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Abstract

In the early days of safeguarding, isolated nuelear faeilities like

research reactors and the nuelear material in them, were the subjeet of

-sca-feguard.~-In--the---pres-errt-anli--fu'tü-r~--e-r~-ofcommercia1:-- nuclear -pot~er - --_.

generation, it is the nuclear material flow through the various nuclear

facilities in afuel cycle, and the principle of safeguarding effectively

the flow of fissile material by use of instruments and othertechniques _

at eertain strategie points appears to be weIl suited for this purpose.

In order to assess the requirements of such a safeguards system, a de­

tailed systernsanalysis is neeessary. Besides establishing quantifiable

criteria for a safeguards system, such an analysis enables one to set the

target values of instruments and methods as weIl as, other objeetives of

development. Extensive experiments in industrial scale facilities are

also required to demonstrate the feasibility of such a safeguards system.

The present paper describes the various phases of activities earried out

in this area at the Karlsruhe Research Center, and deals at some length,

with the system analytical approach followed, to establish a safeguards

system based on the above mentioned principle. The paper also describes

in detail the safeguards exercise carried out in the plutonium fabrication

plant ALKEM at Karlsruhe. The method of assessing the relative importance

of the chosen strategie points, preparation of material balance and

establishment of different types of statements which can be made by an

inspection authority, have been discussed. The possibility of estimating

the dynamic behaviour of the process inventory for a given plant lay-out

has been indicated. It has been shown that this principle ean be effectively

realized also in existing plants of the ALKEM type.

1) On delegation from EURATOM
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1. HISTORICAL BACKGROUND

----- --- -I-f--on-e- -c-a-sTs-l;l--g-]:-an-ce--o-ver--tl1e-pasrtw:o-and a half decades Of- nüc!ear

energy development, one can distinguish between three different phases L-l,2_/.

The first phase which las ted from 1942 to 1953, was mostly a military oriented

phase. The reactors installed during this phase, for exampl~ at Hanford and

Windscale, were mainly plutonium producing reactors. Although fabrication and

reprocessing facilities were available for these reactors, they did not ope­

rate under commercial aspects. The development of nuclear energy during this

phase took place under the shadow of atomic explosions at Nagasaki and Hiroshi­

ma. All the major activities in this field were governed by the assumption

that a 100 percent effective and technically feasible control system for the

peaceful sector had to be in existence before the nuclear energy could be

used for civilian purposes. The Baruch plan or the Atomic Energy Act of 1946

in the USA, which prevented dissemination of any nuclear information or supply

of nuclear materials to other countries, were the out-come of this era.

The second phase was initiated by the "Atom for Peace" program of President

Eisenhower in 1953 and related to that the passing of the Atomic Energy Act

of 1954 L-3_7. This phase was characterized by a worldwide exchange of nuc1ear

information in the peaceful sector, supp1y of limited amounts of nuclear

materials and research reactors to different countries and the establishment

of the International Atomic Energy Agency (IAEA). The European Atomic Energy

Community (EURATOM) was also established during this phase. The internationally

l)ün delegation from EURATOM
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known safeguard systems of the IAEA and EURATOM were worked out during this

period and reflect strongly the characteristic features of the nuclear

energy development during this period.

The third phase began in 1963 with the Oyster Creek event. This phase i8

the phase of large scale commercial use of nuclear energy including ful!

scale industrial competition. It i8 also during this phase that the commer­

eial use of aU the steps of a nuclear fuel cycle, nal'llely, reprocessing,

refabricating, and possibly isotope separation becomes essential, so that

the nuclear power stations can produce power eeonomically. The third phase

is rapidly expanding to many countries of the world, and the amount of

fissionable material which is expected to be required and produced in the

civilian sector will be higherby several orders of magnitude than that

__ in the second phase. Any safeguard system which has to be applied during
-------------------

this phase, has to be oriented to the eonditions pertinent to this phase.

2. THE PRINCIPLE OF MODERN SAFEGUARDS IN THE FIELD OF PEACEFUL APPLICATION

OF NUCLEAR ENERGY ,-4_,

2.1. It is vital to ensure that the peaceful nuclear energy does not pro­

liferate into the domain of nuclear weapons and that it is solely used for

fulfilling man's hope for peace and progress. If one can ensure that all

fissionable material, required and produced in the peaceful sector, also

remains in this sector, such proliferation cannot take place. Therefore,

the only and specific objective of a modern and properly designed safeguard

system, is to ensure that virtually all fissionable material, which is used

in the civilian domain, remains there. Logically, it cannot be the objective

of a modern and properly designed safeguard system to control the peaceful

application of~nuclear energy as such.

2.2. If the flow of fissionable material in the civil 40main could be entire­

ly and effectively contained in this domain this would be the only required

safeguards measure. In such a ease it would be irrelevant to know the amount

and the quantity of the fissile material. Therefore, it must be the first

safeguards measure of a modern safeguards system to ensure that sucha contain­

ment measure is realized wherever that is possible. It is important to
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realize that most of the nuclear facilities require in any way contain­

ments of different .t~pes, because of the requirements inherent in the

handling of nuclear material. The reactor vessel of a nuclear power

station, the hot-cells in a reprocessing plant, the glove-boxes in a

fabrication facility, are typical examples of such containments.

2.3. In practice it might not always be possible to realize a fully

effective containment. It is therefore neeessary to introduce a second

sateguards measure. This measure consists of safeguarding the flow of

fissionable materi~l 'throughout the whole fuel eycle. This can best be

exeeuted at certain strategie points. The first safeguards measure

namely, the containment, provides for a kind of conservation of mass flow

and it is not neceSSary to follow the flow everywhere inside a facility.

Although-a_de_t-a_UßLs~--S--t_ems-anaLy-sis-is-requi.r-ed---to--det-e-mine--t--he--l-eea-t-i-eft----·---­

and the number of such strategie points, the entrance and the exits of all

nuclear facilities appear to be the more important of these strategie points.

If all the safeguards activities are confined to these points, it will suit

the commercial nature of the competitive nuclear industry of the third phase

in an idealmanner, as under such a condition, theindustrially sensitive

parts of a nuclear facility would then remain untouched.

2.4. In any commercial scale nuclear facility a process inventory of fissile

material is always required to enable the plant to operate under equilibrium

conditions. This process inventory cannot be measured directly by measuring

the throughput of the fissile material alone, and can only be ealculated

from the difference between the input and the output flows. If the process

inventory would have been negligible compared to the throughput over a given

period of time, the first two safeguards measures would have been sufficient.

However, this condition is normally not fulfilled in large, industrial scale

nuclear plants and can only be approxioately met with a very large number

of strategie points inside a facility. ~herefore, to establish. a complete

material balance, a third safeguards measure has to be introduced, namely

the inventory taking. As will be sho~~ in chapter 4, the process inventory

can be estimated and established independently of throughput measurement in

several ways. One of the ways is washingout the plant. In such a casethe
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process inventory is temporarily transformed into a flow and measured at

one of the strategie points. Such an inventory procedure should however,

to the greatest possible extend, coineide with one of the operational

washouts of aplant to make this measure as unintrusive as possible.

Normally inventory taking, onceor :twice a year, appears feasible.

2.5. The above considerations lead to the following scheme for a modern

safeguards system:

a) The objective of a modern safeguards system is to reduce

significantly the possibility of diversion of fissionable

material from the domain of peaceful use of nuclear energy.

b) It is the fissionable material in the domainof peaeeful use

of nuclear eLler-gy and not the peaceful use of atomic energy

as such that must be subject to safeguard, ~\'hich is in view of

the ultimate purpose of such safeguard, namely to prevent the ille-

gal manufacturing of nuclear weapons, an indirect approach.

c) The design of·a modern· safeguar<ksystem is· governedbya quantified

criterion of the following type:

"!he requirements of safeguards are met, if with x % confidence

level the material balance is closed w-ithin y 0/0".

Such a eriterion can be established with the help of an extended

systems analysis and cuts the open endedness.

d) The first safeguards measure is to materialize the principle of

containing the fissionable material to the greatest possible extent.

Therefore this first safeguards measure covers among other things:

real containments (buildings) of principal nuclear facilities,

gate controls, waste control, safing and sealing, in particular

in the case of transportation.

e) The second safeguards measure is to measure the flow of fissionable

material at a finite number of strategic points. The assessment of

strategic points, their distance and therefore the hold up between

two of these strategic points and their required aceuracy of flow
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measurement sh~l1 be such, that the quantified eriterion c)

is met. In partieula~· it will be the arnount and the constaney

of the hold up between two strategie points whieh has to be

taken into aceount when this assessment is made.

f)

g)

The third safeguards measure is inventory taking. intentionally

a rare event. wh~eh should eoincide to the largest possible ex­

tent with the an~lay expeetedregular wash-outs. The type of

inventory taking shall be at the diseretion of the operator

of a prineipal nuelear faeility, provided that the aeeuraey

of the chosen type of inventory taking is in eonformity with

the purpose of that inventory taking.

Inspeetors shall not interfere with the operation of a principal

nuclea~ facility aud shall have aeeess only to the strategie points.

If in the course of safeguards experienee it ean be demonstrated

that also another area of a prineipal nue1ear faeility has to be

touehed, this other area shall be identified as another strategie

P9int by proper agreements between the involved partles or

authorities.

h) Design details of a prineipal nue1ear faeility areof re1evanee for

safeguards purposes only insofar, as eertain ground rules for the

general 1ay out of the bui1ding must be implemented. These ground

rules are there to make the containment funetion of the building

obvious and to identify in advanee the strategie points and enhanee

their effieiency.

i) Ona somewhat larger time seale tamper-proof instruments for measuring

the f10w of fissionable material at the strategie points sha1l be

deve10ped and their readings shall be proeessed by a suitable

automatie data proeessing system. As these instruments eome up,

they shall gradually rep1aee the safeguard inspeetors.

3. IMPL~mNTATION OF TEE PRINCIPLE

Work in three major areas is required to implement the prineiple of the

proposed safeguards system in eommereia11y operating nuelear faeilities.
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These areas are

3.1 Systems analysis

3.2 Containment studies

3.3 Development of instruments

A detailed research and development programhas been worked out at Karlsruhe

1-5_7 in which the different types of activities being performed under the

three major areas have been detailed. These activities and their timescales

are indicated in tables I, 11 and 111.

3.1 Systems analysis (Table I)

Emphasis has been laid on model simulation, development of statements and

______c~ost-effectiveness-studY'. The. results of the first t!~o areas of activities

are expected to be avai1able by the middle of 1969. Some more time ",oulp

be required to obtain the results of the cost-effectiveness"'"'studies, hOl~ever,

they snould be available not 1ater than the end of 1971.

3.2 Containment (Table 11)

The role of the first measure of safeguards, i. e.containment, in the pro­

posed scheme of safeguards cannot be over-ernphasized. A close col1aboration

with the operators of different nuclear facilities in the fue1 cycle, is

required to deterrnine the optimum way of laying out a plant so that the con~

tainment requirements can be fulfilled to the maximum possible extent with­

out affecting significantly the economics of the plant. The first concrete

results of these studies should be available by the end of 1969. The deve­

lopment work on sealing and identification of fuel subassemblies should yield

definite results by the middle of 1970. The ultimate goal of the containment

measure as weIl as the use of instruments is the tamper-proof storage and

transmission of the information obtained from these measures. Eowever, this

goal is not expected -to be reached before 1971.

3.3 Development of instruments (Table 111)

Development of instruments is required mainly to implement the second and

the third safeguardsmeasures namely, the measurement of the fissile

material throughput and the process inventory at the strategie points.

In" following the flOl.... of fissile material in a fuel cycle (Fig. 1) it
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becomes evident that two different types ·of measuring method8 are re­

quired. After the fissile material i8 filled in the fuel pins at the

final stage of a fabrication plant, it is no longer available in a

directly accessible form and remains in this inaccessible and quantified

form during its passage through the reactor and until the irradiated

subassemblies containing the pins are destroyed in the dissolver stage

of a reprocessing plant. At the strategic points in this part cf the

fuel cycle, indirect, non-destructive methods are required to determine

the fissile material flow. On the other hand, direct methods of measure­

ments can be used at strategic points in the rest of the fuel cycle. Some

of the indirect and direct methods for example calorimetry for Pu-contain­

ing pins and X-ray fluorescence for the dissolver solution "in a reprocessing

plant, in their final industrial form should be available by the end of

--------:-1-SQ-9-.-0-~e~s-a-t'e-e-xpee~ed-Eo-be-av~-i-l-ab-l-e---during-'the--p~ri_o_d-t~r()---t9_n_;_---

Some other instruments, which are not directly required for the fissile

material flow measurement but for implementing the containment measure,

are listed under point 111 of table 111. All these instruments are expec­

ted tQbe available by the end of 1969.

3.4 Experimental work

In the R+D program at Karlsruhe, one of the important phases of activities

is the experimental testing of system analytical results and instruments in

industrial sCale nuclear facilities. The main objectives of such testing

are summarized below:

Objectives cf experimental testing

To test;

4. The final safeguards system with instruments and other

techniques in individual nuclear facilities and in the

whole fuel cycle.



8

3.5 . Implementation at the Karlsruhe Research Center

The principle of the safeguards system as elaborated in chapter 2

can be realized in an effective manner and within reasonable time

scales only if the required research, development sud testing program

can be carried out and coordinated in an optimum manner. The basic

conditions required for the fulfillment of such an objective are present

at the Karlsruhe Research Center. Besides the fact that sufficient experien­

ce and research facilities in the required fields are available at the

center, a complete, industrial scale fuel cycle is also present there, in

which the research and system analytical results can be tested without any

serious time lag. A rapid flow, exchange and feed back of information is

therefore possible to attain the objectives within apreset time schedule.

Also' a close collaboration exists between the center and international con­

trol organizations which is essential for the actual implementation of any

safeguards system.

4. RESULTS OF RESEARCH,. DEVELOPMENT Al~D TESTING

Active work in the frame work of the fissile material control project

was started at Karlsruhe in August 1967. Some interesting results, which

were obtained duriug the last oue year have been discussed in this chapter.

4.1 Syste~s analysis

4.1.1 Criteria for measuring methods

During·the course of the system analytical iuvestigatiou it beca~e evident

that intensive effort would be required to develop indireet methods for de­

termiuing fissile material content in fresh and uuirradiated fuel pius aud

subassemblies at the exit of a fabricatiou plant or at the entranee of a

reactor. In ease it would have been absolutely essential to measure the

fissile material coutent in irradiated subassemblies, mueh larger effort

would be required. Fortunately, irradiated subassemblies from most of the

presently known reaetors are reprocessed so that the fissionable material

eontent of these subassemblies ean be directly measured there. The direet

methods which areaready kno~~ have fairly high accuracies. Therefore,
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indireet methods for> irradiated subassemblies have been alloeated a low

priority in the Karlsruhe program and.eriteria for only fresh1y fabrieated

fuel pins or subassemblies have been established. The more important eri­

teria have been shown in table IV. Aeeording to this the overallmeasuring

aeeuraey for plutonium eontaining fuel pins should be better than ~ 0.4 %

and that for uranium better than ~ 1.6 %L-6_'. These aeeuraeies are based

on throughputs in fabrieation plants during.the early seventies in Germany

'-13, 14, 15 7. The aeeuracies are so chosen that lolith such throughputs, the- -
integrated uneertainties in the throughputs reaeh a value of 10 effeetive '-18_'
kgs of Pu in one year's time.

4.1.2 Relative importanee of strategie points

A number of nuelear faeilities Hke reproeessing plants with diffirent eapa-

- --------ci-t-ie~1 1-1,---and-f-a~1"-iea-aen-pl-an-t-s-l'l-i-t-h-p-lutonium--con-ta-ining-fmd·~we-re---·--->----- ~ -. - _ ..
simulated to assess the relative importw~ce of the strategie points. The

range of uneertainties in the integrated amount of fissionable material,

whieh is obtained at eaeh of these strategie points, after a given amount

of fuel has been proeessed, "las taken for the time being, as an index for

assessing the relative "importanee ofthese points. Tue rälidömness öf the meastired

results was simulated by using a random number generator. The loea-

tion and number of the strategie points in the reproeessing plant are shown

in Fig. 2, and the results on uneertainties are sun~arized in table V '-7_'.

The range of uneertainties at a strategie point is a funetion of the inte~

grated amount passing through this point, the aeeuraey of measurement and

the ~umber of sampies taken for analysis. For the aeeuraeies considered in

this simulation, the feed point shows the highest range of uneertainties.

This means that in a reproeessing plant, of all the strategie points eon­

sidered, highest priority has to be given to the improvement of the measuring

methods used at the feed point~

4.1.3 Statements

It has been sho~~ /-4-7 that with the fnformation obtained from the second

and the third safeguards measures (Throughput measurement and inventory

taking), three ~ifferent eategories of statements ean be made:

a) Probability of diversion (PD). This is a statement by the safe­

guards authority. On the basis of the two series of measurements,
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the safeguarding authority can determine the probability with

which a minimum amount of fissionable material has been diverted

from the plant.

b) Risk of the operator (~): Thisis a statement of the operator.

In case an operator plans to divert a eertain amount of fission­

able material, and knows the aeeuraeies with whieh the safeguards

authority has earried out the two safeguards measures, he ean eal­

eulate the,risk (which ean also be expressed as a probability)

that the safeguards authority 't-lould find out with the probability

PD that he has diverted a minimum amount of fissionab1e material.

e) Proofing probability (PB): This is a statement of the safeguards

system designer. Hith this probability he can determine the quali-

ty of a pal."ticular ~afeguclJ.ds system. For 1- • • . ..
tl1i..S purp,?se,

that a certain amount of fissionable material has been diverted by

the operator. He can then calcu1ate t~e ehanee (~rllich is

also a probability) which the safeguards authority will

have, in proving that a fraetion of the diverted amount(with a

corresponding probability PD) has actua11y been divertedhy the

operator. This particular statement can be extended to determine

the effeetiveness of a safeguards system.

Because of the inaecuracies inherent1y assoeiated with the measur~entof

throughputs and inventory, it is not possib1e for a safeguards authority

to find out ~lith a 100 % probability, that is 't·Tith eertainty, the total

amount of fissionab1e material diverted by the operator.

4.1.4 Proeess-inventory functions

In chapter 2 it was indicated, that severa1 possibi1ities exist in determin­

ing the proeess-inventory independent1y in nuelear faci1ities to exercise

the third safeguards measure. These possibilities are:

a) Physical measurement of fissionable material inventory in eaeh

and every part of the plant during (or afte~) the proeess operation.

b) Inventory taking by washing out the fissile material content from

the internal parts of a plant to one or more of the strategie points.
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c) Determination of the process inventory from the kno~~operational

and inventory characteristics of each·part of aplant.

d) Measurement of the plant inventory with the help of tracer

techniques.

ad a) The first possibility requires a complete penetration into the plant

by the safeguards authority and therefore should-be regarded as a rare

event and shou1d be carried out only if the operator of a plant explicitly

agrees to it. Besides, physical inventory i8 not sufficently accurate as

it is very seldom that all the internal parts are calibrated or that the

volumes of the interconnecting pipelines are known with a high degree of

accuracy.

ad b) The second possibility, i.e. washout, was given as an example for exer­

cising the third safeguards measure to emphasize the non-intrusiveness of

this measure. If the inventory v1ashouts are allowed to coincide lodth the

operational washouts of a plant and are undertaken once or twice a year,

it means that six to t~'1elve months would have passed before a diversion

by the operator can be detectedby the safeguards authority. It i8 one of

the objectives of the proposed safeguards system to reduce the time lag

between a diversion and its detection, and the third and the fourth possi­

bi~ities are being investigated intensively for this purpose '-9_7. The

methods have been analysed with the fabrication plant, in which the control

experiment (see below) has been carried out, as an example, but they are

similar for a reprocessing plant also.

ad c) A fabrication plant can be divided into a number of unit fabrication

cells. These cells can further be divided into a storage part and amachine

part. The flow of the fissionable material through such a cell can be uni­

quely described with the help of three characteristic functionsof time.

They are, i) the inventory function h (t), which gives the mass of fission­

able material present at time t in the fabrication ce11 !-in kg e.g._7;

ii) the output function k (t), which gives the rate of mass flow leaving

the fabrica~ion cell at the time t {-in kg!h e.g._7; and iii) the residence

time function, T (t), which indicates h()T~ long the fissionable material,
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entering the fabrication cell at the time tremains in this cell I-in h e.g~7.

If there is recirculation of fissionable material between some of the cells,

the fraction or recirculation K(t) should also be known.

The plutonium fabrication plant AL~1 at which the control experiment was

carried out, was divided into 5 such fabrication units as sho\Yn in Fig. 3.

The hold-up and output functionsfor all these cells as weIl as the frac­

tions recirculated at different points for the experimental campaign were

collected and suitable analytical expressions were developed to fit into the

actual data. Typical results of these analytical approximations are shown

in Figs. 4 and 5 (output functions) and 6 and 7 (hold-up functions). The

total hold-up in the plant during the campaign was then calculated with the

analytical expressions and compared with the actual data obtained. The fitting

of the analytical results with the actual values appears to be fairly satis-
------------------ -------------_.._ ..- ------------_.. _- - - -- --------

factory as shO\-ln in Fig. 8.

The results of this method indicate that it is possible to determine the hold­

up in a plant at any time if the characteristics of the unit cells are knmm.

Ho\"ever, this method does not appear to be veryeffective from the point of

vie", or saf~guards. As was' seen at ALKEl.f, tEe hold=up fiincficiiiscaii vary ,:rH]i;';;

in fairly wide range for the same throughput, so that the operator can mani':"

pulate with his hold-up and the manipulation cannot be found out with this

method. Besides that, the plant characteristics will vary from plant to plant

and the safeguards authority has to have an intimate knowledge of the plant

to establish the analytical expressions required. This may not be possible

in a large number of cases and 1S contrary to the here proposed safeguard

approach.

ad a) If fissile material is introduced at the feed point of an operating

fabrication plant having a process inventory of h (t), at the rate of

k (t), at the time t , the same material will appear at the exit of theo
plant after the whole of the process inventory h (t ) has been processed

. 0

out of it, if no internal mixing takes place. Therefore, the residence time

T of the fissile material, which enters the fabrication plant at the time t ,o
isgiven by

t +T(t )o 0F(t)dt = h (to )

t o
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In the case of a steady state operation /-k (t) ~ k 7 this equ. reduces to
0-

T(t) = h(t')/k •000

If the fissile material introcluced in the plant at t be tagged with
o

a certain amount of tracer isotope and the·time T (residence time) be

noted which the tracer takes to appear at the exit of the plant, the

inventory h(t ) of the plant can be found out by knowing the throughputo
rateko• This is an indirect measure of determining the inventory as it

is calculated from T and ko ' The hold-up can also be determined directly

with the help of a traced material. For this purpose, the traced material

is fedcontinuously from the time tonwards into the plant. The untraced
o

material which was still inside the plant, is measured at the exit from

the same time tonwards till the traced material starts coming out at theo
_.. _.__~xLt ~e_inJ:eg.rated.-amo.uttt-oJ:----un-t-I"aee<i-mater-i-a-l---betv]een-these-two-till1e-timit-g-------

is the process inventoryof the plant 1(t l.o

The ACDA proposed MIST program /-19_/ follows a similar 1ine.

By the extension of the indirect tracer method, for example, by repeating

~h.~__ de1t at:yp_e_siJ~g~t j.ll. _~ _l:Jl!1.<i()!Jll.Y_E~l;iQdi~__fg--shi.QR, the_ ra.te_of .. -change of

the process inventory can probably also be determined.

The tracerrechnique if properly deve10ped, can be a highly efficient method

of non-intrusively determining the inventory, during the operation, and the

time lag between a diversion and its detection can be reduced significantly.

Further and intensive efforts are however required for the development of

this methode

4.1.5 Control exercise at the fabrication plant ALKEM

By far the most significant result obtained sofar in the frarnework of the

fissile material control project at Karlsruhe, is the comp~tion of the first

safeguard exerclse at the fabrication plant of the firmALKEH. Observers from

IAEA, EURATOH, USAEC end the German Hinistry of Scientific Researchhave

heenpresent there. A detailed report on this exercise will be published

shortly 1-1o_7. Only the important features of the exercise are presented

here.

This fabrication plant is located at the Karlsruhe research center but operates

under ful1y commercial conditions. The plant can handle about 200 kgs of Pu/yr.
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and the fabrieation of roughly 1 t ofU02!Pu02 platelets for the SltEAK

has been earried out there.

a) Objeetives of the exereise

The main objeetives of the exereise ean be formulatedmfo11ows:

1. To determine whether the prineip1e of fissile material f10w

eontro1 at a eertain number of strategie points ean be realized

in an existing plant, in whieh the strategie points eannot probably

be seleeted in an optimummanner beeause of-thealready existing

plant layout.

2. To find out whether the different types of statements developed

on the basis of system ana~ysis (ehapter 4.1.3) ean be~ade on the

basis of the material balance established at the strategie points.

For this purpose the ovmers of the fabrieation plant were requested

to withdraw a eertain amount of Pu (known only to thern) from the

proeess stream. The objeetive was to demonstrate the applicability

of the above mentioned statements.

3.-'fa·-usemas-t-1y-the-measuringmethods-already__av.ailable, _but_alsQ_ .tQ_ j.J.Sl!_

the methods whieh are being developed and establish their suitabili­

ties and wea~~esses.

4. To prepare an estimate of the total amount of effort required to

exereise different safeguards measures.

5. To determine the drawbacks of the existing layout from the point of

view of safeguards.

b) Plant layout and loeation of strategie points

The plant layout and the loeation of the strategie points are shown in Fig. 9.

The first strategie point was the Pu and the produet storage. Sinee there

was no possibility of weighing and sample taking in the storage and the

only weighing and sampling possibilitywas in the glove-box no. 1/85 in the

eeramie seetion, apart of the safeguards activity for the strategie point 1

had to be carried out at this box. At this point the input of the plant was

measured. The layout of the plant is such that plutonium cannot be intro­

dueed ioto the plant exeepting through this point.
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The second strategie point was installed at the final pellet control stage.

At the beginning of the experiment it was not clear tlhether the calorimeter

which was supposed to be used to measure indirectly the plutonium content

of the fabricated fuel pins (which were the final prcduet), would be ready

for operation~ The final pellet control stage was the last step at ",~hieh

the product stream could be measured for its plutonium content with the

already available method of y-spectorseopy.

Since the ealorimeter became ready during the exercise , it was taken

into operation and installed in a corner of the metallurgy room whieh

is air conditioned, and the area around the calorimeter was deelared as

the third strategie point, although logically, the calorimeter belongs to

the room for pin fabrication, there was no space available there and there

was no air eonditioning, which is essential for the oEeration of a ca~orime­

ter. The eompleted pins were measured for their plutonium content in the

calorimeter during the end phase of the eampaign.

The fourth strategie point was located at the waste analysis room, in which

all the waste streams fromthe different parts of the plant were colleeted

-and-th-e-p-lutunium- contents-of- -tlle ··wastewere meastireaoy a·· fH,fut-t'on cotffiter-~

The neutron counter is permanently located in this room and i5 used regular­

ly during plant operation.

The safeguards measures and acitivities at these strategie points are shown

in table VI. Some additional safeguards activities were required on account

of the prevailing eonditions in the plant. They are summarized in table VII.

Because of the campaign type of operation during the safeguards exercise

the beginning and the end of the exercise were weIl defined for the estab­

lishment of the material balance. The chemical and isotope analysis required

for the material balance calculations, were carried out in independent lCibo­

ratories at the center and only these results were used for the exereise

cl The production campaign

The specification of the producticn ca~paign which was safeguarded, is
.

gl.ven

in table VIII. About 200 kgs of U+Pu mixed oxide were used to produee 186 fuel

pins. The plutonium concentration was 2.3 %. The total amount of plutonium

supp1ied to the plant was 4909 gros. Only the flow of Pu was safeguarded.
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d) Results of the exercise

i) Material balance: The material balance for the safeguarded

campaign was obtained by summing up the output and the input streams.

The output streams consisted of the product stream (measured as

pellets by the Y·spectroscopy and as pins by the calorimeter), the

waste streams, and the scrap stream (the scrap is obtained as Pu02
mixture from different process steps, it is normally recovered and

re-used in one of the next campaigns or retumed to the o,~er of

the material), and the scrapings from the boxes at the end of the

campaign. The amounts measured, the range of uncertainty for each of

these amounts and the resulting difference are sho'~ in table IX.

The difference between the input and the output stream was found to

be 48.38 gms of Pu with a l-o-range of uncertainty of ~ 8.095 gms.

y-spectroscopy was obtained. This means, that a11 the pellets measured

by the y-spectroscopy were also introduced into the pins which were

then rneasured by the calorimetry. However, the difference was calcu­

lated with the results of the y-spectroscopy as it was found to be

more accurate (tab!'; ÜÖ. In this exer-cIse~-t-he-calorIme-fry--,:tas-l.fsEfd­

mainly as a containment measure.

ii) The probability of diversion (PD): Tbe probabilities of diversion for

different amounts of Pu were calculated according to the principle

statements in '-4_7 and are shOtvn in table X. The actual arnount of Pu

withdrawn by the ALlmM authority during the exercise was 42 gms of Pu.

It was possible to state for example, that with 95 Z probability

~ 35.06 gms of Pu had been diverted from the process stream.

Hi) Risk .of .the operator (~): The risks of the öperator fot different

amounts of plutonium and the corresponding probabilities of diversion

have also been indicated in table X. It was shO'ln in 1-4_7 that,

for a given fraction of the diverted amount, which can be declared

witn PD as diverted, the risk of the operator is mainlya function

of the ratio of the plutonium ernount which he plans to divert, to

the total range of uncertainty in the measurement. Since this
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ratio was fairly high in ease of the safeguards exereise

(amount withdrawn = 42 gros; I-er-range of uneertainty 8.09 gms),

his risk was also high. For example, as the table X indieates,

he stood a risk of 98.9 % that 10 gms, from a total of 42 gms,

would be deelared wilh a PD of 95 % as diverted. In aetual ease,

~35 gms (i.e. 83.2 % of the diverted amount) were deelared with

a probability of diversion of 95 %. For this statement, the

operator stood a risk of only 22 %. This shows elearly that

even with a low risk, the probability of diversion ean be very

high.

iv) Effort of safeguards: The man-hours for different safeguards

aetivities have been summarized in table XI. and the ehemical and

.--~ ----IIlas~speet-:rome_t_l:'_i_e_al--ana-1_y-ses--i-n-t-aMec-lfft.-'l'he--largert-rra-erlo-n-··

of man-hours ,vas required by the y-speetroseopy mainly beeause two

persons were required at this point. A large saving in man-hours will

be eaused by the elimination of this point and using only the ea­

lorimeter at the final stage of pin produetion. A fairly large frae­

t-ion oftheehemieal andmass"'spect:töttetr1c-,n-anälylfiSlias also re­

quired for the y-speetroseopy.

v) Relative importanee of the strategie points: It was indieated in

4.1.2 that the range of uneertainties ean 1:e regarded as an index

for the relative importanee of the strategie points. For a first

approximation this ean be eharaeterized for a strategie point i by

a number Z. whieh is a produet of the range of uneertainty er. and
~ . 1

the square-root of the total effort A. spent at that strategie point.
1

For the ALI~1 experiment, the total effort is given by the sum of

the man-hours, ehemical and mass-speetrometrical analyses. The number

Z. and the relativeweightage of Z. have been ealeulated for all the
1 1

strategie points as ShO'iU in table XIII. The highest number is given

by the calorimeter because of the highest range of uncertainties.

However, this is not contradictory to former statement of ours as

it was this particular a~d first device in whieh the ful! potential

of the method has not been realized.

vi) Drcmbaeks of the instruments and layout: Because of the use of

y- speetroscopy andPhysieal separation of the strategie points 1a

and Ib three safeguards personnel were eontinuously required during
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the exercise. Besides, the safeguards personnelhad to enter the

ceramic and the pellet production area. Absence of adequate space

and air conditioning in the pin fabrication room, necessitated the

location of the calorimeter in the waste reprocessing room. None of

the measuring methods used at the plant, namely the y-spectroscopy,

the calorimeter, and the neutron counter are tamperproof in their

present form. However, thecalorimeter and the neutron counter can

be made tamperproof with further effort.

e) Conclusion .

.The results of the exercise have shovrn, that the principle of fissile

material contral can be rea1ized in the existing plant·of the ALKffi1 type;

with reasonable efforts. Because of the fairly high measuring accuracies

obtainable, diversion of relatively small amounts can be detected with a

fair1yhigh degree of probability. Valuable experience was gained which

can be used in setting the priorities of different development work.

and system analytical investigations.

4.2 .. Contalnmeiif studies

4.2.1 Nuclear power stations

Arecent study '-11_' undertaken to determine the optimum and effective

safeguards measures for nuclear power reactors has sho~ that nuclear power

stations of the presently knovln heavy water natural uranium and light water

slight1y enriched uranium types, can be safeguarded mainly with the help of

containment measures. A nuclear reactor is the only step in the whole fuel

cyclein which fissionable material remains contained in fuel subassemb1ies

during its entire residence time. During normal operation of such a reactor,

the fuel subassemblies rnove through three wel~ defined containment areas

namely, the dry storage area for fresh fuel subassemblies, the reactor vessel,

and the wet storage area for irradiated subassemblies. Three measures are re­

quired to safeguard the movement and account for the subassemblies.

a) Sealing and identification of the subassemblies at the dry storage

and the wet storage area.

b) Registration of movement and loading of the main cranes and the

refuelling machines.

~)]fuasurement of the activity overthe reactor bay area.
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A combination of these neasures can determine the novement and the number

of subassemblies in a reactor as afunction of time.

4.Z.Z Fabrication plant '-12_1

A typical layout of a 100 t/a of PUOZ+UOZ fuel for fast breeders is shown

in Figs. lOa and lab. The experience gained from the ALKill·f experiment and

the trend of the fabrication industries for automation, have been incor­

porated in this reference layout. Fig. lOa gives the layout of the cellar

and the ground floor at which all the fabrication steps are located. Fig.

lOb gives the front view of the fabrieation building. The plant is laid

out in such a way that the movement of fissile. material is fully eontained

inside the plant and the fissile material can enter or leave the plant only

. __ ~ throug}1: _~!rategj.~_p_oints~l'he_fir~~~.f thea.e__s_txat_egi.c__ p_oin1:8-is -in-tb.e--ce-l1a~

for the fissile material entrance and for the "Taste material 'dlich leaves the

plant. It is possible to weigh and take sampies at this point. The second

strategie point is directly on top of the first strategie point on the ground

floor and is used for the personnel check. The third strategie point is at

theproductend. At thispoint ethereareposs-ibilitiesfoI' -both pin· measure­

ment and se.s.Iing of subassemblies • The cOlltainmentof the fissile material

is shown by the dotted line.

In laying out this partieular plant it has been assumed that thefUel for the

eore part of the subassembly will be received in the form of sinterable DOZ
and PuO

Z
powder, whereas, that for the axial blanket (which is normally de­

pleted uranium) will be obtained as eompleted pellets. All these materials

will be reeeived at the first strategie point, loeated in the eellar. The

seaUng of the bird eages will be eheeked at this point and if neeessary

sampies ean be taken on the basis of random statistical methods. Simple che­

mical analyses, if necessary ean also be earried out by the safeguards per­

sonnel at this point, but sampies for independent mass-speetrometric analyses,

will have to be sent to some other laboratories. After identification and

sampling, the fissile material will be storeo in the respect~ storage areas.

The material from these areas is transfered to the ground floor with the help
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of lifts provided for this purpose. All the operational personnel can enter

or leave the fabrication area through the personnel lock only, which func­

tions as the second strategie point. The fabrieation area has been divided

into two parallel lines to fabricate fuel for the two core-zones of a fast

breeder separately, aaeh of whieh has a different plutonium concentration.

The two lines J01n again at the third strategie point. At this point the

finished pins or tbesubassemblies can be tested for their plutonium eontent.

If necessary, se'aling ofthe pins and subassemblies by the safeguards autho­

rity, can also be carried out here. The eompleted subassemblies ean leave

the plant only at thethird strategie point. This point is used also for the

supply of structure and eanning materials and other inactive materials re­

quired for the plant.

_._-'l'_he~~.rnI!~ an<Lanal:Y~tcal_c~~stes_a~~_re~70rked_~!l.~..~~~_ .....scrap:....:.r~~~"~!'f) __ ;l1.e.l'.lall.~_

continuously and the re,~orked plutonium is rent back to the first stage of

the fabrication. Only the waste from this 'stage is sent to the waste storage­

cellar with the material lift. The waste can leave the plant only through

the first strategie point.

The fabrication ares i5 flal"..ked by t,,,o wings of the building in which the

technical offices, storage for inactive materials etc. are located. All the

areas surrounded by the dotted line are contained. Different measures can be

taken for ensuring this containment.

/On the, first floor, assembly and testing of the canning material are carried

out. The tested and partly assembled canning materials are sent to the pin

fabrication station with the lift located at the third strategie point. The

inactive workshop is also located on the first floor.

Several of such layouts and their drawbacks and advantages have been dis·

cussed in detail in '-12_/.

4.3 Instrument~

Important progress has been made on slowing down spectrooeter, on the basic

research on n, y-reactions, and on the calorimeter. Work on the first method

is being refered to by Stegemann and on the second method by l1ichaelis at

this conference L-16, 17_7.
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4.3.1 Ca10rimeter

The radio-metrie calorimeter is a well known deviee for determining the

heat generated by the a-deeay of Pu in Pu-eontaining fuel. If the isotope

eomposition cf Pu is known, the total amount of Pu present in the fuel

ean be ealeulated from the heat generated by the different isotopes of Pu

and by the Am-241 whieh is presen~ in the fuel at the time of measuring

the heat.

The prineiple of the ealorimeter is show~ in Fig. 11. Fuel pins with un­

known Pu eontent are introdueed into the a-ealori~eter whieh 1s surrounded

with thermoeouples. The heat flux obtained by ~-deeay of Pu and Am-24l in

the pin, generates the potential differenee in the thermoeouples and ean be

measured aeeurately by a miero-voltmeter. This ealorimeter is immersed in a

eonneeted to the a-ealorimeter is also immersed in the same bath. The re­

ferenee ealorimeter eontains an eleetrieal resistanee whieh is heated up

simultaneously with the heating of the a-ealorimeter and the heat input

registered. The voltage of the two ealorimeters i8 balaneed in a wheatstone­

bridge. From the accurately measured voltage supplied to the referenee unit,

the heat produetion rate of the a-ealorimeter and therefore, the amount of Pu

inside the pins can be calculated, onee the potentiai differenee and the

heat flux relation has been standardized.

The main advantage of a ealorimeter of this type lies in the fact that

the method is simple, reliable and easily automatizable. In prineiple it

is possible to estimate the plutonium content in fuel subassemblies also.

It is not fully tamperproof, as plutonium in the fuel pins could be

replaeed by some other a-producing ele~ent. However, the method can be

made tamperproof if the neutrons produeed by the isotopes, on aceount of

spontaneous fission are also measured simultaneously and the ratio neutrons/

watt is determined.

The inaeeuracies in this measurement result from two sourees, a) the

inaceuracies in the measurement of the isotopes and the Am-241 content

and b) inaecuraeies caused by the reproducibility of the measurement
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error on account of the first source~ obtained for the safeguards exer­

eise, was found to be 0.45 %. as shown in table XIV. The major part of

the total error (found between 0.8 - 1.2 %, table IX) was from the re­

producibility of measurement and varied between 0.6 % - 1.0 %. With

further development, the total percentage error from all the sources is

expected to be reduced to around 0.4 - 0.5 %.

4.3.2 Slowing down timespectrometer

Theslowing down time spectrometer has also reached an advanced stage of

deve1opment.

A pulse of fast neutrons is al1o~ved to pass through a lead pile. Because

of the slowing down process, the average energy of neutrons can be calcu­

l--:~teQ -a-s-a;-fun-~ti-ono-ftime--;-~-f--a -ftre-l-pin--conta-i:ning-uran-i:um--or--p-1u~onium-­

is placed in the lead pile in the path of these neutrons, fission of U-235

or Pu-239 is initiated by the impinging neutrons, provided they have energies

in one of the resonance regions. Knm-1ine the energy of the neutronsand the

cross sections of the fissile material at this energy, the amount of fissile

material caribe deterlriinedbyme.astiting ene resültirtg fissiön neutrons;

For the determination of U-235 alone, the resonance energy level of 0.28 keV

may be chosen.

As indicated in chapter 3, an industrially finished instrument based on

this principle is expected to be ready by the middle of 1970. This instrument

will be in a position to measure the U-235 content in fuel p1n~ for light

water type reactors (appr. 3 % U-235 concentration) with an accuracy of < 2%.

The capacity of this instrument will be around 600 pins/day. This corresponds

to a fabrication plant of I t/d capacity.

Further details of this method are given in 1-16_1.
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5. CONCLUDING RID'~S

The modern safeguards system involves a number of complex and inter­

related problems. They range from the intangible political feelings, human

relations and other apparently unquantifiable areas, to the development

of highly sophisticated methods. Experience and results gathered during

the past year indicate however, that most of these problems yield solu­

tions if handled in a rational manner, that most of the areas, hitherto

considered unquantifiable, can be quantified and, finally that the whole

development of a modern safeguards system is a fully rational venture.

These experiences and results also indicate that such a system is not a

long term hope but a short time reality. It can be realized and implemen­

ted in existing plants in the near future.
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TABLE I. ACTIVITIES AND TlllE SCALE FOR TRE SYSTEHS ANALYSIS

Activities Time scale

I. Hode1 simulation

a) Establishment of objectives for

safeguards methods

b) Number, location and relative importance

ofstrategic points

c) Process inventory analysis

d) Effective use of s_tatistica1,

_.~ ~ pcI'obabilistic-and--oehe.r-s-imi-la-t"-----_.-----.--{-----~M_icla-le-e_f-l%9------·-

methods

11. Deve10pment of statements

a) For the ~~~~~~~rd~u~h~ri~y

b) For the oper~tors of nuc1ear facilities

c) For safeguards syste~ms designer

d) On effeceiveness of safeguard system

111. Cost effectiveness

a) Use of operators data

b) Cost functions for measuring accuracies,

containment and other safeguards

measures

c) Optimization of the who1e safeguards system

End of 1969

End of 1971
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TABLE 11. ACTIVITIES AND TIHE SCALE FOR CONTAINHENT STUDIES

Activities Time scale

1. ContaiIU!lent of nuclear facilities

a) Nuc1ear reactors

b) Fabrication p1ants

c) Reprocessing plants

H. Containment of fissionable material

a) Sea1ing and identification of

fuel subassemblies

b) Sea1ing of containers and transport

casks

111. Tamperproof storageand transmission of

~guards information

End of 1969

Middle of 1970

End of 1971
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TABLE !II. DEVELOPHENT OF INSTRill1ENTS AND THEIRTIME SCALE

Instruments Time scale

I. Indirect methods

a) Ca10rimeter (Pu-containing fue1 pins) End of 1969

b) Ca10rimeter (Pu-containing subassemb1ies) End of 1970

c) S10wing down time spectrometer

(U-235 containing fue1 pins) Midd1e of 1970

d) S10wing down-time spectrometer

(U and/or Pu-containing fuel pins) Hidd1e of 1972

e) Methods based ori y-spectroscopy with

_______~ induc_e_d_r_e_a_c.ti_ons~~(_ll-andioI-I'u...con:taining~--- ------ -

fue1 pins) Midd1e of 1972

f) Neutron dose measurement (Pu-containing wastes) Hidd1e of 1970

g) De1ayed neutron (fissile material containing

wastes) ·Middle ()f 197Q

11. Direct methods

a) X-Ray f1uorescence for ß, y-active samp1es

(U+Pu)

b) Isotope dilution by mass-spectrometry

(U+Pu isotopes)

c) a-spectroscopy (Pu-238)

d) Neutron activatiori of homogenuous waste

solutions

e) Ioprovement of standard methods

111. Other methods

End of 1969

!'fidd1e of 1970

End of 1969

Midd1e of 1969

Hidd1e of 1970

a) Distance-cum-1oad measuring instruments for

cranes, fuelling machines etc. End of 1969

b) .Activity measuring instruments for reactor bay,

storage pond for active subasse~blies etc. End of 1969

c) Control of personnel and material for concealed

fissionable material (Pu) Middle of 1969
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!ABLE IV. CRI!ERIA FOR INDIRECT HEASURING METHODS OF FISSILE lfATERIAL

CONTENT m FRESH, UNIR..'JW)IATED FtJEL FINS

Criteria Remarks

1. Tamperproofness Against all conceivab1e measures,

which can simu1ate the presence or

the absence of one of the fissionab1e

elements (inhomogenity, addition or

removal of absorbers, reflectors,

and foreign neutron and heat source)

2. Free from systematic errors Any bias in the measurement should
----------------Oe iaent1~f-bfb~-~a:n-d~c-orre-ctah_l-e---

3. Capacity of discrimination

4. Low measuririg time

5. Accurate

6. Simple, re1iable, easy to

automatise and adaptable to

continuous operation

7. Economic

The method should be capable of

discriminating between uranium and

plutonium

Depends on the throughput and the

number of measuringunits used in

a plant. For 1 t heavy metal/d

capacity fabrication plant and one

measuring unit, the measuring time

should not exceed2-3 minutes/pin

For the same throughput as in (4)

the overall measuring accuracy for

Fu should be greater than ~ 0.4 %

and that for U-235 + 1.6 % (1 va1ue)
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TABLE V. RANGE OF UHCERTAINTIES INPLUTON1UH AMOUNTS 1-1EASUREDAT

STRATEGIe POINTS IN A P~PROCESSING PLANT

r
I Low Pu-Content High Pu-Content
i
I Fue1 Fue1
i
!
i

I
Amount of Pu 132 1050

I Pro-cessed I~g_l,
i
i

I Measuring II II Accuracies
-.-.-------_ ...- ---~~.._~------------

- -- - ------

1_1-1-0-;--% 7----'-'---
I - - --

Product 0.2 (2)

Acid Recycle 3.0 (3)

Waste 10.0 (6) 10.0(30)

Feed_ -- 0.5(3) 1.0 (3) 2.0(3) JO.S(15) 1.0(15) 2-.0(15,1

Range of Uncer-

tainties

LIeg Pu_l

Feed 0.63 1.26 2.53 3.16 6.33 12.68

Acid Recyc1e 0.45 0.35

Product 0.27 Same Same 0.75 Same Same

Waste 0.10 0.51

Total 0.85 1.37 2.59 4.05 6.81 12.84

( ) Number of samp1es per day
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TABLE VI. SAFEGUARDS MEASURES AND ACTIVITIES AT STHATEGIC POINTS

FOR THE CONTROL EXPERINENTAT ALKEM

Strategie point

la

lb

Safeguards measures

Containment

Throughput measurement
for feed and scraps

Safeguards activities

Sealing of the Pu storage to
identify the in and outgoing
Pu-containing boxes.

Weighing, sample-taking,
chemical analysis.
Known methods.

2 Throughput measurement Measurement with the help of
product stream in the Y -spectroscopy. Known method

------form oI pellets ------:----------------------out1.ntroducea.-for tlie-- -experi- ------------------
ment for the first time.

3

4

Throughput measurement
product stream in the
form of pins

Throughput measurement
waste streams

Measurement with the help of
calorimeter. New method
introduced particularly for
the experiment for the
first·time.

Measurement with the help of
n-counter. Known method,
standardized for the experiment
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TAßLE VII. ADDITIONAL SAFEGUARDS ACTIVITIES IN CONliECTION.WITH

THE SAFEGUARDSEXPERIMENT AT ALKEM

Safeguards activities

Sealing of active waste storage
drums

Sealing of waste storage area

Accompaniment during transport
of Pu from Pu-storage to weighing
and sampling box md back
(Str.Pt. la)

-Accompaniment--during-tran-sp-oT-e­
of pellets from final control
stage to pin filling stage

Identific-ation of material
under safeguards through
mass-spectrometric
~analysis__ __ _ _.

Marking of finished pins

Control of cleaning operation
of the plant before and after
the experiment

Homogenization of scraps

Purpose·

To prevent removal

To ensure that no recirculation
takes place

To prevent mixing and
recirculation

-~To prevent mixing ana~

recirculation

To prevent mixing between
safeguarded and unsafeguarded
material which had different
1'-u...isotop-ie composi t.ions -

To prevent recirculation in
the calorimeter

To establish weIl defined
starting and end conditions
for establishing material
balance

To determine accurately
the Pu-content in scraps
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TABLE VIII. SPECIFICATION OF THE PRODUCTION CAHPAIGN SAFEGUARDED

DURING TRE EXPERIMENT

Amount.of Pu supp1ied
'-gm-'
Amount of U supplied
, k8_'

Total amount of ceramic
processed '-kg 7

~: -

Pellet specification

4909.00, as Pu02

'250, as U02

200, mixed U + Pu oxide

Diameter

Weight
'-mm_'
'-gm ceramic_7

-ts-,-,---'. c--.------'-~---·---·-·-·-·---··----··

12.5

18.6

Pin specification

··neight-·- --···-I_-7~-c

Diameter '-__7
Weight ,-gm_7
No. ofpins

Type 1

--1325­

13.5

1472

113

Type 11

_410_,_

13.5

452

73
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TABLE IX. RESIJLTS OF TBE HATERIAL BALANCE

Point Amount
(gm Pu)

Range of uncertainties
(l-o va1ue in gm Pu)

Input 5070.25 5.86

Output, Product; Pellets
(y-spectroscopy) 4209.57 4.91

Output, Product; Pins
(Calorimetry) 4213.76 14.48

Output, Scrap 677 .63 2.19

Output, \-laste 127.95 1.49

UUtput, ,-laste
(box scrapings) 6.50 0.06

Difference· bet~veen inputand

output . (-based on-the- y-=spect-ros--­

copy) 48.38 8.09

Accuracies of measuring instruments used:

Feedpoint

y-spectroscopy
(pellets)

Ca10rimeter

n-counter

0.4 %

0.5 i. per batch

0.8 - 1. 2 %

8 %
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TABLE X. PROBABILITIES OF DIVERSION (PD) AND TRE RISK OF TRE OPERATOR

(~) CALCULATED ON TRE BASIS OF MATERIAL BALANCE

Actua1 amount diverted: 42 gms of Pu

Probabi1ity of diversion

PD L%_l

90 95 99.0

I

__ unt_.L__gtIl~~~_7 38.09 35.07 29.56
-I--

Percentage of
the actua1 amöunt
diverted 90.5 83.5 70.4

90 95 99.0

Risk (~)

or amounts dec1ared as
diverted
/-gms Pu_l

10 99.6 98.9 94.8

15 98.0 95.4 84.4

20 92.4 85.7 65.2

30 58.3 43.6 20.1

35 33.7 22.0 7
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TABLE XI. }fAN HOURS FOR DIFFERENT SAFEGUARDS ACTIVITIES DURllIG

THE CONTROL EXPERil'.lENT AT ALKEM

Location 11an hours % of total

Pu-storage 32 3.9

Box 1/85 62 6.9

lvaste analysis
(n-counter) 121 13.4

Y-spectroscopy 484 53.5

Calorimeter 70 7.7

Waiting time 80 8.8

Hiscel1aneous 56 6.2

TABLE XiI. EFFORTS ON CHEHICAL AND HASS-SPECTROHETRICAL ANALYSIS

Purpose No.

A. Chemica1

Input

Y-spectroscopy

Scrap + Waste

Calorimetry

Total

B. Mass-spectrometrica1
analysis

Input

y-spectroscopy

Scrap + Waste

Calorimetry

Total

8 20.5

26 16.7

5 12.8

0 0

39 100

12 35.3

12 35.3

5 14.7

5 14.7

34 100



TABLE XIII. RELATIVE IMPORTANCE OF STRATEGIe POINTS
I
I

!
Strategie Point Ueasurement Range of uneer- Man hours Chem~aqalx.ses Mass-speetr. Costs Z. Z.

of tainties '-g Pu' r-h 7 L nQ._, a,na'!yses !J>M7 1 1
-! -- rel.%I L no._7 A.

I 1

- -L-.

1a Input +
I

6.256 9;4 Ij 17 7430 539. 27.0
1b Serap

I

I

2 Pellets 4.91 484 2.~ 12 15'280! 606. 30.6
(y-speetr.)

I
I
I

3 Pins 14.48 '10 0 5 2650 744. 37.4 UJ

(ea1orimetry) I 00

4 Waste 1.46 l:h S 5 4710 100. 5.0
I

!I

I
,'""'--,
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TAßLE XIV. ERR,OR TII THE HEASUREl-fENT OF CALORnmTRY on ACCOUNT OF

ISOTOPE }1E!SUREHENT ERRORS

Isotop.

Total:

perc. error

0.45

heat val.
rel.
w/g

watts

\

0.00487644 watt/gm

of Pu safeguarded
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