

KERNFORSCHUNGSZENTRUM

KARLSRUHE

KFK 997

März 1969

Institut für Experimentelle Kernphysik

Vektorpolarisation von Deuteronen bei der elastischen Streuung von C 12 zwischen 41 und 51 MeV

E. Seibt, Ch. Weddigen, K. Weigele

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

März 1969

KFK 997

Institut für Experimentelle Kernphysik

Vektorpolarisation von Deuteronen bei der elastischen Streuung von C^{12} zwischen 41 und 51 MeV

E. Seibt, Ch. Weddigen und K. Weigele

Forschungsbericht auf der Frühjahrstagung des Fachausschusses Kernphysik der Deutschen Physikalischen Gesellschaft

Freudenstadt, 24. - 28. März 1969

vorgetragen von E. Seibt

Gesellschaft für Kernforschung m.b.H. Karlsruhe

and the second second

Abstract

Double scattered deuterons give an aziumthal asymmetry of the form 1+A cos \emptyset + B cos 2 \emptyset . The asymmetry parameters A and B have been taken for double scattering of 51 MeV deuterons on Carbon as a function of primary and secondary polar scattering angles. No significant values for B could be found. Thus, a calibration experiment for vector polarization iT_{11} could be performed. iT_{11} is given for deuteron energies from 41 to 51 MeV and polar scattering angles from 15 to 58 degrees CM. Comparison with some optical model calculations give only qualitative agreement. Am Karlsruher Isochronzyklotron wurden Polarisationsmessungen mit 50 MeV Deuteronen an Kohlenstoff durchgeführt. Ziele dieser Untersuchungen waren:

- 1. Die Messung der Vektor- und Tensorpolarisationseffekte,
- 2. Die Bestimmung der Energie- und Winkelabhängigkeit der Deuteronen-Vektorpolarisation bei der elastischen Streuung an C¹² unter Durchführung eines Eichexperimentes und
- 3. Ein Vergleich der experimentellen Daten mit den theoretischen Berechnungen einer optischen Modell-Analyse nach SATCHLER für Deuteronenenergien zwischen 41 und 51 MeV.

Ein 1. Teil dieses Berichtes beschreibt die Meßgrößen und Meßmethode einer Doppelstreuung von Spin 1-Teilchen an Spin O-Targetkernen (im Experiment C¹²). Bei kleinen Tensorpolarisationen kann man ein Eichexperiment für die Deuteronen-Vektorpolarisation ähnlich wie für Spin 1/2teilchen durchführen. Ein solches Eichexperiment wird im 2. Teil dargelegt.

Das Prinzip der durchgeführten Doppelstreuexperimente ist folgendes: Der einfallende Deuteronenstrahl mit der Energie E_1 wird an zwei Streuzentren gestreut (Figur 1). Ein 1. Target dient als Polarisator, ein 2. Target als Analysator. Gemessen wird die Intensität nach der 2. Streuung in Abhängigkeit vom Azimutwinkel Ø, dem Winkel zwischen 1. und 2. Streunormalen. Diese azimutale Intensitätsverteilung hat die Form

$$\frac{d\sigma}{d\Omega} (E_2, \Theta_2) \sim 1 + A \cos \emptyset + B \cos 2 \emptyset, \qquad (1)$$

wobei A und B von der Energie E_1 und dem Streuwinkel Θ_1 am

1. Streuzentrum bzw. E_2 und Θ_2 am 2. Streuzentrum abhängen. Treten keine Polarisationseffekte auf, sind A und B gleich Null.

Die Asymmetrieparameter A und B enthalten Größen, die die Deuteronenpolarisation nach der ersten Streuung beschreiben (Polarisatorwirkung) sowie solche, welche die Polarisation bei Umkehrung der zweiten Streuung wiedergeben würden (Analysatorwirkung)¹⁾. Für die Beschreibung dieser Polarisationen benötigt man für den vorliegenden Fall (Spin s=1) 3x3 Dichtematrizen mit je 9 unabhängigen reellen Tensorkomponenten. Invarianzprinzipien und die Normierung auf die Strahlintensität reduzieren die Zahl dieser 9 Tensorkomponenten T_{ik} bei der Streuung von Deuteronen auf 4 Bestimmungsgrößen. Die Definition der Tensorkomponenten ist nicht einheitlich und die Ausdrücke für die Asymmetrieparameter A und B hängen von der Wahl des Koordinatensystems ab. Lakin¹⁾ wählt ein rechtwinkliges Koordinatensystem derart, daß einmal die y-Achse mit der Streunormalen n₁ der 1. Streuebene zusammenfällt und zum anderen die z-Achse in Richtung des gestreuten Deuteronenstrahles im Schwerpunktssystem zeigt. In diesem Falle erhält man für die als Meßgrößen verwendeten Asymmetrieparamter A und B folgende Ausdrücke, welche die noch verbleibenden 4 Größen iT₁₁, T₂₀, T₂₁ und T₂₂ enthalten:

$$A (E, \Theta) = 2 \frac{\langle iT_{11} \rangle_1 \langle iT_{11} \rangle_2 - \langle T_{21} \rangle_1 \langle T_{21} \rangle_2}{1 + \langle T_{20} \rangle_1 \langle T_{20} \rangle_2}$$
(2)

$$B (E, \Theta) = 2 \frac{\langle T_{22} \rangle_1 \langle T_{22} \rangle_2}{1 + \langle T_{20} \rangle_1 \langle T_{20} \rangle_2}$$

Die in A enthaltene Größe $(iT_{11})_1$ bzw. 2 ist ein Maß für die Vektorpolarisation parallel zur Streunormalen n₁ der einfach gestreuten Deuteronen. In B dagegen kommen nur Größen vom Typ T_{2k} vor, welche die Tensorpolarisation beschreiben. Eine Messung von B gibt also Auskunft über das Auftreten von Tensorpolarisationseffekten.

Aus (2) ist ersichtlich, daß bei Doppelstreuexperimenten nur Produkte von Tensorkomponenten bestimmt werden können.

Zur Messung der Größen A und B wurde die in Figur 2 schematisch dargestellte Apparatur benützt. Der vom Zyklotron kommende Primärstrahl wird mit den magnetischen Linsen 1 und 2 auf ein 1. Target T1 fokussiert. Die Fokussierung der in T1 gestreuten Deuteronen auf das 2. Target T2 übernimmt ein Quadrupoltriplet Q1 bis Q3. Linse Q4 ist gegenüber dem Triplet um 45° gedreht und dient als Korrekturlinie für Linsenfehler. Die Streukammer 2 enthält 2 symmetrisch angeordnete Zählerteleskope C1 und C2. Die Monitoren M1 und M2 dienen zur Überwachung der Strahllage, der Monitor M3 wird zur Bestimmung der Bestrahlungszeiten verwendet. Die Streukammer 2 kann zusammen mit den Monitoren um die Achse des Sekundärstrahles, und zwar von $\emptyset = 0$ bis 360° , gedreht werden.

Die experimentelle Schwierigkeit liegt hier in der Vermeidung apparativ bedingter Asymmetrien. Es muß z.B. die Achse der Streukammer mit der Achse des Sekundärstrahles etwa auf 0,01[°] übereinstimmen.

Die mechanische Ausführung der rotierenden 2. Streukammer zeigt die Figur 3. Diese gibt die Streukammer in der Position $\emptyset = 45^{\circ}$ wieder. Im Inneren der Streukammer (der Deuteronenstrahl kommt von links) befinden sich die beiden Zählerteleskope, ausgerüstet mit 1 mm Si-Halbleiterzähler und 15 mm Plastikszintillatoren mit Fotomultipliern. Unmittelbar vor dem Target, welches am Kammerdeckel montiert ist, befindet sich eine konisch verlaufende Gesichtsfeldblende. Rechts von der Streukammer sind die Monitoren angebracht.

- 4 -

Der Meßvorgang geht nun folgendermaßen vor sich: Gemessen werden die Teleskop- und Monitorzählraten in den Positionen $\emptyset = 0$, 90, 180 und 270°. Eine Fourier-Analyse der entsprechenden Zählraten ergibt die Größen A sowie B für Teleskope und Monitoren. In einem χ^2 -Test wird die Konsistenz der Meßergebnisse überprüft. Die apparativen Asymmetrien wurden durch Nullexperimente mit Spin-O-Teilchen (im Experiment 100 MeV α -Teilchen) ermittelt.

Um die Verhältnisse der Vektor- und Tensorpolarisationseffekte zu untersuchen, wurden für verschiedene Primärwinkel Θ_1 die Winkelverteilungen der Asymmetrieparameter A und B aufgenommen. Ein charakteristisches Beispiel ($\Theta = 38^{\circ}$) für die gewonnenen Asymmetrieparameter zeigt Fig. 4.

Aufgetragen sind die Asymmetrieparameter A bzw. B in Abhängigkeit von dem Sekundärstreuwinkel Θ_{2CM} im Schwerpunktssystem. Man erkennt ein ausgeprägtes Maximum in A bei 43°. Die Größe B hingegen zeigt keine von Null signifikant abweichenden Werte. (In dem Bereich bei Θ_{2CM} = 22° liegt ein scharfes Interferenzminimum des differentiellen Wirkungsquerschnittes. Hier können die apparativen Asymmetrien in B einen Wert von -0.015±0.014 erreichen. Der maximale Meßeffekt in B beträgt in diesem Winkelbereich -0.030+0.008).

Die eingezeichneten Kurven 1 bis 3 stammen aus einer optischen Modellanalyse von SATCHLER ⁽²⁾, der aus den differentiellen Wirkungsquerschnittsdaten ^{3),4)} die Tensorkomponenten T_{ik} berechnete. Der Vergleich mit unseren Meßergebnissen zeigt nur qualitative Übereinstimmung.

Die experimentelle Tatsache, daß der Tensorpolarisationseffekte enthaltende Asymmetrieparameter B klein ist, und die theoretische Begebenheit, daß die Rechnungen von

- 5 -

SATCHLER Tensorkomponenten T_{2k} von der Größenordnung von 10^{-2} ergeben, veranlaßten uns, eine Absolutbestimmung der Deuteronenvektorpolarisation (i T_{11}) durchzuführen. Vernachlässigt man nämlich die Tensorpolarisations-Komponenten (T_{2k}) in (2), so nehmen die Asymmetrieparameter A und B die gleiche Form

$$A = 2 \langle iT_{11} \rangle_1 \cdot \langle iT_{11} \rangle_2$$
(3)
$$B = 0$$

an wie bei der Doppelstreuung von Nukleonen. Mit diesen Annahmen kann ein Eichexperiment für die Deuteronenvektorpolarisation durchgeführt werden, wie es SCOTT ⁵⁾ erstmalig zur Eichung von Protonenpolarisationen verwendete. Ziel dieser Methode ist, die Vektorpolarisation selbst und nicht nur Produkte von Vektorpolarisationen zu bestimmen. Diese Bestimmung gelingt nun mit Hilfe von 3 kombinierten Einzelexperimenten, die in Fig. 5 schematisch dargestellt sind:

Im 1. Teilexperiment beträgt die Primärenergie der einfallenden Deuteronen 51 MeV, die Sekundärenergie nur noch 46 MeV. Der auftretende Energieverlust wird verursacht durch Targetabsorption und elastischen Rückstoß. Beide Streuwinkel Θ_1 und Θ_2 betragen 39° im Schwerpunktssystem. Gemessen wird das Produkt $A_1 = 2 \langle iT_{11} \rangle_1 \langle iT_{11} \rangle_2$, gebildet aus den Vektorpolarisationen am 1. und 2. Kohlenstoff-Target.

In einem 2. Experiment wird nun die Primärenergie mit einem Be-Absorber auf 46 MeV abgebremst, um jetzt am 1. Streuzentrum die gleichen Energieverhältnisse zu haben wie im obigen Experiment am 2. Target. Gemessen wird das Polarisationsprodukt A₂.

- 6 -

Im letzten Teilexperiment wird die Energie des Sekundärstrahles auf 41 MeV mit Hilfe eines geeigneten Al-Absorbers abgebremst und damit das Produkt A_z erhalten.

Aus diesen 3 Meßgrößen A_1 , A_2 und A_3 lassen sich nun die einzelnen Vektorpolarisationsgrößen eliminieren, und man erhält z.B. für $E_1 = 51$ MeV und $\Theta_1 = 39^{\circ}$

$$(iT_{11})_1 = \pm \sqrt{A_1 A_3 / 2A_2},$$
 (4)

der bis auf das Vorzeichen durch die Meßgrößen A₁ bis A₃ bestimmt ist. Die beiden anderen Vektorpolarisationen erhält man durch zyklische Vertauschung der Indices. Damit kann man jetzt die Asymmetriemessungen für die Primärwinkel $\Theta_1 = 39^\circ$ und 58° eichen und die Winkelverteilungen der Deuteronenvektorpolarisation für 41 und 46 MeV aufzeichnen. Diese Ergebnisse werden in den folgenden Figuren gezeigt.

Die Figur 6 zeigt die Vektorpolarisation i T_{11} für 41 MeV aufgetragen über den Streuwinkel $\Theta_{\rm CM}$ im Schwerpunktssystem. Bei dieser Energie werden Vektorpolarisationswerte bis ca. 0,2 gewonnen. Dabei wurde das Vorzeichen - entsprechend der Basler Konvention - aus den berechneten Potentialkurven 1, 2' und 3 von SATCHLER $^{(2),6)}$ entnommen. Die Potentialkurven 1 und 3 unterscheiden sich nur gering in ihrem Verlauf. Variiert wurde im wesentlichen die Tiefe V des Zentralpotentials von 86 auf 92 MeV und das Spin-Bahn-Potential V_s von 4,2 auf 6,8 MeV. Dagegen wurde bei der Potentialkurve 2' die geometrischen Parameter des Spin-Bahn-Potentials r um 25 % und a_s, die Diffusität, um 50 % verringert, in Übereinstimmung mit neueren Ergebnissen von SCHWANDT und HÄBERLI 7). Kurve 2' gibt den Verlauf des ausgeprägten Polarisationsmaximums bei 40° recht gut wieder. Jedoch für andere Winkelbereiche wird der Verlauf der Meßkurve nur qualitativ wiedergegeben.

- 7 -

Die Figur 7 zeigt die gleiche Darstellung für eine Deuteronenenergie von 46 MeV. Hier ist der Eichmeßpunkt bei 38° (kleinerer stat. Fehler) mit eingezeichnet. Er bestätigt die Reproduzierbarkeit der Meßergebnisse. Aus dem Verlauf der Meßkurve erkennt man auch bei dieser Energie ein deutliches negatives Polarisationsmaximum bei etwa 43° und ein positives Maximum bei 58°, die beide für Kohlenstoff als Analysator interessant sind. (In Fig. 7 sind die Bezeichnungen 1 und 2' der Potentialkurven zu vertauschen).

Die Figur 8 faßt die Energieabhängigkeit der Vektorpolarisation iT₁₁ für zwei Streuwinkel zusammen. Man erkennt in dem oberen Bild ($\theta_{\rm CM} = 58^{\circ}$) eine erstaunlich große Energieabhängigkeit der Vektorpolarisation, und zwar nimmt die Deuteronenvektorpolarisation mit wachsender Energie zu. Bei 51 MeV erhält man einen recht hohen Vektorpolarisationswert von $iT_{11} = 0,45 \pm 0,045$. Das entspricht einem Polarisationsgrad von etwa 52 % des mit reiner Vektorpolarisation verträglichen Maximalwertes. Dagegen bleibt die Vektorpolarisation bei einem Streuwinkel von 39° (unteres Bild) nahezu konstant. Auch ist die Absolutgröße der Vektorpolarisation relativ klein (ca. 0,2). Die theoretischen Potentialkurven 1,2' und 3 spiegeln dieses Verhalten im unteren Bild qualitativ wieder, dagegen zeigt im oberen Bild nur Pot. Kurve 2' eine deutliche Energieabhängigkeit der Vektorpolarisation mit der richtigen Tendenz.

Zusammenfassung: Die Ergebnisse der beschriebenen Experimente lassen sich folgendermaßen zusammenfassen:

1. Die Tensorpolarisationseffekte bleiben bei einer Deuteronenenergie von 41 bis 51 MeV in einem Winkelbereich bis 60[°] vernachlässigbar klein.

- 2. Die Deuteronenvektorpolarisation zeigt starke Winkelabhängigkeit und eine unterschiedlich starke Energieabhängigkeit.
- 3. Der Vergleich unserer Meßkurven mit den theoretischen Berechnungen nach einer optischen Modell-Analyse zeigt nur qualitative Übereinstimmung. Weitere optische Potentialrechnungen sind zur quantitativen Interpretation unserer Meßergebnisse notwendig. Ergebnisse vorangegangener Messungen wurden bereits mitgeteilt⁸⁾.

Literatur

- 1) W. Lakin, Phys. Rev. 98(1954)139
- 2) G. R. Satchler, private Mitteilung
- 3) U. Schmidt-Rohr u. Mitarbeiter, Nucl. Phys. A111(1968)265,
 U. Schmidt-Rohr, private Mitteilung
- 4) H. Brückmann u. Mitarbeiter, private Mitteilung
- 5) M. J. Scott, Phys. Rev. 110(1958)1398
- 6) G. R. Satchler, Nucl. Phys. 85(1966)273
- 7) P. Schwandt und W. Haeberli, Nucl. Phys. A123(1969)401
- 8) E. Seibt, Ch. Weddigen und K. Weigele, Phys. Lett. B27 (1968)567

Legenden zu den Figuren

- Figur 1: Prinzip der Doppelstreuung von Deuteronen, dargestellt in den Streuebenen \mathcal{E}_1 und \mathcal{E}_2 mit 1. Target (Polarisator) und 2. Target (Analysator). E_1 bzw. 2 Energie des einfallenden bzw. gestreuten Strahles, Θ_1 bzw. 2 Primär- bzw. Sekundärstreuwinkel, Koordinatensystem x, y, z mit Streunormalen n₁ und n₂ (Basler Konvention). n₂ ist dabei um den Azimutwinkel Ø gegenüber n₁ gedreht. $d \mathbf{6}/d \mathbf{\Omega}(E_2, \Theta_2)$ bezeichnet den differentiellen Wirkungsquerschnitt des sekundär gestreuten Strahles, A und B sind die zu messenden Asymmetrieparameter.
- Figur 2: Aufbau der Doppelstreuapparatur (schematisch). L1, L2, Q1 bis Q4 sind magnetische Quadrupollinsen, S1 und S2 in den Strahl ein- und ausklappbare Szintillationsschirme, T1 bzw. T2 Target 1 und 2, C1 und C2 die Zählerteleskope 1 bzw. 2, M₁, M₂, M₃ die an der Streukammer 2 befestigten Monitoren, FK-Faraday-Käfig mit Betonabschirmung A.
- Figur 3: Ansicht der rotierbaren 2. Streukammer in der Position $\emptyset = 45^{\circ}$. Innen Zählerteleskop 1 und 2. Teleskopkammer 1 ist geöffnet, sichtbar sind die elektronischen Elemente wie Verstärker und Emitterfolger. Links neben der Streukammermitte die strahldefinierende Konusblende. Oben der Streukammerdeckel mit Targethalterung und einer Anti-Streublende.
- Figur 4: Darstellung der Asymmetrieparameter A und B in Abhängigkeit vom Sekundärstreuwinkel Θ_{2CM}.

- Fig. 5: Schematische Darstellung des Eichexperimentes mit seinen Meßgrößen A₁, A₂ und A₃.
- Figur 6: Winkelabhängigkeit der Deuteronenvektorpolarisation iT₁₁ bei 41 MeV. Eingezeichnete Kurven sind theoretische Potentialkurven 1, 2' und 3. Angegebene Potentialparameter: V₀, V_s Tiefen des Zentral- bzw. Spin-Bahn-Potentials; r_s, a_s geometrische Parameter des Spin-Bahn-Potentials.
- Figur 7: Winkelabhängigkeit der Deuteronenvektorpolarisation iT₁₁ bei 46 MeV mit theoretischen Potentialkurven 1, 2' und 3. (Die Potentialbezeichnungen 1 und 2' sind zu vertauschen).
- Figur 8: Energieabhängigkeit der Deuteronenvektorpolarisation iT₁₁ für 39 und 58⁰ mit theoretischen Potentialkurven 1, 2' und 3.

Doppelstreuung von Deuteronen

$$\frac{d\sigma}{d\Omega} (E_2, \Theta_2) \sim 1 + A \cdot \cos \phi + B \cdot \cos 2\phi$$

$$A (E, \Theta) = 2 \frac{\langle iT_{11} \rangle_1 \langle iT_{11} \rangle_2 - \langle T_{21} \rangle_1 \langle T_{21} \rangle_2}{1 + \langle T_{20} \rangle_1 \langle T_{20} \rangle_2}$$

$$B (E, \Theta) = 2 \frac{\langle T_{22} \rangle_1 \langle T_{22} \rangle_2}{1 + \langle T_{20} \rangle_1 \langle T_{20} \rangle_2}$$
Fig.1

Eichexperiment ¹²C(d,d)¹²C

 $(iT_{11})_1 = \pm \sqrt{A_1 A_3 / 2A_2}$

Fig.5

- 16 -

- 19 -