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REVISED ABSTRACT

There are several reasons that make gas cooling for fast reactors

attractive. They have been discussed elsewhere ,-1_7 ,-2_7. The main problem

for the development is a reliable and satisfying fuel element. Presently we

are considering three possibilities for high temperature fuel design.

a) (U.Pu)02 or (U1Pu)C fuel in a Vanadium a~~oy
cladding

b) Cermets with (U1Pu)02 particles in a Chromium matrix.

c) Cerarnic coated particles.

All three fuels would allow relatively high gas outlet temperatures

above 720
o

C1 which allow the use of a direct gas turbine cycle with a net

plant efficiency above 40 %.

Nuclear calculations for 1000 MWe cores have been performed in

order to examine the nucle~r potential of these different types of fuel.

In all cases the coolant pressure is considerably higher than the pressure

normally used in thermal gas cooled reactors. The special safety aspects

that appear in connection with gas cooled fast reactors are briefly dis

cussed although sofar no own work has been done in this respect.

* Work performed within the association in the field of fast reactors
between the European Atomic Energy Community and Gesellschaft für Kern
forschung mbH. 1 Karlsruhe.

HK Delegated by EURATOM to the Karlsruhe Fast Breeder Project.

- 1 -



1. INrRODUCTION

The reasons that make gas cooling for fast breeders attractive

have been discussed elsewhere /-1 7 /-2 7. The possibility of high gas... - - -
outlet temperatures, high plant efficiency, high breeding ratio, cheap

fuel cycle potential, good inherent safety features are only a few of

them.

A very recent study on gas cooling of fast breeder reactors has

been performed by the ENEA-Working-Team on Fast Reactor Evaluation ~3_1

where experts of ten european countries participated. This study empha

sized the same arguments. Also the studies of GULF-General Atomic have

stressed these points ,-4_7. There is also the aspect that finally the

use of gas turbines in a direct cycle might become feasible and may lead

to a considerable reduction of capital costs. There 1s no question that

this way will not be an easy one.

Presently helium is the favoured gas. Its main advantage com

pared for instance to carbon dioxide is that the pressure drop in the aore

1s lower L-s_7 and that it is possible to use it in connection with carbide

fuel. Carbide seems to be a natural development of the oxide fuel line pre

sently adopted, and offers great advantages as far as fuel cycle and fuel

inventory are concerned. From a european point of view it is worthwhile to

mention that in the big natural gas souraes, for instance in the Nether

lands, a sufficient supply of helium is available even for a major program

and that this helium can be recovered from the refinery process at reason

able cost. The disadvantage of helium is that the storage of great amounts

is much more difficult than with carbon dioxide. The fact that carbon dio3Eide

1s cheap and can easily be stored ingreat quantities may be a reason for

using it as a coolant for removing the deaay heat in emergenay situations

if not air itself can be used.

Presently there ar many open questions, mainly with respeat to

the fuel design. They are very weIl summarized in the above mentioned

ENEA-report and one is probably not wrong in·stating that there is no fuel

design available that could be the basis of a convincing and preferable
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ooncept of reference design of a fast gas oooled prototype or a 1000 MWe

demonstration plant. This means that the main effort at present has to be

direoted to tuel and tuel element development. Next to this safety should

be the area of development effort. But this area is strongly linked to

the final tuel oonoept.

Presently at Karlsruhe we are considering three types of fuel.

-For eaoh -type we a.lso perf'ormsome controliingca-lculations aboutthe

tuel potential in a 1000 MWe helium cooled fast power reactor to get an

idea of the plutonium inventory, breeding ratio, doubling time, eto. In

all cases we assurne an out of pile time for reprocessing and refabrioa

tion of 0.75 years and 2 %plutonium losses in reprocessing.

The three types of fuel are:

a) (U,pu)02 or (U,Pu)C fuel in an espeoially developed
Vanadium alloy cladding.

b) Cermets with (U,PU)02 partioles in a Chromium matrix.

0) Ceramio ooated partioles.

2. VANADIUM CLAD FUEL PINS

Aseries of alloys based on Vanadium, Titanium; Niobium and Silioon

are being developed by H. Bbbm of the Materials Laboratory of the Karlsruhe

Centre in collaboration with the M$tallgesellschaft /-6 7 /-7 7. These alloys
tri - - - -

have very good creep properties~ high temperatures given essentially by

the low content of Titanium and the presenoe of Silicon. They suffer less

from high temperature embrittlement

Niokel based alloys or steels. There are no compatibility problems with
ohelium and with oxide or carbide tuels up to 800 C or even above. Olle of

these a.llöys cönta.ining 10 %cf Niobium was üsed in cur previous calculatioils

L-1_7 L-2_7, the resulting breeding ratio being 1.31. Recent experiments in

dicate that an alloy without Niobium and with 96 %V, 3 %Ti, 1 %Si after

20000 hours at- 8500 C show praotically the same stress rupture strength as

Niobium containing alloys. This type of alloy was therefore used in our

latest caloulations, the main results of whioh are given in Table I. One
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can see that the breeding ratio is now 1.52. Of the 21 points increase in

breeding, 13 are due to the elimination of Niobium, the rest to the reduc

tion in core size with consequent hardening of the neutron spectrum. These

breeding ratios have been calculated with the old data for plutonium alpha

/.-8_1". Preliminary calculations with new alpha-values show that the breeding

ratios would be decreased by about 0.04. The fissile plutonium inventory is

2800 kg for a reactor of 1000MWe; the system linear doubling time is about

:Li years l the-fuelcy-61e 00st-f5- Ö:-r-mills7kWh.-

Preliminary calculations with carbide fuel show that the fissile

plutonium inventory would be reduced to about 1800 kg.

The helium temperature at core outlet is 7200 C and the resulting

maximum hot spot temperature at clad midwall is 8450 C. At this temperature

the chosen clad material is such that the cladding behaves for the whole

core life like a free standing tube. Using a gas turbine cycle with three

compressors l three coolers and one reuuperator we get from the work of

Bammert a net plant efficiency of about 41 %/.-9_7.

Because of this good performance we consider this fuel type pro

missing, especially because we adopt for the fuel pins theconservative strong

clad concept. We shall irradiate in the next few months some Vanadium clad pins

with oxide and carbide fuel under full pressure and temperature conditions in

our thermal reaator FR-2. Irradiations of Vanadium alloy clad specimens in fast

fluxes are being performed. So far we are not yet sure about their embrittle~

ment after irradiation with high fluences and at temperatures above 800oc.
H. Bobm will report on these results in due time.

3. CHB.O:MTTJM CEBMETS

In the Karlsruhe Materials Laboratory we have developed a new type of

cermet ~(10_7 ~(1l_7. This is obtained by isostatic aompression by means of a
~...- ~. 0 .. --

gas at temperatures up to 1600 C and pressures up to 800 atms of metal coated

uranium oxide partiales. The resulting cermet contains a small amount of

metal(20 to 30 %). The particles are well separated and still relatively

round. The first cermets of this type were made with Molybdenum particles,

although this metal is not suited for a fast reactor because of its high

neutron absorption. Later it was possible to produce Chromium aoated particles
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and the relative cermets • Figure 1 and figure 2 show cermets with 20 %and

35 % Molybdenum respectively. Figure 3 and figure 4 with 20 % and 30 %

Chromium. In both cases the cerrnets with higher percentage of metal pre

sent a more uniform pattern and better rounded particles, although in both

cases the particles are weIl separated by the metal. It is to be expected

therefore that the fission product retention i5 better with the hi&~er per=

centage of metal. The dimensional stability under irradiation should be

good with particles containing some porosity. It is possible to attach

~ du-ring- "the-I;:>recess -ei'-hot-compres13±on-a thin-metaiuJ:ad-t-o-'tne !:iurface

of the compressed pin. In our sampIes we used a 0.2 to 0.3 mm thick steel,

Niobium or Vanadium can.

Table 11 shows the results of a calculation performed with fuel

elements of a cermet with (U#PU)02 with 20 % Chromium metal. These are

rather similar to those obtained with the Vanadium clad pins. Molybdenum

cermets are already being tested under irradiation# Chromium cermets will

be irradiated shortly in FR-2. At the same time we are attempting to pro

duce Vanadium coated particles and later Vanadium cermets.

The cermet line could give a good alternative tö the more

classical system cf ceramic fuel contained in metal tubes due to the

likely good fission products retention qualities of these cermets and

their excellent thermal conductivity. It perhaps involves a new pin con

cept due to the possibility of strong bonding between fuel and can with

higher strength properties. However, this is a relatively new type of fuel

for fast reactors and it requires a great deal of experimental work yet.

4.. GEMMIC COATED PARTICLES

700 to 7500 C is probably the maximum helium temperature at core

outlet possible with a metal clad type of fuel element. It appears that

theonlypossibility of increasing this tempe.ratureconsiderably, say in
othe region 900 to 1000 C# isthe use of an all ceramic core with fuel

particles coated by graphite and/or Silicon carbide. This would mean an

increase of plant net efficiency up to 50 % or a reduction of plant

capital costs of the order of 10 to 15 %# where, due to the already low

fuel cycle costs of a fast reactor# this second alternative seems more

appealing.
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We have therefore performed a calculation assumdng as fuel coated

particles with a 1.4 mm diameter kernel of mixed uranium and plutonium carbides

and a triplex 120 ~ thick coating (two layers of graphite# one of Silicon

carbide) contained in a graphite matrix. The total amount of carbon in the

fuel is about 50 volume percent in addition to the carbides. 'ruis type of

particles is the same as those so successfUlly tested for thermal reactors.

However# the kernel diameter is oonsiderably bigger. The results of this
-------_ ..__.. --- -_.._ .. _- ------------ ------- ---------------- _ ....._.._. ----------- - - - --

calculation are illustrated by Table III. In this connection it 1s inter-

esting to mention the gas cooled fast reactor presently under study in the

D.K. L-12_7. Here the coated particles are directly cooled by the helium

flow. This has a double advantage l Le. reduction of the quantity of

graphite in the core with consequent improvement of the breeding and very

effective heat transfer due to the large fuel surface per unit core volume.

This completely novel type of fUel elements could of course present pro

blems especially hot spot problems. But there are other difficulties in

using coated particles in fast reactors. The presently developed pyrolitic

graphite cannot withstand the very high fast fluence (1023nvt) required in

a fast commercial reactor at high temperatures ~-3_7. Silicon carbides

seems to be much better in this respect (the dimensional change 1s only

0.1 %at 1200
0
C and 1022 nvt fast fluence ~-3_7) but it is a very brittle

material. We have performed rough calculations which show that a Silicon

carbide layer alone cannot so weIl withstand the pressure of fission pro

ducts produced inside the particle kernel# as in the case of a triplex

type of particle in athermal reactor l where the outer shell of pyrolitic

graphite keeps the Silicon carbide unter compression. In a fast reactor

the outer layer of graphite would crack before reaching the required

fluence and would not keep Silicon carbide under compression. Our calcula

tions have been confirmed by recent irradiation results from Oak Ridge /-13 7
which show a fractional fission gas release of 10-4 for particles with ~ 

Silicon carbide outer layer against 10-8 for triplex particles.

It seems to us therefore that the development of coated particles

for fast reactors should go in the direction ofl firstly, improving the dimensional

stability of graphite in a fast flux (even if this task will not be an easy

one because a lot of workhas been done already for thermal reactors)

and l secondlYI to decrease the degree of brittleness of Silicon carbide. At

the same t1me# different types of multilayer coatings should be tried.
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5. SAFETY

We have not yet performed detailed safety studies on gas cooled

fast reactors l but we think it worthwhile here to mention a few of the

characteristic safety questions.

The helium pressure chosen in our calculation is 100 atms. This

rather high pressure is dictated by the very high power density required

-in-a-fast-core. We believe that it is not unrealistic. It has been proven

by experience in Germany i-14_7 that it is possible to build prestressed

concrete pressure vessels capable to withstand such apressure. It is

known that the concrete vessel offers a higher degree of safety in com

parison with a steel vessel. In general the coolant pressure required by

agas cooled fast reactor lies in the region of 50 to 120 atms (this last

figure refers to carbide fuel) and is considerably higher than that re

quired by the most advanced gas cooled thermal reactors. This l together

with the much smaller heat capacity of the core, makes the depressurisa

tion accident much more severe than in a thermal reactor.

Preliminary calculations show that a depressurisation accident

does not damage the core if the control rods can act within 10 to 30

seconds after the start of the accident and the pressure ratio between

initial and final pressure is not higher than 50 to 70. This means that

for pressures higher than 50 to 70 atms a secondary containment capable

of withstanding some pressure (2 to 3 atms) is required. This of course

is not a terrible economic penalty when a double containment is required

anyway.

It is interesting to notice that ceramic cores are probably in

herent safe in respect of this accident l in the sense that they don1t

even require the acting of the control rods. This effect is produced by

the_ fas"t E:l.cting Doppler _cQefficient.

In comparison to sodium or steam cooled fast reactors gas

cooled ones have an almost negligible loss of coolant reactivity coeffi

cient. This, together with the fact that spert-type accidents possible

with sodium~ here cannot oeeur, has the consequence that big reaetivity

ramps are not possible in gas cooled fast reactors.
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A curious fact is that fast reactors are safer than gas cooled

thermal reactors in the case of water ingress in the primary circuit.

Indeeda contrary to the thermal ones# fast reactors lose reactivity if

the water contained in one or two heat exchangers enters in the primary

coolant circuit ~-15_7 ~-16_7.

A very important point for the safety of the gas cooled fast

reactor is the functioning of the coolant blowers. The helium natural

convection helps very little. While athermal reactor can probably

operate as much as 30 minutes without power supply to the blowers l a

fast reactor cannot for more than 1 or 2 minutes. The reliability and

availabilityof the blowers should be then greatly enhanced by means

of sufficient redundancy in the blowers and diversity in the blowers

energy supply.

6. CONCliJSIONS

1. With gas cooled fast reactors it should be possible to have

a system doubling time of about 11 years with oxide fuel and about 7 years

with carbide. These values compare rather favourably with the correspon

ding values with sodium l in spite of the slightly higher plutonium inven

tories l because of the overcompensating effect of the better- br-eeding.

They are of course much better than those possible with fast steam cooled

reactors.

2. The real advantage compared with sodium lies in the possibili-

ty of considerably reduced capital costs l especially in the case of direct

cycle. If it is possible to develope a fuel element with Silicon carbide

coated particles capable cf withstäiidingä Tärge Tastflüence l then- eVen

higher helium temperatures and further reductions in capital are possible.

3. The direct cycle with gas turbines requires considerable de

velopment work for reactor components l but much of this is already under

way in Germany for high temperature helium cooled thermal reactors.
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4. A great deal of work is necessary to develope fuel elements

capable of producing helium at temperatures interesting for gas turbines.

We have started a three pronged effort with:

a) mixed oxides or carbides canned in an especially
developed Vanadium alloy,

b) cermets obtained by isostatic compression cf
_ _ _ _ ~tal_ coat.ed _RaI'ti_cleli,_ _ _

c) graphite and/or Silicon carbide coated particles.

The last type of fuel is the one which allo)l's the highest

temperatures, but it has probably the smallest chance of success.

5. Fast reactors require considerablyhigher gas pressures than

thermal gas cooled reactors, especially in the case of carbide fuel. This

could mean supplementary reactor component development work and it means

certainly more stringent engineered safeguards, such as the adoption of

a high pressure double containment and of a reliable and redundant system

of blowers.
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TABLE I Main Parameters of a 1000 MWe GCFR

Vanadium clad oxide fuel

Structural material (16/13 S.S.) volume fraction

Pl~~t net efficiency with gas turbine cycle

Core power density (KW/liter)

Total fissile mass in core (kg of Pu 239 + Pu 241)

Average rating (MWth/kg Pu 239 + Pu 241)

Maximum mean bum-up (MWD/t)

Oxide density

U 235 in blankets

Intemal conversion ratio

55,000
83 %of theoretical

0.4 %
0.897
1.517
0.477

0.644 x 10-2

0.67
11.0

100
4.4

2497

40.8 %
272
2800
0.892

300
120
8470

--- Varrad:i:urn-a-t-loy-e~6-%-V#-:3--%T:t~
0.298 1 %Si)

0.552
0.073
0.077
0.74
0.4
410

720
765
845
480

(em)Dia~eter cf the cere

Cladding volume fraction

Fuel pin diameter (cm)

Clad thickness (mm)

Core inlet coolant temperature (oC)

Core outlet coolant temperature (oC)

Maximum nominal surface temperature (oC)

Maximum midwall clad hot spot temperature

Maximum fuel pin linear power (W/cm)

Coolant pressure at core inlet (kg/cm2)

Pressure drop in core (kg/cm2)

Total thermal output (inclusive of heat produced
in blankets) (MWth)

Total breeding

Breeding gain (Excess Pu atoms produced)
Total atoms fissioned

Doppler constant - T ~ (T in °K)

Reactivity in coolant ($)
System linear doubling time (years)

Height of the core (cm)

Core volume (liters)
- --c:ra;dtl:tn~--- ----------------;-----------~

Fuel volume fraction

Coolant volume fraction
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TABLE 11 Main Parameters of a 1000 MWe GCFR

Chromium eermet with oxide fuel

Diameter of the eore (em)

Hight of the eore (em)

Core volume (liters)

Fuel volume fraetion
.....

Coolant volume fraetion

Chromium and struotural material
(16/13 S.S.) volume fraetion

Fuel pin diameter (em)

Core inlet aoolant temperature (oC)

Core outlet eoolant temperature (oC)
oMaximum nominal surfaee temperature ( C)

Maximum fuel pin linear power (W/em)

Coolant pressure at aore inlet (kg/am2)

Pressure drop in aore (kg/em2
)

Total thermal output (inelusive of heat
produaed in blankets) (MWth)

Plant net efficieney with turbine ayale

Core power density (KW/liter)

Total fissile mass in core
(kg of Pu 239 + Pu 241)

Average rating (MWth/kg Pu 239 + Pu 241)
Maximum mean burn-up (MWD/t)

Oxide density

U 235 in blankets

Internal conversion ratio

B di i (Exeess Pu atoms produaed)
ree ng ga n Total atoms fissioned

Doppler eonstant - T : (T in °K)

Reactivity in coolant ($)
System linear doubling time (years)
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300

120

8470

{t._300 -

0.552

0.148

0.74

410

720

765

480

100

4.4

2486

40.8

272

2862

0.869

55,000

83 %of theoretieal

0.4 %
0.897

1.51

0.469

0.458 x 10-2

0.64

11.1



TABLE 111 Main Parameters of a 1000 MWe GeFR

IGraphite aoated partiales

Diameter of the core (cm)

Height of the core (cm)

Core volume (liters)
------_ .._-------- ---_ .. --- ---

Fuel volume fraction

Coolant volume fraction

Graphite and Silicon carbide volume fraction

Hydraulie diameter of eoolant channel (em)

Core inlet eoolant temperature (oC)

Core outlet eoolant temperature (oC)

Maximum nomingl fuel element surfaee
temperature ( C)

Maximum nominal fuel element temperature (oC)
2Coolant pressure at eore inlet (kg/cm )

Pressure drop in core (kg/em2)

Total thermal output (inclusive of heat
produced in blanket) (MWth)

Net plant effieieney with gas turbine eyele

Core power density (KW/liter)

Total fissile mass in eore (kg Pu 239 + Pu 241)

Average rating (MWth/kg Pu 239 + Pu 241)

Maximum mean burn up (MWD/t)

Carbide density

U 235 in blankets

Internal eonversion ratio

Total breeding ratio

B d· . (Exeess Pu atoms produeed)
ree lng galn Total atoms fissioned

Doppler eonstant - T ~ (T in °K)

Reaetivity in eoolant ($)
System linear doubling time (years)
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330.4

131.6

11 .. 280
- -- ----_..._---

0~2072

0.55
0.2428

1.462

590

930

1293

1430

100

0.75

2829

50 %
222

3077

0.92

55..000

90 %of theoretiea1

0.4 %
0.966
1.31

0.31

2.0 x 10....2

+0.93

16.2



Fig. 1 UO~20 %Mo-cermet isöstatically hot compressed

100 Ilm
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~ig. 2 UO~35 %Mo-cermet isostatically hot compressed

100 11m
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Fig. 3 UO~20 %Chromium cermet isostatically hot compressed

2181lm

86 \.Lm
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Fig~ 4 UO~30 %Chromium cermet isostatically hot compressed

200~m

100 llm
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