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Heterogeneity effects must be taken into account in the

interpretation of nearly all experiments performed in the lattiees of

fast assemblies. Several methods have been developed to caleulate the

influenee of heterogeneity on reactivity, and they work rather weIl for

assemblies with hard spectra.

In fast assemblies with rather soft spectra as in steam cooled

fast reactors, the heterogeneity effects in the keV- and 100 eV-region

make an important contribution to the heterogeneity effect. In multi­

group caleulations the modifications of resonanee self shielding

eompared to the homogeneous eaBe must be taken into aecount. This is

done frequently by applying equivalence theorems for effective cross

sections, which are based on rational approximations for eollision

probabilities in the lattice cello In most applieations for fast reactors,

Bell's /1/ approximation for tight lattices i5 used.

However , this procedure is not useful, if the lattice cell

contains a material with large resonance cross sections (for example

238U) in more than one region of the cell or if one wants to subdivide

a cell region with resonance cross sections in order to investigate

the spatial fine structure of reaction rates.

In section 4 of this paper, an approximation is proposed, which

takes into account space dependent self shielding in a multiregion

lattice cell. The method is based on a multigroup collision probability

formalism of reaction rates and neutron emission densities in the cell

regions (described shortly in se9tion 2 and 3) and is applied in a

computer program calIed ZERA. The method is not restricted to small

heterogeneity effects and can be applied to thermal reactor problems.

The heterogeneity effect on reactivity is often considerably

influenced by a modification of leakage parameters due to heterogeneity.

In the mentioned program such modifications are roughly taken into

account as described in section 6.

Several results of ZERA calculations for rod lattices and

for plane lattices are shown in the last section. Some of them are

compared with experimental results.
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We start with the integral form of Boltzmann's equation for

the critical reactor. Assuming the reactor to consist of N homogeneous

regions, and the fission and seattering processes to be isotropie, we

get for the mean flux in region n

(1 )

(2)

Here Zand V are symbols for total cross seetion and volume.The

collision probabilities P have their usual meaning: the probabilities
mn

for neutrons, whieh are isotropically emitted in region m with

spatially constant density to suffer their next collision in region

n. So eq. (1) involves the assumption, that the spaee dependence of

the emission density q (u,~) within a region can be neglected. If

necessary, a subdivision of regions must be performed.

q (u) is the average value of q (u ;1.t') wi thin region m and
m

eonsists of a fission term (multiplied with an eigenv~e A) and a

downscattering term:

00
r

o (u) = J dUld (u')
~m . Pm

o

2:
f

is the macroscopic fission cross section in region m, z:. (u l~ u),m s,m
is the scatterlng cross section for lethargy transitions from u' to u.

Combining (1) and (2), one gets

q (u)
n

(,)

" /"
The reaction rate for any collision type 0( (for example capture) ,in

~/
region n is given by /

F.... (u).....,n

N L (u)
= Z: V ~tn P (u)m ~ LU) mnm=1 n

(4)



reaction rates F . The correspondingg,at,n
(4) are integrations which lead to

N V / Pron
~g,n L m

>g \au ,= V ,qmr
m=1 n n 1 g
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If the reactor 01' apart of it consists of a periodic lattice, and

if th~ cell concept can be used1 ) to calculate the distribution of

reaction rates within a unit cell, eqs. (3) and (4) are applicable

without formal changes. On1y the meaning of t1tJO symbols has to be

modified: N be-comes the number of regions 01' zones within the unit

ce11, and the co11ision probabi1ities P must now inc1ude contributionsmn
of h6mological zones in neighbouring ce11s.

MULTIGROUP PRESENTATION

For practical ca1cu1ations, it is appropriate to use the

multigroup approximation and to express the balance equations in terms

of group and zone averaged emission densities q ,fluxes ~gn' andg,n
steps in treating eqs. (1) to

(6)

and

In these equations, the brackets indicate that the average over the

energy group g with a lethargy width AU shou1d be taken:g

1)The ce11 concept is app1icable, if the dimensions of the reactor 01'

the lattice zone in question are 1arge compared to the characteristic
cell diemens ion and to the mean ~:t'~~_IJ?J;l1.?9ftb.e- neutrons.
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.1 f=Äu
g AU

g

JCg is the ~action of fission neutrons born intö ehergy group g, so that

X"V(U) = I )J(U-).U') du'g
Au

g

The transfer cross section ~ is defined as
~-tg,n

G is the number of energy groups.

After separation of the emission density in its average

group value <qm(u»g and an only weakly2) lethargy dependent function

W Cu) which is normalized to <W(u» = 1, eqs. (5) to (7) can be read as
g

(8)

N V G
q =2: vm L qk,m<w(u)[AXgV(U)Lfln(U)+Lk~g,n(u)]""t'mn(u»k
g,n m=1 n k=1

(10)

In these equations the abbreviation

y (u) = P (u)/L: (u)
mn mn n

has been introduced. ~ (u) is proportional to the flux at lethargymn
u in region n, caused per unit emission rate in region m.
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If the values of the brackets are known, the system of linear

equations (10) can be solved to obta:Ln A, the matrix qg ,n' group fluxes

~ ,and reaction rates F
g,n g'~ln

The problem i8 th.e calcu18 tior: Gf the brackets, j_f the

cross sections are strongly energy dependent ,"li thin the energy group.

They appear in the general form

(12)

and have the physical meaning of areaction rate in group g and

region n caused per unit emission rate in group g and region m. We

will call them "reaction coefficients li • The bracket in eq. (8) can

be regarded as a special case of (12), withr~ (u) = 1 and will be
,11

denoted as Ag,~,mn'

In principle, it is possible to calculate the collision

probabilities and P (u) for a serieß of 1e thal~gy points within each
Mn

energy group and to evaluate the reaction coefficients bv nume~ical
~ , .",'

integrations. However, if large resonance cross sections must be taken

into account this procedure i8 extremely time cOl1:3wning and causes

difficult computer storage problems.

In order to cope with similar diffi.culties for homogeneous

problems, the Obninsk /2/ group has proposed to use tabulated self­

shielding factors for microscopic crOSE; sections. These a.re defined as

fo<; v(ö' )
, \10

(13)

and will be used in the Dsxt section.

c( , the background cross section,is the SUffi of the cross section
)JO

contributions of othe~ nuclic.es per atom of nuclidevj it is assumed

to be constant within the energy group under consideration.



4.

- 6 ...

CALCULATION or THE REACTION COEFFICIENTS

Splitting up A int6 donttibutions of individual nudlidesg,lX.,m,n

A =LA
g,~,m,n v g,V ,0{ ,m,n

leads tb

A. At = N <w (u) C5:t " (u) Y (u )g ; 'V ".... , m,n )} n ""'/ .. mn g

!f ~v(u) contains large resonances in group g, the main contributions
I

to A will be due to reactions near resonance energies.Forg,v,O'., m,n
this reason,)I (u) must be carefully calculated near the resonancesmn
of nuclideV. If an overlapping of large resonances of different nuclides

does not occur in the cell regions, the energy dependence of~ at
mn

resonance values of e)v is predominantly determined by the energy

dependence of ~(u).

If the resonance character of the cross sections must be

taken into account in one region n of the cell only, the dependence

of 'fmn on ~ can be approximated by a rational functibn (see,for

example, /1/ and i~I),

(16)

which is proportional to the fine structure of the spectrum near

resonances of ~vin a fictitious homogeneous medium, as characterized

by a background cross section bv per atom of nuclide v. The fictitious

cross section b~ involves geometrical parameters of the resonance

region. The formal agreement of eq. (16) with the resonance behaviour

of the flux in a homogeneous medium3 ) is the substance of the weIl

known equivalence theorem I?/ and makes possible the useof self-shielding

factors or resonance integrals in many heterogeneous cases.

3)The formal agreement can be seen by specializing eq. (11) to a one­
reg'.ion ee;L1., which- descrihes a part 0 f a large homQg~J1~()ll!5 m~Cl:i.l.lJn

with a total cross section2:(u). The collision probability matrix
reduces to one number P11 = 1, and ~1~ becomes

1 1/Nv
"'1-\1 = IJu) = d.Ju)+~o

Nv is the number of atoms of nuclide V in the medium, ~o the
background cross section due to other nuclides.
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Hbwever, the known equivalence theorems cannot be'used in

more general cases, in which reSonafice cross Sections of the same

nucli-de (for exalnple 238U) are preseJit in moretnan one region of the

cello For this reason, using equivalence theorems, it is not possible

to subdivide ä region with resonance cross sections, which sometimes

would be valua.ble for studying the spatial fine structure of resonance

reactibns or to describe more accurately the emission density distribution~

Furthermore, the derivation of (16) is based on a rational

approximation for collision probabilities, which is rather inaccurate

for plane cells~

Actually, exact functions or good approximations for the

dependence of the collision probabilities on cross sections and

geometrical parameters are known for most cases of practical interest,

but in general they lead to a more complicated function for 'rmn (6V)

than (16) ~

The main advantages of the equivalence theorems (the separation

of reaction coefficients or effective cross sections into nuclide

contributions and the use of tabulated self-shielding factors or resonance

integrals) can be saved if it is possible to approximatelymn«()v) by

series of rational functions, i~e~, if

Ja.
l.J!mn(~) =::L 'ti,J,m,n

j=1 0; + b Vj ~

Introducing (17) into (15), one gets

J ~J)l(u) \

A\>,c<,m,n =Nvn 1=1' aV,j,m,n ~(u) oJU)+bVj; ;\J

(We have dropped ncw the group index g.)

The brackets in the last equation can be calculated from

self-shielding factors using the relation

< '6"0<., y

~+~o

which follows from

1

< w(u) "
. o:,(u)+ Q I

y yO

(see eq. (13».

= ~+~o
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Similarly as in (16), the parameters b
yj

can be interpreted

as background cross sections, which characterize the diluti6ns of nuclide

V in a set öf J fictitious media. Eq. (17) deScribes a superposition

of the correspondttng spectra.

In some cases, it is possible to derive reasonable valUes for

bVj from physical considerations, in wliich the special neutron optical

parameters of the cell are taken into aceount. However, it is difficult

to do this generally.

For this resson, we do not try to derive the b . from cell
)}J

parameters, but choose them to make the expression (17) flexible in the

cross section interval of interest (that is approximately the interval

between 0' and the largest reeonance cross section fi' in the energy
pv Y,max .

group) •

It was found, that the expression (17) yields a good

approximation for the function in the interval 0' <. d, <. ö": ,if thep" Y· V,max
parameters b . cover about the same interval uniformlyon a log~~scale.

vJ
The achievable accuracy grows with the number J of terms in (17) (see below).

The

values of the

(17) to these

coefficients a. can be obtained by calculating same
'Y, J, m,n .

functibh Y (Qv) = P (f5...,)/ Land by fitting the expressionmn mn v n
values.

The advantage of the described approximation is, that it is

not restricted to a rational apnroximation for P (c(,). One is free
~ mn v

to use exact formulas or the best known approximations for the calculation

of collision probabilities and is not limited to a certain type of cell

geometry. The methode for P -calculations used in the code ZERA formn
rod lattices and for plane lattices are described in a paper to be

published in the near future.

For the investigation of relatively small heterogeneity effects

as they oceur in fast reactors, the aeeuraey of the described method

can be improved by a slight modification. The approximation (17) is not

used for'ti (tS:J but formn v

Y~n«}V) ='rmn(~) - o/mn,hom' (18)

where l!I h - P / "V'mn, om - ~,hom ~n
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is the limit o:t1fmn for cells wi.th e:xtremely emaIl dimensions, but with

the same compositions and rel,ative_ :region dimensions as the heterogeneous

cello For this limit, the bollision probabilities clearly become:

(20)

At energies near resonances of nuclide y ,'P. h (6":,) is then
1 mn, om v

(21)

N V Ivvm m n

N

L
1// m=1
Tm, n, horn = --.....,;~---:N~----

""' N V
Lö"'»)~ v1m m

V)'4='IJ L N V
~ vm m

Again , the energy dependence of the second term in the denominator of

(21) at resonance values of trv is neglected.

The advantage of approximating 1y* (<).J instead of'r. <<).,>mn v mn v

is obvious: for cell di~ensions which are small compared to the mean

free paths of neutrons a small difference of similar functions is

approximated; it is this difference which actually re~resents the

heterogeneity effect.

This modification has been applied in aseries of test

calculations, and it was found, that a number of approximately 5 terms

in (17) is sufficient to get a good approximation for y. (O:V) and tomn
obtain (from eq. (18» rather accurate reaction coefficients.

Some typical results are shown in Fig. 1 for a two region

plate cell whi~h is specified in Table I.

1 cm

Table I:

pla t e number 1~2_3_5....=.u_-.::.::d~e~n:.;s;:i:.::t:dY-4·_2_3_B...:,U:...T
-...;.Q:;;.:'e:.:n;;:;;s~l.:;· 'C;::.'Yl1.-~H:...-.;:d;.:e;:n;.:s;.;;;i;.;t:;",.;Y:.--+'...;t;.;;h_i;;,;C_kn__e_s...s.;;..

1 1 1 x 1022 2 x 1022 1 cm

2 I 4 x 1022 1 x 10
22
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The CalCulat+o~d have been perfoimed with ctoS$ sect1öns of

group 19 of the ABN~set /2/. In this eHetgy group, the res6nanee self'

shielding effects, especially for 238u, are rather strong. (Se1f­

shie1ding factors vary between 0.023 and 1.) Tvo of the calculated

reaction coefficients, the coefficients for absorption (Aa1 ,2) and

e1astic scattering (A 1 2) are plot ted in Fig. 1a as function of J for
e, ~

~onstant va1ues b )',i =' 400 Cipv• The other va1ues b V, j were placed

equidistantia1ly on a logarithmic t>-sca1e, with the sma11est va1ue

b V1 =Clpv• The same numbers have been used for the ~~-va1ues for whieh

the fitting values of y*' were ca1cu1ated from (11).mn

For five or more fietive homogeneous mixtures, the resu1ts

for Aa ,1,2 do not differ by more than 0.5%, for Ae ,1,2 the agreement is

even better.

Fig. 1b shows the dependence of the reaction coefficients on

the highest dilution parameter bVJ (whieh is also the highest seanning

point forV'Jf (C5"",».Al1 the resu1ts sho\rJn in Fig. 1b were obtained with
mn *

10 fietitious di1utions, so that a good approximation ofYmn(crv) in the

interval «pv< 0\1 (ö")}J can be assumed. Perhaps it i8 surprLsing4)that a1ready

for 6":j) J = 400 c:r' ra ther good resu1ts are achieved. However, this may
, pv

be exp1ained by the faet that in 1arge resonances most of the reaetions

oceur in the flanes.

LEAKAGE CORRECTIONS

In order to find a realistic equi1ibrium spectrum which takes

into account the finite size of the 1attice, DB2-corrections are app1ied

in the ce11 eode ZERA: all reaetion rates within an ~nergy group are

redueed by a factor

4) 2 7 8For ;;; U, C>)lJ = 400 C)pv:::::: 4000 b is much sma11er than the maximum

cross section in group 19 (~40.000 b).
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f' = _ ..............-.....;r-.e;,.;m;;;,o;;;".v.;.,.a;;,;.l;:;,.....r::."a;;...;;,t.;;.e...,....,--_
B N

removal rate + DB22:~nVn
n=1

The application of this factor for all cell regions implies the assumption,

that the spatial distribution of reaction rates is not influenced by the

global diffusion of neutrons.

Th~ group diffusion coefficients D are calculated from

Benoist's /4/ formula:

This formula can be applied, if the Buckling components in the fundamental

directions are equal, i.e., if

(24)

or, for a cylindrical reactor, if

(24a)

If (24) or (24a) do not hold,the anisotropy of diffusion,which

i8 due to streaming effects,must be takeu into account. We have not done

this, because it demands the complicated calculation of modified collision

probabilities (see /4/).

However, we think that (23) at least leads to a reasonable ~.~

estimate of heterogeneity effects on leakage.

6. DERIVATION AND APPLICATION OF HETEROGENEITY-CORRECTED

CROSS SECTIONS

As already mentioned, the solution of eq. (10) leads to the

eigenvalue Aand to group- and region-dependent fluxes and reaction rates.

1/Ais the mu1tip1ication factor koofor the infinite lattice, if no

buckling corrections are applied. If,DB2-corrections are performed as

described in the preceding section, 1/A becomes the (static) effective

multiplication factor keff for an unref1.ec i;e<i.f:i..n:i..j;e_latticewitha

geometricai buckling B2 • (For a homogeneous one-region ce11, A agrees

with the result of zero-dimensional ca1culations using the same cross

section set and the same buckling.)
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However, differences in keff-values of homogeneous and

heterogeneous cells do not contain enö-ugh ::tnformat,icm förC:alculatil.ng

heterogeneity effects on reactivity for reactors w1th different lattices

in different zones.

For this reason, the code ZERA was extended to calculate

i1heterogeneity-c:orrected" cross sections Z*o.. in order to use them in

multigroup d1ffusion codes •.

The are derived from

N N
L.~. L ~nVn = L FtX n

n=1 n=1'

The transport cross sections are calculated from

L:* =.L
tr 3D

whereD is given by eq. (23).

(26)

It should be mentioned, that these cross sections aremarly independent

of the buckling used.

They also can be applied in perturbation codes, if one is

interested in the space dependence' of heterogeneity effects. In this case

the rea~tor which is being perturbed is ealeulated with cross sections

corresponding to homogeneous cells.

In fast reactors with rod lattices, the heterogeneity effect

on the diffusion coeffieients and the anisotropy of diffusion are usually

rather small. Both become more important for reactors with plate lattiees,

beeause of the large free paths of neutrons, which impinge under a small

angle to the plate surfaee into plates with small cross sections. The

fraction of neutrons, which have large paths in a eell region with small

cross sections is for geometrical reasons appreClably larger than in an

equivalent rod lattice eell with the same volume fractions of the eell

regions.

If the eell thickness of a plate lattice is small compared to

the mean free path of neutrons perpendicular to the plate surfaces, it

can be expeeted, that the diffusion eoefficient DZ corresponding to a

flux grä<ril'üit perpendi.cula:r' to'the'plates'is hardlyinfluencedby

heterogeneity.



- 13 ~

Eg. (23) gives the mean of the diffusion coefficients for the

thre"e fundamental directions:

D = CD + TI + D )/3x y z

Since in the homogeneous oase it is

Dh = D = D = Dom x y z ) (28)

the difference between Dand D is
hom

If the thickness of a plate cell is small enough to neglect TI -D
h

. ,
Z om

and if we consider a cylindrical reactor, eg. (29) reduces to:

or

- 2 -D-D =- CD -D )'horn 3 I' hora

- 3 C-D -D =-- D-D )
I' hom 2 hom'

i5 -D = 0z horn •

APPLICATIONS

(30)

(30a)

(30b)

The heterogeneity experiments performed in SNEAK, Assembly

3A-1, were analyzed using the methods described above. The radial

dependence of reactivity changes due to bunching, together with calculated

curves, is plotted in Fig. 2b. A short description of the experiments

is presented in /5/. Fig. 2a contains the structure of the normal and

bunched cells.

The calculated curves (solid lines in Fig. 2b) were gained

with a perturbation code by using heterogeneity corrected group cross

sections as described in sect:i.on 6. The heterogeneity corrections for the

diffusion coefficients were calculated ~rom (30a) and (30b). The agreement

between experiment and calculation is satisfactory near the core center.

Only a qualitative agreement is achieved near the core boundary.



... 14 ..

~~ dashed lines in Fig. 2b do not contain any heterogeneity

eorrec-h:Lons rÖr the diffusion eoeffieients. They ean not explain the

change in sign cf the bunching effect in the boundary region of the core.

Figures 3 and 4 give some insight into the energy distribution

of the heterogeneity effects in a eentral core zone, in whieh the

speetrum can be assumed to be the equilibrium spectrum corresponding to

an energy independent buckling. The curves shown are based on ZERA

calculations, in which the buckling has been iterated to give keff = 1.

Fig. 3 shows the relative difference between the heterogeneous and

homogeneous spectrum,calculated as~ /~ (horn) =(~ (het)-g,n g g,n
-~ (hom»/~ (hom). The spectra are normalized to the same number of fissiong g

neutrons .per unit time and volume. The solid lines corresPQnd to the

ur~nium plates, the circles to the steel CH2 plates. The values of the

two remaining other plates in the cell generally lie between the uranium

and the steel CH2 points. The flux concentration in the uranium plates

in the MeV-region is the reason for the main contribution to the bunching

effect on reactivity (compare Fig. 4). The spatial flux distribution

in this energy region seems to be rather weIl calculated, as can be

concluded from a comparison of Rh-activation distributions with calculated

values (see /5/). Enlarged diffusion and deminished CH2-downscattering

upon bunching in the MeV-region lead to a lower flux in all cell regions

in the 100 keV region. This is the reason for the negative reactivity

contributions in Fig. 4. Below 10 keV, the emission density peaks

in the polyethylen~<tand the flux depression in the uranium lead to a

remarkable softening cf the spectrum (in all plates) in the low energy

region, which causes reactivity gains.

It can be seen from Fig. 4, that the heterogeneity effects

are a result of partially compensating positive and negative effects.

The compensating character and the complicated energy distribution tend

to make the total reactivity effect rather sensitiYe to changes in the

cross sections used. This is an explanation for the appreciable difference

between the results gained with the ABN- and the SNEAK-set (see Fig. 2a).

It should be noted, that the mean hydrogen eoncentration

(7.37 x 1020 atoms/em3) is mueh lower than in a high pressure steam

cooied react.6r, viliich will oe sirtitilated in SNEAK.3A-2. The contributions
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from the energy region below 10 keV to the total reactivity effect will

be considerably larger in SNEAK-3A-2.

Heter~g&neity effects in the low energy region are of major

importance for the reactivity behaviour during flooding of a steam

cooled fast reactor. Fig. 5 gives an impression of the magnitude of the

effects for the reference reactor D1, which 15 described in /6/. In this

figure, the results of cell calculations for the effective multiplication

factor keff for both the homogeneous and theheterogeneous case are plotted

vs. steam densi ty. The curve for the homogen"ized core was gained by

reducing all cell dimensions by a factor 103 . The buckling was chosen

to give keff ~1 at the normal steam density (0.07 g/cm3). The results

show that the calculations for the homogenized core lead to errors of

several percent in keff at high steam densities.

An application of the described method to a cell ofa hexagOnal

light-water moderated lattice of a thermal reactor 15 shown in Fig. 6,

which shows the calculated distribution of 238U-captures within a

natural uranium rod in the energy region from 3 eV to 10 keV. The rod

diameter is 0.983 cm, the rod center-to-center spacing 1.44 cm. The

measured curve and the results of Monte Carlo calculations are taken from

/7/. The calculated capture densities and the measured curve are

normalized to 1 in the center of the rod. The ZERA-calculations have been

performed with ABN cross section. In order to find the space dependence

of the reaction rates within the rod, the rod was subdivided into 12

concentrical regions.

This application is a rather sen~ive test for the reaction

coefficients, which acount for the spatial dependence of resonance self

shielding. The agreement with the experimental curve and with the results

of Monte Carlo calculations is surprisingly good. This holds also for the

total number of neutrons absorbed in the energy region underconsideration

in 238u per neutronentering at 10 keV: ZERA gives a number of 0.3140,

while the Monta Carlo result 15 0.3075.



8. SUMMARY AND CONCLUSIONS

The described method todeal with resonance self sh1elding

in multi-reg~~n lattice cells in principle reauces the calc~lation of

resonance reactions to the calculation of collision probabilities for

some val~es of the resonance cross sections. It is applicable to a wide

range ef oell problems, because it is not restricted to the use of

rational approximations for the collision probabilities.

The method is used in a FORTRAN-program ZERA which calculates

group and region dependent reaction rates, k ~f-values for unreflected
e~

lattices, and heterogeneity corrected cross sections, which can be

used to calculate heterogeneity effects in different regio~s of a reactor.

The ZERA results are in good or satisfactory agreement with

the bunching effects on reactivity, which were measured in SNEAK-3A-1.

The results show the importance of the leakage component of heterogeneity

effects in the outer regions of a reactor. The heterogeneity corrections

to the diffusion coefficients allow an estimate of this component.

The agreement between predicted and experimental results in a core

boundary regien in SNEAK~3A-1 is not yet satisfactory. Further

investigations are planned in this direction.

In fast reactors containing hydrogen, the energy dependence

of heterogeneity effects on reaction rates is rather complicated and

has a surprisingly strong dependence on the cross sections used. For

this reason, the investigation of heterogeneity effects Wso can be

helpful for testing cross ~ection sets.
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FIG. 3 RELATIVE FLUX CHANGES CAUSED SY THE HETEROGENEOUS
CELL STRUCTURE IN SNEAK 3A-'
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FIG.4 ENERGY DISTRIBUTION OF THE BUNCHING EFFECT ON REACTIVITY IN SNEAK 3A-1
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