KERNFORSCHUNGSZENTRUM

KARLSRUHE

Oktober 1967 KFK 633

SM 101/13
EUR 3677 e

Institut fir Angewandte Reaktorphysik

Heterogeneity Calculations Including Space Dependent

Resonance Self-Shielding

D. Wintzer

U







KERNFORSCHUNGSZENTRUM KARLSRUHE

Okteber 1967 KFK 633
sSM  101/13
EUR 3677 e

Institut fir Angewandte Reaktorphysik

HETEROGENEITY CALCULATIONS INCLUDING SPACE DEPENDENT
RESONANCE SELF SHIELDING*

D. Wintzer

Paper to be presented at the IAEA Symposium
on Fast Reactor Physics and Related Safety Problems
held at Karlsruhe, Germany, Oct. 30 - Nov. 3, 1967

Gesellschaft fiir Kernforschung mbH., Karlsruhe

*
Work performed within the association in the field of fast reactors

between the European Atvomic Eunergy Community and Gesellschaft fiir
Kernforschung mbH., Karlsruhe







1. INTRODUCTION

/ Heterogeneity effects must be taken into account in the
interpretation of nearly all experiments performed in the lattices of
fast assemblies. Several methods have beén developed to calculate the
influence of heterogeneity on reactivity, and they work rather well for

assemblies with hard spectra.

In fast assemblies with rather soft Spectra as in steam cooled
fast reactors, the heterogeneity effects in the keV- and 100 eV-region
make an important contribution to the hetercgeneity effect. In multi~
group calculations the modifications of resonance self shielding
compared to the homogeneous case must be taken into account. This is
done frequently by applying equivalence theorems for effective cross
sections, which are based on rational approximations for collision
probabilities in the lattice cell. In most applications for fast reactors,

Bell's /1/ approximation for tight lattices is used.

However, this procedure is not useful, if the lattice cell
contains a material with large resonance cross sections (for example
238U) in more than one region of the cell or if one wants to subdivide
a cell region with resonance cross sections in order to investigate

the spatial fine structure of reaction rates.

In section 4 of this paper, an approximation is proposed, which
takes into account space dependent self shielding in a multiregion
lattice cell. The method is based on a multigroup collision probability
formalism of reaction rates and neutron emission densities in the cell
regions {(described shortly in section 2 and 3) and is applied in a
computer program called ZERA. The method is not restricted to small

heterogeneity effects and can be applied to thermal reactor problems.

The heterogeneity effect on reactivity is oftemn comnsiderably
influenced by a modification of leakage parameters due to heterogeneity.
In the mentioned program such modificaftions are roughly taken into

account as described in section 6.

Several results of ZERA calculations for rod lattices and
for plane lattices are shown in the last section. Some of them are

compared with experimental results.




2. BASIC EQUATIONS

We start with the integral form of Boltzmann's equation for
the critical reactor. Assuming the reactor to consist of N homcgenéous
regions, and the fission and scattering processes to be isotropic, we

get for the mean flux in region n

’ N Pmn(u)
ﬂn(u) = 52; qm(u)Vm g;r;yv;. {1)

Here Z and V are symbols for total cross section and volume.The
collision probabilities Pmn have their usual meaning: the probabilities
for neutrons, which are isotropically emitted in region m with
spatially constant density to suffer their next collision in region

n. So eq. (1) involves the assumption, that the space dependence of
the emission density q (u,#) within a region can be neglected. If

necessary, & subdivision of regions must be performed.

qm(u) is the average value of ¢ (us) within region m and
consists of a fission term (multiplied with an eigenvelue A) and a

downscattering term:

o0
— 1 t i 1 1
qm(u) = j du ¢m(u ) {l»’(u - u) Zf,m(u Y+ Z.S’m(u *u)] (2)
o
= is the macroscopic fission cross section in region m, Z_ (u'~>u)

f,m s.m
is the scatteri ng cross section for lethargy transitions from u' to u.

Combining (1) and (2), one gets

NV Av(ut-u) Z, (u)+ 7 _(u'su)
m ' . fin S,n 3.
qn(u) =.£i1 V; j’du qm(u ) Z%Ku') Pmn(uf)

o

(3)

- /
The reaction rate for any collision type & (for example capture) -in

n

region n is given by L,
<§w 2 n(u) L
Fm’n(u) = Z;gn(u)¢n(u)vn = L v, 9, Ef-%§7~_ P (u) (&)



If the reactor or a part of it consists of a periodic lattice, and

)

if the cell concept can be usedq to calculate the distribution of
reaction rates within a unit cell, egs. (3) and (k) are applicable
without formal changes. Only the meaning of two symbols has to be
modified: N becomes the number of regions or zones within the unit

cell, and the collision probabilities Pmn must now include contributions

of homological zones in neighbouring cells.

3. MULTIGROUP PRESENTATION

For practical calculations, it is appropriate to use the
multigroup approximation and to express the balance equations in terms

of group and zone averaged emission densities qg n’ fluxes ¢gn’ and
b

reaction rates Fg @ The corresponding steps in treating egs. (1) to
9 7
(4) are integrations which lead to
N V P
Z R
¢ = ——XE /q hoeeaneens AU, (5)
g:n L= V. Nm >sg g
N Z
- o, 1
- v { 2 p u_, (6)
Fg,m,n 52% n \m =, mn:>g A g
and
N V. @& AY e Vv P
) .S B go.ohn Tkegd p N o4
qg,n - <qn(u)>gAug E Vn g:-; <qm pa mn’ k 2%

(7)

In these equations, the brackets indicate that the average over the

energy group g with a lethargy width Aug should be taken:

1)The cell concept is applicable, if the dimensions of the reactor'or.
the lattice zone in question are large compared to the characteristic
cell diemension and to the mean free paths of the neutrons. . -
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Xg is the fraction of fission neutrons born into energy group g, s6 that

Xg*V(u) = J’ y{u-u') du’

au
g

The transfer cross section Zk-—ag n is defined as
k]

Zk-*g,n(u) = J ZS (u=u') au’
Au, "

G is the number of energy groups.
After separation of the emission density in its average

group value <qm(u)>g and an only weaklyz) lethargy dependent function
Wg(u) which is normalized to <W(u)> =1, eas. (5) to (7) can be read as

N Vv
- - / N\
¢g,n A Qg ,m\V (u)wmn(u)/g (8)
N %
Fowon = é; Uy G W (W T, (Y ) (9)
N Vm G
Y T G, KXY ) Ty Ty ] Y ()
(10)
In these equations the abbreviation
""I/mn(u) = Pmn(u)/zn(u) (1)

has been introduced. VY (u) is proportional to the flux at lethargy

u in region n, caused per unit emission rate in region m.

2}111 the sense of the narrow resomancé approximation ~—— -



If the values of the brackets are known, the system of linear

equations (10) can be solved to obtain A, the matrix qg n Broup fluxes
2

] , and reaction rates F .

g,n Fo,;0

The problem is *the calculation of the hrackets, if the
cross sections are strongly enargy dependent within the esnergy group.

They appear in the gereral form

- .,
A = W, (WY () 12
g,%,m,n o, ymn / g (12)
and have the physical mearing of a reaction rate in group g and
region n caused per unit emission rate in group g and reglon m. We
will call them "reaction coefficients'. The bracket in eq. (8) can
be regarded as a special case of (12), wiﬁhlfa n(u) = 1 and will be

?
denoted as A .
noted a g0, mn

In principle, it is possible to calculate the collision
probabilities and Pmn(u) for a series of lethargy points within each

cal

energy group and to evalvate the reaction coefficients by nuﬁe?f
integrations. However, if large resonance cross sectlons must be taken
into account this procedure is exiremely time consuming and causes
difficult computer storage probhlems.

“ s e

In order to cope with similar difficulties for homogeneous
problems, the Obninsk /2/ group has provosed to use tabulated self-

shielding factors for microscopic cross sections. These are defined as

< ( xéiiN(u}

N WL/ _”T"xj"n o =

& ) = G, v - L o ﬁ/(ui@;‘p d £13)
Yo (6:{,“(11)> <G‘c{’v(u)><_‘W(u> %;‘:(:}T 5o }

and will be used in the next section.

the background cross section,is the sum of the cross section

=

vo’ ]
contributions of other nuclides per atom of nuclide V; it is assumed

to be constant within the energy group under consideration.




L, CALCULATION OF THE REACTION COEFFICIENTS

Splitting up A into cont¥ibutions of individual nudlides
g, X, 0,0

—Z' (1)

g,m.m n S 8sv,.,m,n
leads to

= N v 6y @Y (@) ) (15)

A
£y myn

Ifrg%v(u) contains large resonances in group g, the main contributions

to Ag,v,x, m,n will be due to reactions near resonance energies. For

this reason, \y (u) must be carefully calculated near the resonances

of nuclide V. If an overlapping of large resonances of different nuclides
does not occur in the cell regions, the energy dependence of‘ﬁnn at
resonance values of ﬁ; is predominantly determined by the energy

dependence of Ciﬁu).

If the resonance character of the cross sections must be
taken into account in one region n of the cell only, the dependence
of’V%n on G; can be approximated by a rational function (see, for

example, /1/ and /3?),

Vo (O @) = gRfut (16)
which is proportional to the fine structure of the spectrum near
resonances of 6,in a fictitious homogeneous medium, as characterized

by a background cross section b, per atom of nuclide Vv . The fictitious
cross section b,, involves geometrical parameters of the resonance

region. The formal agreement of eq. (16) with the resonance behaviour

of the flux in a homogeneous mediumz) is the substance of the well

known equivalence theorem />/ and makes possible the use of self-shielding

factors or resonance integrals in many heterogeneous cases.

))The formal agreement can be seen by specializing eq. (11) to a one-
region cell, which describes a part of a large homogeneous medium
with a total cross section Z.(u). The collision probability matrix
reduces to one number Pqq = 1, and Yﬁﬁ becomes

\f” ___(1 __1/N,,\
DA CY RN SO ET-

N, is the number of atoms of nuclide v in the medium, G“ the
tackground cross section due to other nuclides.



However, the known equivalence theorems cannot be used in
more gemeral cases, in which resonance crdss sections of the same

238

nuclide (for eXahpie U) are present in more ‘than one region of the
cell. For this reéason, using ecuivalence theorems, it is not possible
to subdivide & region with resonance cross sections, which sometimes

would be valuable for studying the spatial fine structure of resonance

reactions or to describe more accurately the emission density distribution.

Furthermore, the derivation of (16) is based on a rational
approximation for collision probabilities, which is rather inaccurate

for plane cells.

Actually, exact functions or good approximations for the
dependence of the collision probabilities on cross sections and
geometrical parameters are known for most cases of practical interest,
but in general they lead to a more complicated function for'Y%n(ﬁ;)
than (16).

The main advantages of the equivalence theorems (the separation
of reaction coefficients or effective cross sections into nuclide
contributions and the use of tabulated self-shielding factors or resonance
integrals) can be saved if it is possible to approximate‘ymn(fi) by

series of rational functions, i.e., if

Jd a__ .
YWo(E) = » 2l (17)
(%) = 2 SV |
Introducing (17) into (15), one gets
J o, ()
(- AaY)
- ! 18
A?vﬁsmin - an g a\),j,m,n Q(u) q,(uj'g'bvj? ‘i> . (18)

(We have dropped now the group index g.)

The brackets in the last eguation can be calculated from

self-shielding factors using the rélation

¢y S N Gay
N W, /T T,
34

Yo

(19)

which follows from

(see eq. (13)).




Similarly as in (16), the parameters b_. can be interpreted

N
as background cross sections, which characterize the dilutions of nuclide
Y in a set of J fictitious media. Eq; (17) describes a superposition

of the corresponding spectra.

In some cases, it is possible to derive reasonable valiues for
bvj from physical considera%ions, in which the Speéial neutron optical
parameters of the cell are taken into account. However, it is difficult

to do this generally.

For this reason, we do not try to derive the bvj from cell
parameters, but choose them to make the expression (17) flexible in the
cross section interval of interest (that is approximately the interval

between 6%v and the largest resonance cross section 6;_ in the energy
E~ k4

max
group).

It was found, that the expression (17) yields a good

approximation for the function in the interval Czn#<<5; '4 if the

, Cﬁhmax’
parameters b_. cover about the same interval uniformly on a log¥scale.
vdJ

The achievable accuracy grows with the number J of terms in (17) (see below).

The c¢oefficients av j,m,n can be obtained by calculating some
) [RERUS !
values of the functibn'wgn(ﬁa) =P (6;)/Efn and by fitting the expression

(17) to these values.

mn

The advantage of the described approximation is, that it is
not restricted to a rational approximation for Pmn(Cﬁ). One is free
to use exact formulas or the best known approximations for the calculation
of collision probabilities and is not limited to a certain type of cell
geometry. The methods for Pmn-calculations used in the code ZERA for
rod lattices and for plane lattices are described in a paper to be
published in the near future.

For the investigation of relatively small heterogeneity effects
as they occur in fast reactors, the accuracy of the described method
can be improved by a slight modification. The approximation (17) is not

used for'¥%n(€g) but for

\an(c;) =-"Pmn(s;’) —.wﬁn,hom’ (18)

Where1ymn,hom Pm,n,hom/zn (19)



is the limit of’wmn for cells with extremely small dimensions, but with
the same compositions and relative region dimensions as the heterogeneous

cell., For this limit, the collision probabilities clearly become:

= v
2 = =z (20)
m,nhom — N_
m="
At energies near resonances of nuclidevy , V&n hom(G;) is then
1 !

N

%;; N.vmvm/vn
m,n,hom N (21)

N,V

T T,
v4— Op T —
YEY PN

Vv
m=1 ym m
- Again, the energy dependence of the second term in the denominator of

(21) at resonance values of 6; is neglected.

The advantage of approximatinglygn(é;) instead of'kan(ﬁb)
is obvious: for cell dimensions which are small compared to the mean
free paths of neutrons a small difference of similar functions is
approkimated; it is this difference which actually represents the

heterogeneity effect.

This modification has been applied in a series of test
calculations, and it was found, that a number of approximately 5 terms
in (17) is sufficient to get a good approximation for'¥gn(6;) and to

obtain (from eq. (18)) rather accurate reaction coefficients.

Some typical results are shown in Fig. 1 for a two region

plate cell which is specified in Table I.

Table I:
- plate number ,235U-density 238U-density H-density | thickness
1 1 x 1022 2 x 1022 - 1 cm
2 - b x 1022 1 x 1022 1 cm
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The calculations Have Been performed with cross sectlons of

group 19 of the ABN-set /2/ In thisgenergy group, the Pesdnanée selfi
23
U

shleldlng effects, especially for , are rather strong. (Self~

shielding factors vary between 0.023 and 1.) Two of the calculated
reaction coefficients, the coefficients for absorption (Aa1 2) and
b4

elastic scattering (a ) are plotted in Fig. 1a as function of J for

e, 1,2
v, J = 400 va. The other values b}%j were placed

equidistantially on a logarithmic 6-scale, with the smallest value

b
v1
the flttlng values of'¥’ were calculated from (11).

constant values b

= 6’ v The same numbers have been used for the Sg-values for which

For five or more fictive homogeneous mixtures, the results

for A do not differ by more than 0.5%, for A

a,1,2
even better.

e,1,2 the agreement is

Fig. 1b shows the dependence of the reaction coefficients on
the highest dilution parameter bVJ (which is also the highest scanning
point forjﬂ (6‘)) A11 the results shown in Fig. 1b were obtained with
10 flctltleus dilutions, so that a good approximation of\V (6,) in the
interval 6;v<A6; {6, vy can be assumed. Perhaps it is surprlslnégthat already
foriS& J 400¢3%v rather good results are achieved. However, this may
be explained by the fact that in large resonances most of the reactions

occur in the flancs.

S LEAKAGE CORRECTIONS

In order to find a realistic equilibrium spectrum which takes
. s . R 2 . R
into account the finite size of the lattice, DB -corrections are applied
in the cell code ZERA: 21l reaction rates within an energy group are

reduced by a factor

u)For ZBSU} G;J.z 400<S§V:z LOOO b is much smaller than the maximum
cross section in group 19 (=40.000 b).
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fé i removal_rateN; {32)
L - DT

removal rate + DB Z;%¢DV£

The application of this factor for all cell regions implies the assumption,

that the spatial distribution of reaction rates is not influenced by the

global diffusion of neutrons.

The group diffusion coefficients D are calculated from

Benoist's /4/ formula:
o N N
B2 8, =2 BV, LB ST (23)
n=1 n=1 m=1

This formula can be applied, if the Buckling components in the fundamental

directions are equal, i.e., if

2 2 2 2
X~By=BZ=B/3 (24)

vv)
|

or, for a cylindrical reactor, if

282 = 2 @ (2ha)
r Z 3

o
1]

If (24) or (24ka) do not hold, the anisotropy of diffusion,which
is due to streaming effects,must be taken into account. We have not done
this, because it demands the complicated calculation of modified collision

probabilities (see /4/).

However, we think that (23) at least leadsbaa.feasonable;

-

estimate of heterogeneity effects on leakage.

6. DERIVATION AND APPLICATION OF HETEROGENEITY-CORRECTED
CROSS SECTIONS

As already mentioned, the solution of eq. (10) leads to the
eigenvalue A and to group- and region-dependent fluxes and reaction rates.
1/ is the multiplication factor ky for the infinite lattice, if no
buckling corrections are applied. IngBZ—corrections are performed as
described in the preceding section, 1/) becomes the (static) effective
multiplication factor keff for an unreflected finite lattice with a
geometrical buckling B~. (For a homogeneous one~-region cell, A agrees
with the result of zero-dimensional calculations using the same cross

section set and the same buckling.)
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However, differences in keff-values of homogeneodus and
heterogeneous cells do not contain enough information for calculating
heterogeneity effects on reactivity for reactors with different lattices

in different zones.

For this reason, the code ZERA was extended to caleulate
"heterogeneity-corrected" cross sections Z% in order to use them in

multigroup diffusion codes.

The are derived from
N N
*® —_
ZZN' zz: gnvn - EXJl (25)

n="1 n="1

The transport cross sections are calculated from

(26)

PR
tr 35
where B is given by eq. (23).

It should be mentioned, that these cross sections aremearly independent

of the buckling used.

They also can be applied in perturbation codes, if one is
interested in the space dependence of heterogeneity effects. In this case
the reactor which is being perturbed is calculated with cross sections

corresponding to homogeneous cells.

In fast reactors with rod lattices, the heterogeneity effect
on the diffusion coefficients and the anisotropy of diffusion are usually
rather small. Both become more important for reactors with plate lattices,
because of the large free paths of neutrons, which impinge under a small
angle to the plate surface into plates with small cross secticns. The
fraction of neutrons, which have large paths in a cell region with small
cross sections is for geometrical reasons appreCiably larger than in an
equivalent rod lattice cell with the same volume fractions of the cell
regions.

If the cell thickness of a plate lattice is small compared to

the mean free path of neutrons perpendicular to the plate surfaces, it

can be expected, that the diffusion coefficient DZ corresponding to a

flux gradient perpendicular to the plates is hardly influenced by

heterogeneity.
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Eq. (23) gives the mean of the diffusion coefficients for the

three fundamental directions:

b = (EX + ﬁy+ 5Z)/3 (27)

Since in the homogeneous case it is

Dyom = Px = Dy =D, ’ y (28)
the difference between D and D is
hom
- 1 7,= - - |
b - Dhom N 3‘ L(Dx - Dhom) + (Dy-Dhom) * (Dz-Dhom)J * (29)

If the thickness of a plate cell is small enough to neglect EZ~D

hom’

and if we consider a cylindrical reactor, eq. (29) reduces to:

= 2 .

-Dhom -3. (Dr hom) (30)
or

- _ _ é - y

DDyom =5 (O-Dy ) (30a)

B,-D, =0 . (30b)
& APPLICATIONS

The heterogeneity experiments performed in SNEAK, Assembly
34~1, were analyzed using the methods described above. The radial
dependence of reactivity changes due to bunching, together with calculated
curves, is plotted in Fig. 2b. A short description of the experiments

is presented in /5/. Fig. 2a contains the structure of the normal and

bunched cells.

The calculated curves (solid lines in Fig. 2b) were gained
with a perturbation code by using heterogeneity corrected group cross
sections as described in section 6. The heterogeneity corrections for the
diffusion coefficients were caleculated from (30z) and (30b). The agreement
between experiment and calculation is satisfactory near the core center.

Only a qualitative agreement is achieved near the core boundary.
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The dashed lines in Fig. 2b do not contain any heterogeneity
corrections fér the diffusion coefficients. They can not explain the

thange in sign of the bunching effect in the boundary region of the core.

Figures 3 and 4 give some insight into the energy distribution
of the heterogeneity effects in a central core zone, in which the
spectrum can be assumed to be the equilibrium spectrum corresponding to
an energy independent buckling. The curves shown are based on ZERA
calculations, in which the buckling has been iterated to give keff = 1.
Fig. 3 shows the relative difference between the heterogeneous and
homogeneous spectrum,calculated asdﬁg,n/ﬁg(hom) =(¢g,n(het) -

"¢g(hom»/¢g(hom). The spectra are normalized to the same number of fission
neutrons per unit time and volume. The solid lines correspond to the
urgnium plates, the circles to the steel CHZ plates. The values of the
two remaining other plates in the cell generally lie between the uranium
and the steel CH2 points. The flux concentration in the uranium plates
in the MeV-region is the reason for the main contribution to the bunching
effect on reactivity (compare Fig. 4). The spatial flux distribution
in this energy region seems to be rather well calculated, as can be
concluded from a comparison of Rh-activation distributions with calculated
values (see /5/). Enlarged diffusion and deminished CHZ—downscattering
upon bunching in the MeV~region lead to a lower flux in all cell regions
in the 100 keV region. This is the reason for the negative reactivity
contributions in Fig. 4. Below 10 keV, the emission density peaks
in the polyethylene;; and the flux depression in the uranium lead to a
remarkable softening of the spectrum (in all plates) in the low energy

region, which causes reactivity gains.

It can be seen from Fig. 4, that the heterogeneity effects
are a result of partially compensating positive and negative effects.
The compensating character and the complicated energy distribution tepd
to make the total reactivity effect rather sensitive to changes in the
cross sections used. This is an explanation for the appreciable difference

between the results gained with the ABN- and the SNEAK-set (see Fig. 2a).

It should be noted, that the mean hydrogen concentration
(7.37 % 1029 atoms/cmB) is much lower than in a high pressure steam

cooled reactor, which will be simulated in SNBAK=3A-2. The contributions



from the energy region below 10 keV to the total reactivity effect will
be considerably larger in SNEAK-3A-2,

Heterogeneity effects in the low energy region are of major
importance for the reactivity behaviour during flooding of a steam
cooled fast reactor. Fig. 5 gives an impression of the magnitude of the
effects for the reference reactor D1, which is described in /6/. In this
figure, the results of cell calculations for the effective multiplication
factor keff for both the homogeneous and the heterogeneous case are plotted
vs. steam density. The curve for the homogenized core was gained by
reducing all cell dimensions by a factor 103. The buckling was chosen
to give keff 22 1 at the normal steam density (0.07 g/cms). The results
show that the calculations for the homogenized core lead to errors of

several percent in ke at high steam densities.

ff
An application of the described method to a cell of & hexagonal
light-water moderated lattice of a thermal reactor is shown in Fig. 6,
which shows the calculated distribution of 258U-captures within a
natural uranium rod in the energy region from 3 eV to 10 keV. The rod
diemeter is 0.983 cm, the rod center-to-center spacing 1.44 cm. The
measured curve and the results of Monte Carlo calculations are taken from
/7/. The calculated capture densities and the measured curve are
normalized to 1 in the center of the rod. The ZERA-calculations have been
performed with ABN cross section. In order to find the space dependence
of the reaction rates within the rod, the rod was subdivided into 12

concentrical regions.

This application is & rather sensitive test for the reaction
coefficients, which acount for the spatial dependence of resonance self
shielding. The agreement with the experimental curve and with the results
of Monte Carlo calculations is surprisingly good. This holds also for the
total number of neutrons absorbed in the energy region under consideration
in 238U per neutron-entering at 10 keV: ZERA gives a number of 0.3140,

while the Monte Carlo result is 0.3075.
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8. SUMMARY AND CONCLUSIONS

The described method to deal with resonance self shiélding
in multi-region lattice cells-in principle reduses the calculation of
resonance redctions to the caiculation of collision probabilities for
some vaiues of the resonance cross sections., It is applicable to a wide
range of cell problems, because it is not restricted to the use of

rational approximations for the collision probabilities.

The method is used in a FORTRAN-program ZERA which calculates
group and region dependent reaction rates, kecf—values for unreflected
A
lattices, and heterogeneity corrected cross sections, which can be

used to calculate heterogeneity effects in different regions of a reactor,

The ZERA results are in good or satisfactory agreement with
the bunching effects on reactivity, which were measured in SNEAK-~-3A-1.
The results show the importance of the leakage component of heterogeneity
effects in the outer regions of a reactor. The heterogeneity corrections
to the diffusion coefficients allow an estimate of this component.
The agreement between predicted and experimental results in a core
boundary region in SNEAK=3A-1 is not yet satisfactory. Further

investigations are planned in this direction.

In fast reactors containing hydrogen, the energy dependence
of heterogeneity effects on reaction rates is rather complicated and
has a surprisingly strong dependence on the cross sections used. For
this reason, the investigation of heterogeneity effects dso can be

helpful for testing cross section sets.
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FIG.4 ENERGY DISTRIBUTION OF THE BUNCHING EFFECT ON REACTIVITY IN SNEAK 3A-1
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FIG.5 keff VS. STEAM DENSITY FOR DI
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