A good approximation is cbtained6), if the solutions
(2) are matched at r = a by requiring that the electric potential

and the currents are continuous which gives

I
t
£

ghdy(ka) = L.{(ka)
(5)
AJ, (ka)

i
i
—
~
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Solving for A one obtains

L1(ka) Lo(ka) L

AETED T TR C E (&)

and finally

L1(ka) J, (ka) L

T, (Kka) = J (kay) ° & (7

Since the condition (4) is how not satisfied ét the surface of the
drift tubes (r = a) the hatching according to (5) corresponds to

the introduction of an effective drift tube radius. If this approxi—
mation is nét accurate enough the full variation procedure has to

4)6)

be performed

Equation (7) can be written

N, (kR) 1(ka)
Jo(kR) | 1(ka) L 8)
Ny(kR) N (ka) =
Iy (kR) I (ka)

This relation determines now the resonance frequency kc = Wy An ex-
plicite solution is not possible, however. Therefore the left side

of (8) has been calculated for given values of a/R as a function of
kR = 2nR/A. The results are displayed in fig. 2. For given geometri-
cal dimensions of an isolated cell the appropriate resonance frequency

can be taken from this figure.

The resonance frequency mq of the g-mode of a chain of coupled cells

7)

is given by

{wtﬂn"zz 1 (9)
) T+¥cos @

where Wy = w{lmls the frequency of an isolated cell and » is the
coupling coefficient™’. For the n-mode the phase shift between ad-
-5 -

)Sometlmes a different definition of the coupling coefficient is used

mAamiItT T ] e S oen AS avmamrmad

.\'.CDU..LD..L.U.% in the aispex sion relation
{en : 3 - —
(W(qy/wo)2 = 1/T+k{1-cos ¢)
and one has k/(1+k) = -®which for weak coupling becomes k =~ —-22.



jacent cells is{? = 1 and

2
2 0

The coupling coefficient € can be determined experimentally from the
width of the dispersion diagram according to (9). A theoretical ex=-

pression will be derived in section V.

III. Volume and Surface Integrals

In order to compute the quality factor, the shunt impedance and other
quantities various integrals over the fields are required. These will

be calculated in this section neglecting the coupling of the cells.

#)

The electric energy We contained in the cavity is given by»
a

2w = [iEzi av = 2ng ijaJ
5

e ) 2rdr + 2nLngrdr = 11)

r
0
: a

RROL, ‘xiLi(kR)-(%)B'[Lg(ka)+L§(ka)——%A2(Jg(ka)+J§(ka))}}

2 2
L7 (kR) J- (ka)
"B L LS (ka) f--; -G (25— >}
1Lo(ka) & g5 (ka)

i

In an analogous way one finds for the magnetic energy

2 W_ :[]HEI av =
Y

AR°L {Lf(kR)—(%)thf(ka>-Lo(ka)L2(ka)-%Aa(Jf(ka)-Jo(ka)Jz(ka))3}=
{ 12(xR) 12 (ka) 1. (i (
2.2 RS g o DbalkE g Ly(ka) [ Jy(ka) )
R LL~ (ka) § ——— -(5)°[ —=— (1-2) - — = 1 (12)
° iLg(ka) B 2ka) T LoRE) s Jplka) f

One notices that We and Wm are not exactly equal as it should be.

This is a consequence of the approximations (5). If the gap disappears

b 2 -6 -

7 77 is used where
X




(g = 0) one obtains W= o= (nL/a){RZLf(kR) - aZLf(ka)E(

as one expects.

The pgwer dissipated in the walls of the cavity is defined by
ET,; E§;é!H2bS where the integral has to be extended over the inner

surface § of the cavity. Neglecting the central beam hole one finds

. _

< = R(L+R)L2(kR) * a2[—L2(ka)+L (ka)L (ka.)+J3(ka)+J2(ka)]+aL2(ka) =

Rq 1 1 0 2 1. 0" 1
2 2,
L, (kR) L7 (ka)

S Y P o (@

‘ 1 Ly(ka) R Lg(ka) -~
2 2 2
+(2)2{Jo<ka)+J,'(ka) g b (ka) (. Io(ka)d, (ka), ‘"g\
R 5 L T2 \ 5 > ?
L LO(ka) uo(ka) \ Jq(ka) 4

These expressions are rather involved and hence we shall consider
the Special case that the drift tube diameter 2a is small compared
to the cavity diameter 2R or more precisely (ka/2)<< 1. For most
practical cases this approximation will be sufficiently accurate.
Then the Besscl functions can be expanded and only the leading terms

will be maintained. We shall use especially the approximation

L,i(ka) L I, (ka) L ka (1)
LO(kaS T g JOZka5 ~ g 2

and for kR> 1 one may use the asymptoticform

L,](kR) 5 (15)

g
Lo(ka)'~'ﬁkR

It is further expedient to introduce the gquantity

ak - a kR (16)

1=2777 2

where kR can be taken from fig. 2.



For the case (ka/2)<K<1 the integrals can be written’in the following

form

2 s
2Ry (. 22.L L2
W o= &b 2 1) (==
o= B {edPg - no g
2 (
2R°L
wo=BL  Jqgf (— - D1-¢° (— + 1)1 (17)
" R(kR) 1 }
2w
Pg _ “'m  4RL {1 w22 E 1) Ee2, R}
By I aam)® &8

Of course, these expressions are valid only if qZL/g<:1 since We and

wm must be positive.

IV. The Egquivalent Circuit

For some purposé® it is advantageous to consider the equivalent circuit
of one cell, which consists essentially of a capacitance C and an in-
ductivity & connected in parallel. In order to define these quantities
two points of the cavity have to be chosen as poles. Since particles
will be accelerated by the electric field on the axis of the cavity
we shall choose the centers of the front walls of the drift tubes as

poles assuming that there is no beam hole.

The capacitance is defined by the relation W = % CJ2 from which one
e
2 .
infers C = 2 We/‘ EZdz’ . With (E dz = Ag = L Lo(ka) I ( a) one obtains

2
2 L, (kR) J, (ka)
¢ =85 2 (xa) 4 |- 22E - (- -%—-%} (18)
]Lo(ka) & I (xa) &

This expression can be:.interpreted as the sum of three capacities



g
2
L>(ka)
with c =&l R2J2(ka) 1 : (19)
cT L 0 >
Lo(ka)
2
2 17 (ka)
0= SF= Tkl (1-f
g Lo(ka)
2
. Eonaz L 35 (ka)
8 & € Jg(ka)

Cg is obviously the capacity of the drift tubes, whereas CC is the
capacity of the empty cavity. Cé has to be subtracted from CC because
of the volume filled by the drift tubes. The second terms in the

brackets take info account the distortion of the fields.

. ‘ | :
The inductance is defined by &£ = Lfﬁ d zlz/zwm where the area Z is

half the cross section of the cavf%y. From Maxwell's equation one can

deduce thatjEZdz = - im[ﬁd:% and hence
z
f.2 2 -1 (20)
) tol LykR) | o Ly(ka) B2 32y 1)
=5 55 > - (ﬁ) S (1-3)[1 L(q-(E;) )}
n(kR) JO(ka) Lo(ka) Lo(ka)

It can easily be seen that this expression can be decomposed in the

following way

i=21_2_ .3
£ i&, g& :fd
with 2
o - o L Lo(ka)
c nkan(ka) R® Lf(kR)
2
1
g’ i o L Lo(ka) (1)
d nkZJz(ka) a® Lz(ka) 1+§[1-(§-)2]
0 1 iR ka
\ Mo g !
i% - )

2.2 g 2 (2
k=, (ka) a 1+E[1—(ka) ]
Here ﬁ; is the inductance of the empty cavity and?fd the inductance

of the drift tubes.
-9 -



For the case (a/R)<< 1 and kR> 1 one finds

Eo bt [ 221 L, L2
R T Be S I O P E B >} (22)
L 1:21 g g
¥—1
e 20t {’i-{»naqz(—g- - DI-a" @+ DI (23)

Of course C and ¥ satisfy the relation £C = 1/mg. FEquation (22) and
(23) are not very useful as they stand because they contain k which
has to be determined as solution af equ. (8). What one would like to
have, however, is a simple expression that gives the dependence of
Wy on kﬁg:L) of the cavity without drift tubes and additional terms
for the drift tubes, which do not change k(g=IL).

Such a relation can be obtained on the basis of the following con-
sideration. If drift tubes are installed into a cavity the main
change is caused by the capacity of the drift tubes. The inductance
on the other hand is not varied appreciably. This is because part of
the displacement current is converted into a current in the drift
tubes but this does not change drastically the distribution of the
magnetic field which anyway is small near the cavity axis. Then

equ. (22) and (23) can be simplified by putting

<

T g J
*ﬁ_j.}lgl_bL
&="=7—

and one obtains with k(g = L) = 2,40 and q = (a/R)(2,40/2)

2,k

\f 1+Ka® (-?-1 )

The constant K has to be determined empirically. It replaces n2 in

I

kR = moR/c (24)

aqu. (22) and therefore one expects that it has a value between 1 and

- 10 -




0. Imdced 1t ds fouwnd that a very good approximation is achieved
with K = 2,74%. The values of R/A calculated in this way are present-
ed in Iig. 2 as dashed lines. It can e seen that for the range

0,1<(a/R)< 0,3 the agreement with the values obtained from equ. (8)
o

V. The Coupling Coefficient

In this section the influence of the coupling slots will be consider-

ed and a1 expression for the coupling coefficient will be derived.

A small hole in the cavity wall distorts the electric and magnetic
fields. This effect can be calculated, if the hole is replaced by =
layer of electric and magnetic dipoles. The distribution of these di-

8)

poles can be calculated by satisfying the boundary conditions ’.

If two cavities are coupled by such a small hole the coupling coeffi-

cient as defined in equ. (9) can then be computed and one obtains9)1o)6)
Ei Hi
“=7r 2w T " A =% -%y (25)

Here Ec and HC are the electric and magnetic fields that would exist
at the center of the hole, if ithe hole were absent. The polarisabi-
lities p and m depend on the shape of the hole and very crudely they

3/2

are proporiional to s where s is the area of the hole. 38is the
ratio of the energy Wye stored in the coupling element and the total

energy W = we =W in the cavity.

In a cavity without drift tubes ECRJJO(kr) and HCnJJq(kr). Therefore
a hole on the axis (beam hole) will produce only electric coupling
(2€>0) whereas a hole close to the cylinder wall will result mainly
in magnetic coupling (22<0). Somewherc inbetween will pasg-through
zerc. Hence in order to get a most efficient coupling the ccoupling

uid be as far away from the axis as possible.
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For = circular~beamwholﬁhwith'radius-g-one has

.
P m o= 232 - (26)

and “hence the.magnetic- eoupling is twice -the electric., For a rectan--
gular hole with the dimensions h and d and with the magnetic field

_ parallel to h one obtains

o2
p.=m = b8 2r)

Here the“electrié.and~magnetic coupling are equally strong but still.
opposite in sign..Theuconstantzfis n/16 if h,d <¢ A. Since this.is not
true .in-most.cases 7 will be considered ab an adjustable parameter of
order 1.

The case of the rectangular slot in a homogemeous magnetic field can
easily be adapted to a wedgelike  opening (see .fig. 1) in a cylindrical
cavity. .Because of the cylindrical symmetry the magnetic field is again
parallel (or perpendicular) to the edges of the slot and hence equ. (27)
can be applied. If the slot width d is not small compared to ‘the ra-
:dius of the cavity the electric and magnetic field averaged over the
slot area should be inserted into equ. (25). Putting h = ro and using
(27) equ. (25) is converted into -

ry 3
™ol )
A= S %W % raEa(kr)dr - _[rZHZ(kr)dr} (28) -
i, f, ’
1 4

The integrals canrn only be computed numerically. However, in order to -
study. the-general behaviour ofa one can replace (r/R)2 under. the
integral by [21:{(::1 +_r2)]j£(27 * rz}/ERJZ.‘Thiswapproximation‘is not
too bad as longnas~{r2 - r1)<(R. Making this substitution one arrives

at the. following expression for the coupling coefficient

/ r r.
) ifengn r, : r, Lo(kr1)[Lo(kr2)+L2(kr2)](—%)Z—Lo(qu)[Lo(kr1)+L2(kr1)](—?
s A SN SN Sy- s £ AR :
2n(kR) L5(kR)J 1 + 3.95(=)7 (=17 (" o
(it -

§
o

one notices that 2€is_simply proportional +o.the square of the slot

A8 Vi LSSl



containing L/g are small in most cases. The dependence on the slot
width (r2 - rq) and the slot position is given by the numerator. The
general features of this dependence has been discussed already. If
the coupl-

for a fixed r, the slot width is increased by reducing r

2 1
ing coefficient increases first, passes through a maximum and may

even become negative. Some examples will be discussed in section VII.
The reason for the appearance of a maximum is of course that the mag-

netic coupling is partly compensated by the electric.

Equ. (29) describes the coupling of one slot. If n slots are used the

total coupling is given by

oy = N TRy

where

N by3 R
®, = 1.58(§) - T

is the coupling of the beam hole (radius b) without drift tubes. If
drift tubes are inserted the electric field at the hole is reduced
and this might be taken into account by applying a factor (1 + t/b)"z.

However, in most casesi&b can be neglected.

VI Quality Factor and Shunt Impedance

The damping D of a cavity is defined as the ratio of the power loss

per period and the total energy stored in the cavfty.

35+ %ﬁ

= (32)

D =

Of =

2
wl
The inverse of D is the quality factor Q. The total power loss is

the sum of the ohmic losses Pé in the cavity walls and the losses

through the coupling holes Py.

An expression for Pg was given already in equ. (13) and (17). From

this one obtains for the attenuation D due to omic losses

- 13 -



. i
o) 8
Dé = ow quL {1 *
L
12 (kR) 12 (ka) 2(3 (ka)+J (xa) La(ka) 3, (ka)d, (ka)] )
] Lal1tl ey ,a ° .8 | (33)
L Ra)  Brlfaa) MR 1f(ka) L 2(ka) Jz(ka) |
R 2
LS (kR) L5 (ka) L. (ka) 3, (ka) (
G (B (1) - [y - 2 T (ka) . J
Lo(ka) Lo(ka) o %% & a

For the normal skin effect one has RS = poms/2 where the skin depth s

is determined by

: =\[w§6 \/% | (34)

The last term is valid for copper at room temperature. For a super-

conducting structure the expression for RS is more complicated )
and Rsﬂ:wz instead of RsﬂJfawfor normal conduction.
If again the approximation (ak/2)X<1 is introduced one finds
2 24
2R m_q =~ =
B (g e IRty (35)
8 T Wowl R

T4n° q (E~1)[1-q (E+1)]

for a cavity without drift tubes (g3 0) one gets the well-known ex-

pression
2R L 11
D‘\)) = - SL (14—1—2_') = S(-I:+-§) (56)
o .

The next step 1s to calculate the attenuation caused by the coupling
slots. This could be done by describing the influence of the slots
by an appropriate distribution of electric and magnetic dipoles (see
section V). Then the dissipated power Pug= (RS/Z)tiH!EdS could be
determined if the surface integral is computed for H = HO + H_ where

Ho is the field in the cavity without coupling slots and HD ig the
dipole field. Here we shall follow a simpler procedure by consider-
ing the equivalent circuit of the coupling e¢lement. The ratio of the
energy dissipated in the coupling element to the total energy is

given by Ryg /0 & agwhere Rag and tﬁgare the equivalent resistance and

- 14 -




inductivity of the coupling element, respectively. For the inductivity

of the slot one has approximately
L= ! (37)

where d is the dimension of the slot perpendicular to the magnetic
field produced by the equivalent magnetic dipole. If one further iden-
tifies Rypwith R  one obtains Rip/w&yy™s/2d) and one finally finds for

n slots
_ hn Rs o mn.. S
Pae = o 7o [ Wae|= 2mn0 2| (38)
0
and
B R
L
Dye = == = .L.*_T.‘_.ﬁhe{: %?.hel (39)

Expression (39) demonstrates that for a constant slot width d the

damping D is directly proportional to the coupling coefficient L.

According to €qu. (27)3ﬂ~h2d and hence Dagis independent of d. This
is plausible since the damping ngriginates from the deflection of
the currents by the slots in the front walls of the cavity. This de-
flection results in longer current paths and therefore a higher dissi-
pation of power. However, the radial component of the current path is
not changed by the coupling hole but rather the additional path in
azimuthal direction increases the damping. Therefore one expects that
only the slot angle (determined essentially by h) but not the slot
width d influences the damping Dgp.This becomes obvious for the limit-
ing case of a very narrow slot in radial direction., It does not
distort the current distribution and hence its length does not effect
the damping. On the other hand according to (28) Dapshould be propor-
tional to a2 and this is in very good agreement with the experimental

results (see section VII).

The total attenuation and the quality factor are obtained from -



=L
same order of magnitude w10 for copper cavities) and therefore for

o optimization both have to be taken into account.

The shunt impedance per unit length Z of an accelerating structure
is defined by the square of the maximum energy gain divided by the

power loss each per uvnit length of the structure
L

_ 2
7 = [‘éEZ(r“O)dZ] T2 - 2T2 @,__ - 2T2 w-i’fQ (LI-O)
P. L : L7 wC L P
L L
{
where T = J E_sin fm dz/ E dz = (2L/ng) sin' (mg/2L) (51)
G
£

is the transit time factor for the m-mode. If Ez(r = 0) is inserted

into (40) one may write

2
Zo Jolka)  Bi4Py, '
7 T (42)
Lo<ka) 1

were Byand Py, are given by equ. (13) and (38) respectively.

Using the approximatior for (ak/2)4< 1 one obtains

2
. TRR, L (KR) 5 ¢, onlel )
e (L =" iL (1+4) 45 (14B)+(1+4) S ¢ (43)
0
with A = an(é'--’!)
R 2 R

B = q~-(—— 1) (za

For a cavity without drift tubes and no coupling slots one finds the

well-known relation

o
~—r

(44)

N 2
13 0]
ol
—d
il

- 16 ~




For constant g/L one infers from equ. (43) that 1/Z should be propor-

tional tohﬁiand also proportional toc R/L apart from constant terms.

VII. Comparison with measurements

In the following we shall compare the results of the calculations with
the experimental data obtainea by Eschelbacher at 760 MHz. Because of

the apprqximations introduced in the theory a 10 percent agreement will
be considered as satisfactory: The main purpose of this work was to get
a better qualitative understaﬁding of the phenomena whereas more accu-

rate numerical calculations are necessary for an actual design study.

a) Resonance freguency

The dependence of the resonance freguency W, of an isolated cell on
the length and diameter of the drift tubes is described by the simple
formula (24) for a/R 1. The constant K = 2.74 has been chosen such
that the best agreement with equ. (8) is obtained for a/R = 0.225
(compare fig. 2). Some measurements for a structure with this value
of a/R and different gap widths are shown in fig. 2. The frequency
w, was determined by fitting equ. (10) to the experiments which
yields mo and ¥ . As can be seen the data for wo fall on the theo-
retical curve for g/L2 0.6 in fig. 2 whereas for larger gap widths
the experimental frequencies are lower than the calculated ones.
This means that the drift tube diameter should be replaced by an
effective diameter which is about 10% larger at g/L~0.5 and

about 25% larger at g/L~0.3. Since, however, such small gap widths
are not practical because of sparking the interesting range of g/L

is around and above 0.5 where our approximation is sufficiently

jol

good.

b) Coupling coefficient

According to equ. (28) the coupling coefficient is expected to be
proportional to the square of the slot length; i.e. éﬁ’vaz. Some
measurements of £ as a function of aa are presented in fig. 3. In-
deed there is a linear dependence and only for very large angles

the experimental numbers deviate from the straight line. This is

- 17 -



c)

presumably caused by an interaction between the four slots.

Equ. (28) predicts that % .L should not change if the cell length
L is varied but g/L and a/R are kept constant. That this is in-
deed so within the ac%uracy of the present calculations is shown
by fig. 4. In a similar way it can be shown that the dependence
ofjpon g/L is rather weak, since according to fig. 2 k does not
change drastically as long as g/L> 0.4 and hence the functions

Ly (kf)  in equ. (28) or (29) vary only little. In addition the
changes in the numerator and denominator are in the same direct-
ion and hence the overall change of 3? is small, This is verified

by the measurements (see fig. 25 of Eschelbachera)).

Finally one has to discuss the dependence ofiw on the slot width
and slot position. This is essentially given by the integral
lfrz[Ez - H2]dr which has to be taken over the slot width. Since
ﬁeasurements for very largev values of d have been performed

equ. (29) is too bad an approximation and the integral was com-
puted by graphical methods inserting equ. (2) for the fields.

The results are shown in fig. 5. As is seen the theoretical cur-
ves reproduce guite well the general behaviour of the experiment
al results. In the case of no drift tubes (g/L = 1)#® rises sharp-
ly with increasing slot width, passes a maximum and drops off.
The reason is that near the axis the electric coupling becomes
more important and since it is opposite in sign it cancels part-
ly the magnetic coupling. For long drift tubes the electric

field is reduced considerably and as a consequence % decreases
only slightly. The absolute magnitude of the experimental re-~
sults is in some disagreement with the predicted values, however,

this could be improved by adjusting p or a slight change of k.

Quality factor

Using equ. (36) and (39) one may write
_ 1 .13 +B  2nl®l
D = s[ T*ETTE Y 3 1= 1/Q (4ha)

where A and B have been defined in (43). From this relation one eXpects

- 18 -



that :© 1/Q is proportional toZ and consequently proportional to
az. Measurements for a special geometry are shown in fig. 6. For
values of aag 1.5 the prediction is realized very nicely. The
slope of the broken curve was calculated from a measured value
#= 16% at a = 1. The intersection of both straight lines with
the coordinate axis cannot be calculated reliably since a demount-
able model was used and hence it is to be expected that the mea-
sured Q values are low by a given factor. Indeed for &= 0 one
finds 1/Q = 1.10—4 whereas for an ideal copper cavity one expects

1/Q = (s/L) + (s/R) = 0.4 . 107",

Since, as we have seen, £~1/L holds with good accuracy one expects
that D~ 1/L or D~# if & is changed by varying L but keeping g/L
fixed. As fig. 7 shows this expectation is also born out by the
measurements. The straight lines connecting the points for a

given slot width all intersect the coordinate axis at the same
point which is given by 1/Q = s/R since in this case # =0
cofresponds to L—>cey . The point obtained by extrapolating the
measurements is 0.2 . ’lO“L+ whereas for an ideal copper cawity one
expects 0.16 . 10-4. This agreement is somewhat better because
losses caused by bad joints are not important for the two front
plates of the cavity. If the coupling coefficient is varied by
changing the slot width the relation between 1/Q and 2¢ is more
complicated. This follows from {z}/d being a complex function of

r, and Ty according to (28). However, in a first approkimation

one expects a linear relationship also in this case. This cannot
be tested since measurements only for two slot widths have been
performed. However, if the dashed lines in fig. 7 which correspond
to L = const. are extrapolated to the coordinate axis the result-
ing values of 1/Q - 0.2 . 10'4 = (0.97 ; 0.70; 0,48)10‘4 should
according to equ. (44a) be proportional to 1/L = (1.07; 0,74;0.56)10-2

which is approximately the case.

Summarizing one might say that the approximate treatment of a
reentrant cavity with coupling slots as presented here describes
such a structure with reasonable accuracy. It should alsoc be pointed
out that the relations derived for the resonance frequency, the

Q value and the shunt

ing and hence these results can be applied immediately to a n/2 mode

structure with resonance coupling. - 19 -



VIII. Optimalization of the Shunt Impedance

In order to keep the rf power low for a normal linear accelerator or
in order to reduce the cooling power in the case of a superconducting
accelerator it is important to make the shunt impedance as high as

possible. This optimalization should be carried out in two steps.

1) Optimalization for fixed v/c

First we consider a single cell or a tank consisting of identical cells
designed for a given particle velocity, As a consequence of the acce-
lerating condition 2L = BAO (B8 = v/c; KO = vacuum ware length) the cell
length L is fixed. Because of practical reasons the tank radius R will
be kept constant over the whole length of the accelerator or at least

over &a large section.

Furthermore the coupling coefficientoe will be chosen by other consi-
derations than the optimalization of the shunt impedance. It deter-
mines the bandwidth of the structure and hence the mode stability and
also the group velocity. Consequently we shall assume here that € is
éetermined by these requirements and is kept constant over the whole
accelerating structure. This has the additional advantage that the
resonance frequency is not altered by a change of 22 which simplifies

the discussion considerably.

If we use equ. (43) as a basis for our optimalization one has to make
1/Z as small as possible by a proper choice of g/L and a/R. For
practical reasons one wants to have the same resonance frequency for

all tanks. According to equ. (24) this implies that

A=2,74 qz% - 1)

has to be constant. As we shall see later a maximum for the shunt im-
pedance is obtained for g/L~0.5. An inspection of fig. 2 shows that
for the region 0.3<g/L< 1 a variation of g/L can easily be compen-
sated by a small change of the drift tube diameter i.e. of q2. Since

the necessary variation of g/L to obtain the maximum Z for each B is

- 20 -




comparatively small it is always possible to keep A = const ( and

hence w,= const) by a proper choice of the drift tube diameter a

with 0.1<a/R<0.3.

It is convenient to bring equ. (43) into the form

C c
1 o (=X )? A b5
'Z’"Co(sinzt_){%*x‘L\jm} (45)
5
x = g/L
where the constants CO’ Cq, 02 and 03 are defined by
2
c _n3.12123_(1ﬂ(k12))2
o~ 2 L (ka)
Z 0
0
1 1 AES!
C, = T (1 + 4) + 7 * (1 + A) ) (46)
A
2°%

The three constants Cq, C2 and C3 are of approximately the same magni-
tude and hence all three terms must be taken into account. The value
of x for which 1/Z has a minimum can of course easily be found by
differentiating equ. (45) and putting it equal to zero. However, we

shall restrict ourselves to a gualitative discussion.

The factor (x/sin %x) has a minimum for x = O whereas CZ/X accepts its
lowest value at x = 1. Furthermore the term CB/V x(1-x) has a minimum

at x = 1/2. Therefore neglecting the transit time factor and the other
terms the highest shunt impedance would be obtained for g/L = 0.5.

The term 02/x which becomes more important for small f will shift the
minimum to somewhat higher values of g/L. The transit time factor on

the other hand favours smaller values of g/L. In order to determine

g/L precisely the actual numerical values of the constants have to be
used. Moreover for an actual design study the more accurate equ. (42)
should be used.However, since the maximum of Z is rather flat g/Ix0.5 is
a reasonable value in most cases. The precise value of g/L will then be

determined also by other considerations, e.g. sparking properties.

- 21 -



2) Optimalization of the whole structure

Once the relative maximum of Z has been obtained by determining g/L
(which at the same time yields a definite value of a/R because of
the frequency condition) the question arises how an absolute maxi-

mum can be achieved by an adequate choice of R, w and 28

The selection of an advantageous radius R,and intimately connected

to it the choice of the frequency,is influenced by two considerations.
It follows from (46) that the constants COCq, COC2 and COC3 increase
with increasing R. Therefore as far as the geometry is con-
cerned a small radius is preferable which implies of course a higher

frequency o On the other hand the surface resistivityrRS decreases

for supercogducting cavities with decreasing w and hence a lower fre-
quency is more advantageous. The final choice cannot be made without
cost estimates since the cost of the structure with its cryogenic

shields is a strong function of R and L. Such considerations would be

beyond the scope of this paper, however.

Because of phase stability and phase acceptance and in favour of a
simple rf system it will certainly be most favourable to use the
same frequency for the whole accelerator. However, it might turn out
that a change of R at one or two points could be profitable. The

right frequency can be obtained by changing a/R in the proper way.

A last remark concerns the coupling coefficient. In order to keep the

problems of mode stability and télerance in hand it seems that a con-

stant £ over the whole structure will be expedient. This can easily

be realized. If for example protons are injected at an energy of

150 MeV (B = 0.5) and if they are accelerated to energies above 1 GeV

(@>~O.9) than L will vary by a factor of about 2 and as a consequence

3¢ changes by the same factor. However, this change can easily be com-
pensated since B€~a2 (see equ. (28)) and therefore a comparatively

small variation of the slot width will suffice.
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Figure Captions

Dimensions of cavity and coupling slots

The resonance freguency of a single cell w, as a function of
g/L (g gap width, L cell length) for different ratios a/R
(a drift tube diameter, R cell diameter). Dashed lines cal-

culated from equ. (24).

The coupling coefficient 2 as function of the slot angleé «
for a/R = 0.226 and g/L = 0.5. Fullline is drawn through

points, broken line was calculated according to (28).

The coupling coefficient ® as function of the cell length L
(in units of R) for two values of the slot width d and two ex-

treme drift tube lengths 1.

The coupling coefficients: as function of the slot width

d = ry- v, (r,

with equ. (28) putting 77 = 1.

- = 115 mm, R = 144 mm). The curves are calculated

1/Q as a function of the slot angle a. The full curve is drawn
through the experimental points. The broken curve was calculat-

ed using ¢ = 16% at o = 1.

1/Q as a function of % . Here % was varied by changing L

whereas all other parameters are kept constant.
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