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Im Rehmen der Untersuchungen zur instrumentierten Spaltstoffflulkontrolle

wird das Problem der Erstellung einer Mengenbilanz in einer kerntechnischen
Anlage behandelt. Im Gegensatz zu frilheren Arbeiten, in denen nur eine Inven=-
turperiode betrachtet wurde, wird der Fall einer Folge von Inventurperioden
betrachtet, bei denen eine Reihe von neuen Parametern eine Rolle spielen, wie
zum Beispiel der Startwert des Inventars flir eine neue Inventurperiode, die
verschiedenen Moglichkeiten zur Definition der Entdeckungswahrscheinlichkeit,
die Strategie des Betreibers sowie das Konzept der Entdeckungszeit. Im ersten
Teil werden diese Fragen analytisch behandelt. Da die Mdglichkeiten der analy-
tischen Behandlung jedoch beschrénkt sind, werden im zweiten Teil Simulations-
rechnungen fiir eine realistische Aufarbeitungs-~ bzw. Fabrikationsanlage durch-
gefiihrt, an Hand derer der EinfluB der Wahl des Startwertes sowie der Betreiber-
strategie auf die Entdeckungswahrscheinlichkeit bzw. Entdeckungszeit untersucht

wird.

In the framework of the analysis of an instrumented safeguards system the
problem of the establishment of a material balance in a nuclear facility is
treated. Contrary to former papers in which only one inventory period was
considered, the case of a sequence of inventory periods is considered., Here,

a number of new parameters is important, for example the way of estimating
the inventory at the beginning of a new inventory period, the different possi=-
bilities for the definition of the probability of detection, the strategy of
the operator and the concept of the detection time. In the first part these
questions are treated analytically. As the possibilities for the analytical
treatment are limited, in the second part a reprocessing plant and a fabri-

cation plant are simulated on the computer. With the help of these simulations

.
x

ot

the influence of the choic he starting inventory and the strategy of the

o
[0}

operastor on the probability of detection and on the detection time are inve-

stigated.
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RELATIONS BETWEEN RELEVANT PARAMETERS FOR
INSPECTION PROCEDURES

by
R. Avenhaus, W. Gmelin, D, Gupta, H. Winter

Institut fiir Angewandte Reaktorphysik
Kernforschungszentrum Karlsruhe

Germany

Introduction

One of the most important safeguards measures in any safeguards system is

the establishment of a material balance. Only this measure permits fulfilment
of the safeguards objective namely, detection in case of a diversion, in a
quantifiable manner., The prevention of a diversion can also be achieved

implicitely by varying the time of establishing a material balance.

In the case of a single inventory period in which a material balance has

been completed, the possible statistical statements, mainly the probability
of detection have already been investigated / 1, 2, 3 _/. The optimisation
problem becomes mﬁch more complex if the more realistic case of a sequence of
inventory periods is taken up for investigation. In that case & number of new
parameters have to be considered., One of them is the method of estimation

of the start inventory for the subsequent material balance period. It may be
based on the book invéntory, on the measured inventory and finally, on a
linear combination ©f the two according to the maximum likelihood method.

The chosen method influences the probability of detection which has been shown

to be one of the important parameters for optimisation of safeguards systems.

Another important parameter is the strategies of diversion which have to be

assumed in determining the ppobability of detection,

A new aspect in considering the sequence of inventory periods is the detection
time, It is important to note that for the proper design of an effective

safeguards system not only the amount of diversion, but the time taken to detect
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a diversion after it has taken place has also to be taken into consideration.

In the present paper, & number of technical parameters have been chosen
for analysis which would influence the probability of detection and the
detection time for a sequence of inventory periods. They are, the method
of estimation for start inventory, errors in throughput and inventory

measurements, diversion strategies and the number of inventories in a year,

In the first part of this paper, the problems have been treated analytically.
Anslytical expressions for the probability of diversion for different estimation
methods and strategies of diversion have been developed. It has been shown that

the detection time which is a random varisble can also be expressed analytically

with certain restrictions.

As the possibilities of such analytical investigations are somewhat limited,
the same type of analyses have been carried out in the second part by simu-
lating these parameters in a digital computer, For this purpose a typicel re-
processing and a fabrication plant have been considered. These simulations

may be considered equivalent to measurement experience in actual plants as

all the random events occuring in reality, have been incorporated in these
simulations. The results of these simulations have been analysed with respect
to the influence of the sbove mentioned technical parameters on the probability

of detection and the detection time.



Part 1

Analytical Investigation of the Probability of
Detection and the Detection Time for a Sequence
of Inventory Determinations

I.1 Sequence of Inventory Determinations

In a nuclear facility, physical inventory taking may take place at the time
tn and tnﬂ for establishing & material balance. The difference between the

input and output measurements during the time interval (t tn+1) together with

]
the in-plant fissile material inventory at tn gives the sz called book inventory
Jn+1' Because of thg measurement errers, J ., is a random variable, the variance
of it is given by OJB+1. Let the ghysical inventory taken at the time 1:!”_1 be
I 41> 8nd the variance of it be o7 e A sequencte of inventory determinations will
be considered in which the input aﬁaioutput of the facility between two subseguent
inventories is approximately the same. Therefore, the variances of the input
and output measurements between two subsequent inventories are slways the same:
02. Also, the physical inventory has been assumed to be approximately the same
when the inventory is taken, so that 0§h= 0§£ﬁlf the values of J, . and I .
do not differ significantly, the problem arises as to the choice of the value

for the starting inventory for the next time interval.
1.2 Estimation of the Starting Inventory

Three theoretical possibilities exist for the estimation of the starting

inventory:

. In+1 will be taken as the estimmator, This is the most natural

1 1
choice because I gives the actual value of the inventory.

2. Jn+1 will be tmken as the estimator. This may be reasonable
in case the physical inventory is rather inaccurate compared to

the book inventory.




3. A combination of 1,41 804 J ., will be taken a&s the estimator.,
In this paper a linear combination of J and I denoted as S,
will be chosen in such a way that the variance for the linear combination
will be smaller than the variances of the either, This procedure, based
on the maximum likelihood method has also been suggested by K. Stewart

of Battelle Northwest, Laboratories, USA,

The use of the first and the second case does not give any difficulty, where-
as the application of the third case is associated with a number of analytical

problems which require attention,
Let the linear combination S be given by (K = const)
S=K*J+ (1-K)I (1.1)

If it is assumed that J and I are independent (which is normally the case),

the variance of S is given by

2 2 22 -
oy = K20J+ (1-K) ol (1.2)
2 . L.
GS 1s minimum for
02
K = —é———I-E-—-— (1-3)
o_+0
I J

Substituting this value of K in eqn. (1.1) the value of S is given by

J I
2 *02
5= —Ld (1.%)
1 1
2 +02
J I
. 2 . .
The variance Og of S is given by
1
= e = (1.5)
o
% °s I
. 2 ey .
Egn. (1.5) shows that Ug is less than both 0§ and GI' Furthermore it is

. . . . - . 2 .
seen that J and I are weighted according to their variances, i.e. 1f GJ is

very small then S =J and vice versa,
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I.3 Propagation of the Variances with Time

1.3.1 Physical Inventory as Estimator

In this case

S1 =1 =1
n n

Therefore, the variance of S; is

2 2

1.3.2 Book Inventory as Estimater

Here,

where

bg = Jn—Jn—l

Therefore the variance of Si is

1.3.3 Maximum Likelihood Estimation

Here,
Jn In
";E *d-z"
S2 - Jn I
n 1 + 1
.2 2
(o] U
Jn I

The inverse of the corresponding variance is

11 1
2 - 2 + 2
s J I
n n
or
1 1 1
0'2 B 02 ' 02 +
S I s 7%

(1.6)

(1.7)

(1.8)




¥ith the abbreviations
2 2
o; = b; g, =¢ (1.9)

from (1.8) the following recursion formula is obtained

—:ﬁ-— = % + “-:-L-:— (1,10)
Y c+oL

S S

n n=1

The boundary condition is

2

2 _ 2 _
og =og fort =t (1.11)
n o]

Properties of the recursion formula (1.10)

. . . 2 . .
a) The asymptotic value of 02 , Which 1is denoted by OS’ 1s given by

S
n
; = % + 12 (1.12)
OS C+US
or
2 C c2 %
0o = == + (¥ + be) (1.13)

(the second solution is meaningless as <0)

b) The following statement can be made:

2. 2 2 )
for o5 > 05, Og decreases contipuously

o n

2 2 2 :
for o, = o, Og is constant

“o T n

2 2 2 . .
for GS < OS’ OS increases continuously

o n

This statement the proof of which is given in Appendix I is
illustrated in Fig. I-1 to clarify its meaning. If the starting

value qi forthe series of variances cé be higher (lower) than the
e
(o) "

asymptotic value oz, then the series converges monotoneously
1 %4

towards oi from sbove (below).



Differential equation

The recursion formulal(1¢10) can be expressed in the following form

bc+bcg
2 n-1
9% = 2
n b+c+oS
n-1l
or in the form
2
o - o bc-cog -(02 )
n n-1 _ n-1 n-1 (1.14)
n-(n=-1) b+c+0

This difference equation can be approximated by a differential eqn.:

2 2
2 0Sn cSn-1 dy
Oy * Y5 BX; Mﬁ;ﬂ;TT_»dx (1.15)

n

with this, the eqn. (1.14) can be expressed in the following form

_dy o yoeey-be (1.16)
dx y+b+c

The properties of the differential egq. (1.16) and its sclution have

been discussed in Appendix II.

In Fig. I-5, the results of the recursion formula (1.10) and the
differential equation (1.16) have been shown. The following input
data for the measurements in a hypothetical nuclear facility have

been used:

Throughput / kg Pu/d / 2
2

Process inventory lfkg Pq;7

Rel.St.dev/throughput measurement [f%;7 (Min) (Med) (High)
T 0.1 0.5 2.5
Rel.St.dev/inventory measurement / %/ 1 5 25




The resulting values of c (cumulative variance for the throughput measure-
ment) and b (variance for inventory), for a total throughput of 500 kg

Pu, as a function of the number of inventories, are shown below

No. of inventories%wA b ¢ !
Low : Med. High  Low | Med. : High

10 0.0k 1 25, 1,99 107* 0.00k9 ' 0.125

5 0.0b 1 25, 3.98 107" 0.0008 0.2k9

1 0.0b . 1 25, 19.9 107 - 0.0490 1.2k46

The curves in Fig. I-~5 show a number of interesting points:

a) There is a good agreement between the results obtained from

recursion formula (1.10) and the differential egn. (1.16).

b) Both the curves (one Y,> ¥, and the other y < y1) show the trends

predicted earlier (compare Figs. I-1, I-k).

c¢) A comparison of the two estimation methods namely the book inven-
tory (1) and the maximum-likelihood method (2) has been made in
the lower part of Fig. I-5. In the case of 1, the variance of the
estimated value increases linearly according to the relation Y tr- ¢,
whereas, that in the case of 2 decreases continuously, with an

increasing number of inventories/ yr.



I.4 Probability of Detection

I.4.1 Definition of the Probsbility of Detection in the Case of a

Sequence of Inventory Determinations

It has been pointed out earlier Zf1,2,3;7,that the probability of detection
plays a key role as it may be used as a criterion for the effectiveness of
any safeguards measure. In the case of several inventory determinations
logically a number of different possibilities for the definition of the pro-
bability of detection may be worked out. (This problem did not exist in the

case of only one inventory determination.)

First possibility: 1pr(E/mo) is the probability to detect a diversion for the

first time after the r—-th inventory, if between the O-th and the r-th inven-
tory the amount m_ of fissile material will be diverted. The notation p(E/mo)
for the probability of detection is chosen to indicste that it is the proba-

bility of detection under the condition that m will be diverted.

P 2 . .o . .
Second possibility: pr(E/mo) 1s the probability to detect & diversion up

to the r-th inventory at least once, if between the O~th and the r-th

inventory the amount m of fissile material will be diverted.

Third possibility: 3pr(E/mo) is the probability to detect a diversion after
the r-th inventory irrespective of what has happenéd in former inventory de-

terminations, if between the O~th and the r—th inventory the amount m of

fissile material will be diverted.

Let pr be the probsbility that a diversion 1s detected after the r-th.inven-—
tory, then (for independent p")

1pr(E/mo) = (1-p")(1-p") ... (1-p" )" (1,17)
4 r
T (E/m) = 1-(1-p") (1p°) ... (1-p7) = 2= [ (2-p")
v=1
(1.18)
3pr(E/mo) = pr
(1.19)

In this paper for the rest of the first part, only the third definition of the
probability of detection will be used. It will be denoted simply by pr.
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I.4.2 Calculation of the Probability of Detection for Different Strategies

of Diversion

In the case of a single inventory determination, the strategy of divers%on -

for example single diversion of m kg Pu or n-times the diversion of Eg-kg Pu -
has no influence on the probability of detection. For several inventories

the probability of detection pr depends on the strategy of diversion, As an

example two cases have been considered here:

Case I: The same fraction of the amount m will be diverted uniformly during

. . ] n . . .
each inventory period, i.e. the amount -2 will be diverted per inventory

. . . k . . .
periocd so that after r i1nventories the total amount of diverted material will

]
b o
e r

Case II: The amount m will be diverted at one time between the r-1'th and

the r'th inventory.

It is evident that the way, how the starting inventory for the next period
is estimated after an inventory, has also a great influence on the probability
of detection. All the three methods of estimation discussed in part I.2 have

to be considered.

m
Case I It is assumed that the amount Eg‘is diverted in each interval,
Measured inventory (I) as the estimator: In this case if no detection

of a diversion takes place after an inventory taking the measured value of
the inventory I will be taken as the estimater, with the assumption
that no diversion has taken place. The following relation will then be valid

for the difference of the expectation values EJr,EIr:

m
EJ - EI_ = > (1.20)
r r k
The variance is given by
2 P4 2 2
o - = .21
(Jr Ir) o1 + 0, 4+ UI (1 )

let g be the threshold value for the difference d=Jr--Ir beyond which the
inspector declares a diversion. Then the corresponding probability of error @

is given by
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a=1-9 (g) (1.22)

m
The probability of detection for the amount r ° £9 assumed to be diverted

is then

m
- .
o (B/mn) = drEem - 6) (1.23)
(0 +200)7
Book inventory (J) as the estimator: The following relation is valid

for the difference of the expectation values after the rth inventory

m
= p o 2
EJ -EI_=r * ¢ (1,24)
o]
Letog be the variance of the estimator at the beginning. The variance
for Jr-Ir is then given by:
02(J -I ) = o° + re 02 + 02 (1.25)
r°r o A I
and the probability of detection n
r xR 1
P S (E/m ) = ¢ ~ 5 (1-26)
12 Q (0_2+ 02*0_L)2
o T T T
Maximum-likelihood value: Let the estimator of the inventory st
2
the beginning i.e. t = to be So with the variance -
Mo
lst inventory: Jl’ Il; EJl-EIl = P
No diversion is detected. The estimator S is then given by
J I
1 1 1 1 1
8, = ( + ~ ) 3 N, = ===+ —x (1.27)
1 Nl 0J2 oIL 1 oJ2 012
1 1
The expectation value of this S is then
m
[} 2
EI,. + — EI m o
1 17k 1, _ o %1
By =g (5o ¥ ) =E v 55 = ELD
1 Jl I cI+oJ
1 (1.28)

eqn. (1.28) shows that the true value of the inventory will be
. . . 2
estimated a little too high by the amount D, (for o +0 : Dl-*O)
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2nd inventory: J2 = S1+ AT, 12
m
EJ -EI, = =— + D
2 2 k 1

Again no diversion is detected. The estimator

by
¢ =1 (2, T,
2 "N, o2 o2
Y2 I

The expectation value of the 82 is

o m
- . __ L %o
ES, = EI*D, 3 D, = 55 (k + Dl)
9+
2
nth inventory: Jn =85 17 AJ, In
oo
- = — 4
EJn EIn k Dn-l

Dn is given by the following recursion formula:

O’i m
o)
= — +
Pn =22 (% *Dpp)
I J
n
where
QJZ =0 © 402
n S A
n-1

(1.29)

82 will then be given

(1.30)

(1.37)

(1.32)

(1.33)

02 has been discussed in section two of this chapter.

S
n

The probability of detection for this case is given by

EQ.+ D 1
k r=
(E/m ) = ¢ =g
o (62+02 )% )

1 4Jd
r

r
P13

(1.3h4)
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Case II It is assumed that the amount m will be diverted between the
r~1'th and the r'th inventory. The probabilities of detection for the three

possibilities of estimatops are given below.

Measured inventory (I) as the estimator: In this case also the

same expression as in the first case is obtained excepting that the

the total amount mo has to be used.

, n ‘

r o &
(°A+2°I)2

Book inventory (J) as the estimator: In this case the same

expression is obtained as in the first case (1.32) excepting that the

m
=2 , has to be introduced

total amount of m instead of r m

r ' 2 &
Py (E/m) =¢( CRNENE) -g) (1.36)
(oo+r-cA+cI)

o} k-

Maximum=likelihood value: In this case all the values (inventories I

and estimators S) are the same as their expectation values up to
the r-l1th inventory. Only after the rth inventory the relation EJr-EIr =m
is valid. With this, the probability of detection is given by

m
r =¢f ————O
g1 2

I.4.3 Numerical Examples

Some typical numerical examples have been discussed in this section to inve-
stigate the different analytical expressions developed and discussed in the

previous sections of this part.

I.4.3.1 Parametric Study for the Probability of Detection

Figs. I~6 and I~-T show how the probability of detection is influenced by
the estimation methods used for the starting inventory (measured inventory 1;
book inventory 2; maximum likelihood 3). It is to be noted that instead of the

function pr(E/mo) the argument Xuv in the eqn.




wfl-

B (B/m)) = ¢ (X,,)

has been plotted against the number of inventories/yr. For the purpose of

comparison this is adequate as p is the monotonous function of Xy
The following data have been used in generating these curves:

Throughput lfkg Pu/yp;7 279 kg
Process inventory kag Pq;7 20 kg
Rel.st.dev./throughput measurement 17247 0.0638; 0.3k45; 1.72

Rel.st.dev./inventory measurement / % / 1 5 10

The calculated values of b and ¢ are given below

No. of inventories ) ,WWWW?”Wp"; L c
Low Med. High Low Med. High
12 0.0k 1. 4. 0.0495 1078 0.000128 | 0.00317
0.0k 1. b, 0.0848 - 107 0.000219 | 0.00543
0.0k 1. L, 0.5940 - 107k 0.001536 |0.03876

In both the figures three sets of combinations of b and ¢ have been considered.
m

Fig. I-6 corresponds to case I ( Eg-amount assumed to be diverted uniformly

during each inventory period) and Fig. I-T7 to case II (mo assumed to be

diverted once between the r-lth and the rth inventory). In both the cases

m_ was assumed to be = 5 kg/yr.

The following points are worth noting from the two curves:

a) The estimation method 1 (measured inventory) is found to be the worst
of the three methods. The main reason is the fact that with this method
only a diversion which has happened during an inventory period can be
detected. A diversion which could have happened in the previous inven-
tory period is not considered. Besides this, the variance associated with
the measured inventory is considerably higher than that for the throughput
measurements. This fact reduces the probability of detection of a given

amount for this method.
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b) For continuous diversion, case I (Fig. I~6), the methods 2 and 3
appear to be comparably good for the set of conditions considered
here. For high accuracy in inventory measurement (bmin) the 3 becomes
less effective than 2 with increasing number of inventories. Because
of the high accuracy of inventory measurement, the estimated value
gets a higher weightage from the inventory measurement as a result of
which a part of the diverted amount in the previous inventory periods

is ignored.

¢) For case II (Fig. I-7), the estimation methods 2 and 3 appear equivalent

in their quality with respect to the probability of detection.

I.4,3.2 Accumulation of the Amounts of Diverted Material in Different

Inventory Periods

Fig. I-8 shows how the summation of the diverted asmounts in the previous
inventory periods are taken into consideration by the three estimation methods
1, 2 and 3. The same campaign data as in the case of Figs. I-6 and I-T have
been used in this case. The upper curve is for 12 inventories/yr. The lower

curve is for 7 inventories/yr.

It may be noted that in 2 (book inventory) the sum of tle actual amounts diver=
ted ( r '~§9 ) is taken into consideration, whereas for 3 (maximum likelihood)
the amount diverted tends to an asymptotic value which is lower than the sum

of the amounts diverted. This fact is described by the recursion formula 1,32,
Dn is the fraction of the amount gg-(which has been diverted in the (n—l)th

interval) taken into consideration for the nth inventory determination.

In this particular case, the amount Dn reaches an asymptoticvalue of around
1.28 kg for a total diverted amount of 5 kg for the naximum likelihood method,
In case 1, only the amount diverted during a single inventory period is con-

sidered and it is reduced tc zero after each inventory period.

I.5 Mean Time of Detection

I.5.1 General Formula

As mentioned in the beginning, it is important to know the mean time of
detection of a diversion as a function of the important parameters (variances,

error probability etc.). This mean detection time again depends on the strategy
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of the operator; in this section only the strategy of continuous diversion

(case I, section I.h,2) will be studied.

The "mean time of detection" can be calculated in the following way:

Let the random variable 'I’d (detection time) be the number of inventories
which 18 necessary to detect a diversion for the first time. pr is the
probebility that after the r=-th inventory a diversion is detected. Then (for
. r

independent p” )

1
P

p(T;=1)

(l-pl)p2

o]
)
i
=
fl

r-1,.r
)

(1=p ) (1-p°) ... (1-p* ")p

p(Td=r)

The mean detection time ETd is defined as the expectation value of the random

BT, = } : re p('I‘d=r)

r=1

variable Td:

or
B = r(1-p')(1-p%) ... (1=p™ Dp¥ (1.38)
r=1

This general formula can only be treated analytically in special cases.

I.5.2 BSpecial Case

In the case that the physical inventory is taken as the estimation value for
the starting inventory, the probability pr (in the case of continuous and

constant diversion) is independent of r! pr=p. Therefore from (1.38)

r-1 1
ETd = 2 r(l-p) »p== (1.39)
r=1 p
In a similar way, the variance of the random variable Td can be calculated.
One obtains
varT, = 2R (1.Lk0)

d 2
Y
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According to (1.23), the mean time of detection ET, is given by

d

_ 1
BT, = - (1.51)

ez 9
) 2 2
(c;+201)%‘

From (1.41) one has for m = 0, that is in case of no diversion:

- 1 1
By =387 © T=e(e)

or with (1.22)

BT =
a

d (1.42)

This means, that also in the case of no diversion on an average a "detection"
will take place after-% inventories. It should be pointed out that in such cases

a wrong decision can be avoided by chosing suitable action levels.

In Fig. I-9 the mean time of detection and the probability of diversion have

been shown as a function of m_/k. As an example the case c_ ./b_. with 12 inven=-
o] ned’ min

tories of section I.4.3 has been selected. This figure shows that in the case

of no diversion (probability of error a= 2,5 %) on an average after 40 inven-

tories a "detection" will take place. With increasing mo/k the mean detection

time tends to 1 very quickly. A diversion of 500 g Pu between two inventories

will be detected on an average after 2 inventory determinations in this particular

case.

As mentiored in I.5,1, an analytical expression for the mean time of detection

can be obtained only for very restricted cases.

The relationship between the mean time of detection, the prcbability of de-
tection, the measuring accuracy and the error probability, is very important
for effectivity considerations. In the cases where analytical solutions
cannot be given another approach consists in simulating a campaign and inve=-
stigating this problem in the framework of a parameter study. This is carried

out in the secondé part of the present paper.




Part II

Digital Simulation of Measuring Processes in

Typical Nuclear Facilities and Analysis of

Simulation Resulis

In this part complete measurement experiments in two typical nuclear
facilities have been simulated with a digital computer. The purpose of such
simulations is firstly to investigate and analyse the interdependence of
different parameters which would influence the quality of a safeguards system
and secondly to determine the numerical values of such parameters (e.g. of the
detection time) in more complex cases which can only be determined by analytical

methods under certain, rather simplifying assumptions.

II.1 Assumptions, definitions end methods used

II.1.1 Assumptions and definitions

Although most of the terms which are used frequently in this part have
been defined in part I, the most important of these terms are summarized

below for ready reference.

II.1.1.1 Basis for inspector's statement

The inspector makes his statement with regard to a diversion on the basis of

two sets of measured values i.e. the book and the physical inventory.

a) He calculates the book inventory T with the corresponding variance o§ on

the basis of ©

b) He measures the physical inventory T at t, with the corresponding variance

. - i
ai and adds to that the inventory S estimated to be present in the

plant at t, with the corresponding variance ag.

1

The estimated value @ (MUF) is then given by

V)
d=T-T+8 (2.1)

with the corresponding variance

d J I 8



—19—

As well known, MUF mey consist of different components as diversion, biased
measurements, mal operation etc. However it is assumed in this paper, that

the only components of MUF are diversion and fluctuations on account of the
random nature of the measurements. Furthermore it is assumed, that the measur-~

ing errors are normally distributed. Then the inspector makes the following
alternative statements:

ooy

Alternative results Statement

g2 Oq * &g Material has been diverted
A . .

da < 03 "81uq No diversion has taken place

where 81mg is connected to the probability of the type I error a by:
1=a = ¢ (g,_,) (see 1.22 in part I)

For the digital simulation an a = 0,025 with the corresponding value of
€1mg = 1,96 has been chosen.

I.1.1.2 Probabilities of detection

Sever&l different possibilities of the definition of a probability of detection
have been investigated in the first part. For the digital simulation the values
according to the three different definitions of the probability of detection
have been calculated.

i, The probability to detect a diversion for the first time at the
r'st inventory taking, which (for mutual independent pl) is given
by (see 1.17)

1 P | i r~1 )
p =p f (1=p') = (1-8,) TBi (2.4)
i=1 i=1
where

Br = the probability of an type II error.

ii. The probability to detect a diversion at the end of a single inventory

period r independent of the preceding inventory periods (see 1.19)

nm
3, = (1) = ¢( 325 = g1 ) (2.5)

= p¥ dp




m. - the amount assumed to be diverted during the

r'th inventory period.

iii. The probability to detect at least once a diversion in r inventory

periods (for mutual independent p ):

X ) g
pFat1- N (1p)= 1=/, (2.6)
i=1 jm1

(see 1.18)

This probability of detection, referred to as cumulative probability
of detection, is highly dependent on the strategy of diversion.

It can easily be shown, that the following inequalities hold:

for all r

In table II-3,Br has been presented, for the three estimation methods for the
standing inventory (see I.2 and II.1,3),

The strategy of a continuous diversion (see I.4.2) has been chosen for the
calculation of 8. as well as for the subsequent digital simulation.

IT.1.1.3 Detection time (Ti)

The probabilities of detection &s defined in part I and in I.1.1.2 of part II
can be calculated a priori for an amount assumed to be diverted. However,

a probability of detection is only one of several parameters which describe
the capability of a system to detect diversions. A further parameter is the
detection time T,, which is a random variable too (see part I). Up till now
the relationship between the detection time and the probabilities of diversion
had not been investigated.

In part I the calculation of Td has been demonstrated for a simple case
vhere the starting values are set to be the results of the inventory measure-
ments and alsc the relationship between the probability of detection and Td

has been investigated.
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For other cases of the starting values the evaluation of Té by
analytical means leads to mathematical difficulties and therefore Tﬁ
had to be simulated.

I,1.2 Meéthods for the generation of data

Fig.

II-1 shows the scheme for the generation of random measurements by

digital simulation. It may be noted that three different random events

have been built into the simulation scheme, These events have been assumed

to occur either sequentually or in parallel.

a)

b}

c)

The throughput and the inventory amounts for the two plants were
found to vary within a certain range as shown in Tables II-1 and
II-2. The true values for the individuel data were generated with
the help of a pseudo random generator assuming that all the values
within the given ranges have equal probabilities of occurance. This
vas done to tske into account the natural variations on the through-

put and the inventory amounts.

The measurement values for the throughput obtained by the inspection
system were generated randomly from & normal distribution which was
constructed around the true values (obtained in a) with the corres-
ponding given wvariances. This procedure was considered adequate to
simulate the randomness of measurement in reality by the inspection

authority.

In the case of inventory measurements,the true values were first
generated from which the amount assumed to be diverted was sub-
tracted. A normal distribution was constructed around the result-
ing value with the corresponding variance (which is & function of

the amount and the accuracy of inventory measurement) and the

measurement values obtained by the inspection authority were simulated

randomly from the normal distribution.




The detection time Td was calculated to be that time interval (G, ti)

in the course of a year, in which a diversion as defined in (I.42) was detected
for the first time during the ith inventory. This part of the simulation was
repeated several times to get an idea on the magnitude of the oscillation in
the values of T,. An estimate for the mean detection time E T3 with the asso-

d
ciated standard deviation ecould then be estimated from this repetitions.

T.1.3 Choice of estimators

All the three variations for choosing the estimators for the initial

inventory, as discussed in chapter I namely,

a) accepting the book value J
b) accepting the measured inventory I

¢) maximum-likelihood estimation

were built in the simulation process. In section II.3.1 the results from these

three variations have been discussed.

II.2 Data on the nueclear facilities considered

A fabrication plant for plutonium containing fuel elements and a reprocessing
plant for irradiated fuel elements from a light water type reactor, have been
used as the basis for simulation. The relevant data are given in Tables II-1

and II-2, The tables are self explanatory.

II.3 Analysis of the results of simulation

Only a small part of the simulation results has been selected here for ana-

lysing the following questions:

3,1 Which method of estimation for the starting inventory should be

selected,

3.2 What are the parameters which influence the propagation of variancech

with time.

3.3 How is the detection time and the probability of detection influenced

by the different parameters considered.

3.4 Importance of the different parameters investigated.
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IZ.3.1 Choiece for the method of estimation

The detection time Td and the cumulative probability of detection PT have
been taken as the two criteria according to which the quality of the three
estimation methods can be tested. In Table II-3, these two parameters have
been listed for the three methods for different throughput measurement errors,
number of inventories/yr and the amount diverted (assumed to be diverted
uniformly throughout the year, case I, part I,) Similar to the conclusion
drawn in section 4, part I, the results in this table show that the method
2 (inventory estimation) is the worst of the three and that the method 1 (book
inventory)and 3 (maximum likelihood method) are equivalent, for the range of
throughput and inventory accuracies, amount diverted and the number of inven-

tories/yr,considered in this paper.

For this reason, all the subsequent figures are based on the method 1. Other
results of the simulation indicate , that the probability of detection is
mainly influenced by the accuracy of the inventory measurement for the range
considered, the probability of detection decreases linearly with increasing
variance in the inventory measurement, The variance in a throughput measurement
has very little influence on the probability of detection for the range of

accuracies and the mode of diversion considered in this paper.

I1,3.2 Propagation of o4 in time

The propagations of the variance o, in the course of a year, for the reprocess-

ing and the fabrication plant discgssed in section 2, are shown in Figs, II-2
and II-4 respectively, The three sets of curves in each of these figures are
for three different values of throughput measurement errors indicated on the
margin of the curves. The upper most set gives very low values, the middle set
gives values which are attainable at present aml the lowest set gives values
which are very high. The parameter in each set is the accuracy of the inventory
measurement. All the relevant data used to generate these curves are given

in Tables II-1 and II-2, Each of these curves are constructed from experimental
values for 1, 6 and 12 inventories/yr. These values are shown as an example

by a cross, a circle and a square respectively, in the upper most set of curves

in Fig. II-2, The rest of the curves is not fitted with these markings.
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Points of interest in Figs, II-2, II-4,

a) The propagation of variance %4 is independent of the number of
inventories carried out in a year, for the ranges of measurement
errors for the throughput and the inventory, considered in the simula-

tion. The slope of almost all the curves is zero, because of b),

b) The absolute value of o is determined mainly by the measurement error
of the inventory, excepting for the lowest curves in the two figures.
In these cases the extremely large errors in the throughput measurements
give equivalent values of variances as those obtained for the inventory
with 1 Z or 0.5 Z accuracies. Only in these two cases 03 increases

linearly with time.

Figs. II-3 and II-5 show the development of oq 28 a function of the overall
throughput measurement variance Op with the accuracy of inventory measurement
as the parameter. They illustrate once more the overwhelming influence of the

accuracy of the inventory measurement on the total variance ga:

a) For 10 Z or 5 7 accuracy an inventory measurement for the reprocessing
plant and 5 7 accuracy for the fabrication plant, the throughput accuracies
can vary by a factor of 25 without significantly influencing the ogq°
Since 94 determines the probability of detection, this means that the
probability of detection is also influenced mainly by the variance of

the inventory measurement in this range.

b) The picture is however changed for an inventory measurement accuracy of
1 % or 0.5 Z. With these accuracies the influence of the errors of

the throughput measurements on 94 cannot be neglected.

I1.3.3 Detection time

In Figs. II-6 and II-7, the detection time Td has been shown as a function

of a number of inventories/yr for the reprocessing and the fabrication plant,
Again, the accuracy of the inventory measurement has been used as the parameter.,
The three sets of curves in each figure correspond to the three levels of
accuracies for throughput measurement indicated in the margin. A diversion of

5 kg has been assumed spread equally over all the inventory periods.



The following trends can be seen in Figs. II-6 and II-7.

a) With the highest accuracy of inventory measurement (1 % or 0,5 Z),
the detection time decreases with increasing inventories/yr up to
a certain number of inventories/yr, after which a further increase

does not bring any improvement in the detection time.

b) With decreasing accuracy in inventory measurement, the detection time
tends to go through a minimum, This may be partly because of the fact
that with the present scheme of diversion, the amount assumed to be
diverted per inventory period gets reduced with increasing number of
inventories/yr. Since 940 which is a direct measure of the detection
probability, is mainly determined by the o (which remains independent
of the number of inventories), and therefore is also independent of the
number of inventories, the probability of detection reduces with inereas-—

ing number of inventories, and therefore the detection time increases.

¢) The lower limit of the detection time is given by the number of inven-
tories/yr. For example, the detection time cannot be less than 0,5 yr
if two inventories (which are assumed to be equidistant) are carried

out per year.

d) Within the range of the accuracies for the inventory measurement considered

here, the detection time appears to be a linear function of the accuracy.

I3.3.4 Importance of the parameters

As mentioned at the beginning three main parameters have been varied in the
present simulation, namely, the accuracy of the inventory taking, the accuracy
of the throughput measurement, and the number of inventory takings/yr. For the
set of conditions considered, the accuracy of the inventory taking appears

to be the most important parameter, as it influences and determines both the
detection time and the detection probability in a very significant manner.

The accuracies of the throughput measurement which are available at present
(the medium level shown in Figs. II-2, 4, 5, 6) appear to be adequate, unless
inventory measurement accuracy is reduced below 1 7 or the inventory amount

is reduced considerably. The number of inventories/yr is also strongly influenced
by the accuracy o the inventory taking. For example for 5 % accuracy in a
reprocessing plant, or 1 7 accuracy in a fabrication plant, a larger number

of inventories/yr than 2, would not give any additional advantage with regard

to the detection time.




Conclusion

A large volume of data has ‘been generated in the present paper both from the
analytical part and from the part on digital simulation, These data permit
a number of generalized conclusions, They are however, valid under the condi~-

tions specified in this paper. These conclusions are to be viewed in relation

to the objectives formulated in the introduction of this paper,

1.

Among the three estimation methods for the starting inventory to be used

for the subsequent material balance, the book inventory and the maximum
likelihood estimate appear to be equivalent both with respect to the
probability of detection amdthe detection time., The method based on measured

inventory is worse than the other two.

The propagation of the total variance for the establishment of material
balance, as a function of time and its absolute value,is almost a unique
function of the variance in the inventory measurement., Only when the variances
of the throughput measurements attain comparable values (the variances

already attainable at present are lower than such values), as those obtained
by inventory measurement, does the throughput variance influence the total

variance,

The detection time is almost a linear function of the stand.deviation of the
inventory measurement. Depending on the absolute value of the inventory
variance, and the amount assumed to be diverted (spread uniformly over

all the inventory period), the detection time as a function of the number

of inventory/yr may go through a minimum, This is however, mainly

because of the mode of diversion assumed for this study.

The cumulative probability of detection falls monotonously with increasing
variance of the inventory measurement for the range of amounts assumed
to be diverted, considered in this study. The variance of the throughput

measurements has negligible influence on the probability of detection.

Thé dominating parameter, which influences and determines the two criteria
for evaluation (probability of detection and the detection time), is the
variance of the inventory measurement. An improvement of the variance by
reducing either the standard deviation for inventory measurement or the
absolute amount of the inventory in a plant, will lead to an improvement

of the probability of detection and the detection time, The standard



deviations for the throughput measurements which are attainable today,
appear adequate,as long as the variance of inventory measurement is

not improved.
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Appendix I

Properties of the recursion formula 1.10

In this appendix, the following statement has been proven. Let 0. be

-
S

]

(=4

5 (

n
defined by the recursion formula 1,10, and let © 1.13):

be defined by

5 iR

2 c ; C 2
s - = 4 —
og >+ (3 be)

Then
2 . 2 2
Oq decreases continuocusly for Og > 0g
“n o
2 . 2 2
o 1s constant for O =0
S S S
n o]
2 . . z 2
Oq increases continuously for O, < US
Frove by induction:
a) - o . "
2 2 2 Z
To be shown ¢ < 6, for 0, > o_ or
S ~ fo S
I (o} o]
1 1 2 &
— > -—  for o. > o
< < s g
o} c o
s 5]
1 o]

. . . . 2 2 . .
as the sign of equality is given for o, = 0, and the sign > 1s

valid for oi > ci. °
Uo [
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b) Conclusion from n-1 to n

Is

The condition og > oé is valid.
n=-1 n

This means

) 2
c+cg c+oS
n=1 n
or
1 1 1 1
st 7o <%t >
c+cS c+oS
n-1 n
or
1 1
—_— <
02 02
Sn Sn+1

Thus the given statement is proven,
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Appendix II

Properties of the differential equation 1.16

In order to discuss the differential eq, (1.16)

2
-8 . Yy *cy-be ‘ (I1.1)
ax y+b+c ,

it is transformed to

dx y+b+c (11.2)
where R 1
c e 2

y, = =5+ (F +be) (11.3)
. L

c 2

Yp = =5~ (3= +ve)
It is to be noted that these are the asymptotic values of Gg correspond-
ing to eqn. (1.13) for the recursion formula (1.10).
The boundary condition is

Yy =Y, for x = 0 (IL.4)

The eqn. {(II.2) can be reduced by partial fraction expansion to the

form
= A, B (11.5)
ay  YTY, N
where 1 1
=+ ¢ =+t
1.2 " o x.1_2 b
A=3+ i,13_;_—3-—————1—;“::-5 (11.6)
(1+h4¢)° (144%)°

The general course of eqn, (II.5) is shown graphically in Fig. I-2,

Integration of eqn. (II.5) gives logarithmic singularities at YqsYpe

The qualitative trend is shown in Fig. I-3.
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Mirroring the Fig, I-3 at the y=x coordinate, the function ¥(x) which

is sought is obtained. This function is represented in Fig. I-lk. The

part of the function which is of interest, is given in the upper right
hand quadrant in the x~y plan (shaded area). Here the same type of trend
is recognizable as in the case of the recursion formula (Fig. I-1). For
a starting value of yé>-y1, the curve falls monotoneously to the asymp-
totic value ¥, and vice versa. Besides this, one obtains the unique solu-

tion Y=y, starting with the value Y =¥» 85 seen from egn. (II.2).

By integration of eq. (II.5) with the boundary condition (II¢l), the

solution is obtained in the following implicit form:

Y=y y=y
Vo> ¥y ¢ A ln 7 = + B ln 7 =y = - X
o "1 0"z .
(II.7)
a1 Yoy B 1 YTy
y<y,: n + n = - X
o 1 Y17 Yo Y2

The slope of the curve at x = O determines the rate at which the curve
approaches the asymptotic value. An analysis of the eqn. (II.1) shows

that the larger the difference between the starting and the asymptotic
value (yo-y1) the faster is the rate at which the curve approaches the

asymptotic value.
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o

[\

¢ (x)

Variance of the inventory measurement
Variance of the flow measurement

Expectation value of difference between estimation value
and true inventory for the maximum likelihood estimate in
case of continuous diversion

Expectation value of the random variable a
Fractile for normal distribution

Physical inventory

Book inventory

Amount of fissile material to be diverted

Probability of detection

Estimation value of the physical inventory
Time

Detection time

Differential equation for the variance of the estimation
value

Boundary condition for y(x)
Asymptotic values of y(x)
Error probability

Variance of the random variable a

Distribution function of the standard normai distribution




Table I-1 :Formulae for probability of detection for different cases
m

Case I: Equal amount of —-E diverted uniformly during each inventory period

Case II : The whole amount m diverted between the r-1lth and the rth inventory

Estimation method]> Case I Case II
. Mo
i i r Y -] X To \
1. Book inventory J will pll(E/mo)= Of 51 8) Py (E/m ) = ¢ —-——E——E—l_*g
be taken for the estimator 0" 410,40 )7 O " +y0f405) 2 /
o 1 o A1
Eqn.no. 3.4 3.16
part I 1
m
L
2. M d inventory I will Pl (E/m )= §[——i— - & E (B ) = oy -
. Measured inventory I wi 12 o 7 7.1 P22 o 162.002) &
be taken for the estimator OA+ZOI) z ( A*2 1)7
Equn.no, 3.7 / 3.17
part I I
m
To, n
. . . X k "r-1 r fo)
3. Maximum-likelihood Py3(E/m )= §f——mm - g pro(Bfm ) = ¢f—-2my - ¢
: o 02+02 - 23 ° o2 +02'Z
estimate 1%5) ( J. 1)
Eqn.no. 3.15 3.18
part I 1
1)

for the clarification of the symbols see text
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1, Data for Throughput Measurements

Data for the Simulation of a Typical Reprocessing Plant

ff

High High
Stream Input Output {active active

waste 1 waste 2
Average amount of 1.4 0.698 0.84 10 3 0.7 1073
Pu/batch / kg/batch /
No.of batches per year 200 400 100 66
Average process inventory | 20 kg Pu
Amount of solution A] 1960 10.8 2806 1400
or ceramic / kg / .
Variation of A, + 200 + 0.04 + 500 + 120
/ kg or 1_7' ) o
Rel. accuracy of 0.06~1.5 0.02-0.5 |1-25 4-100
measurement of A] ,
77
Pu-concentration A, 0.1 10_2 0.873 0.3 10_6 0.5 ].O_6
Lxgl/i [ or /-7
Variation of A, + 0,16 107> |+ 0,005 |+ 0.1 10 |+ 0.3 10~
Rel. accuracy of 0.12-32,0 0.05-0,75}4~100 10-250
measurement of A2
727
Density kag/1;7 1.4 - - -
Variation of density + 0.1 - - -
Rel. accuracy of 0.02-0.5 - - =
measurement _
of density / 7%_/

2, Data for Inventory Measurements
Rel.accuracies in Z : 1,5,10
No.of inventories/yr: 1,2,6,12

3. Amounts assumed to be diverted :1,5,10 kg Pu/yr
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1. Data for Throughput Measurements

e

Data for the Simulation of a Typical Fabrication Plant

Stream Input Output Waste Waste
barrels bottles
-2
Average amount of 4,54 4,28 0.01 0,510
Pu/batch l'kg/batch;7 =
No.of batches per year 400 400 800 200
Average process inventory 80 kg Pu
. -2
Amount ceramic 5:2- 4,28 0.0L 0.5-:10.
or Pu L(kg;7 B, _ -
. s + 0, 0 + 0,2+10
Variation of Bl + 0.1 + 0.1 0,51 -
Rel.accuracy of _ 0.02-0.5 |0,08-2,0| 2-50 2-50
measurement / 7_/
Concentration of Pu 0,823 - - -
L -178, »
Variation of B, +0.3'10 7| - - -
Rel. Accuracy of 0.04-1 - - -

measurement [TZ_/

2. Data for Inventory Measurements

Rel.Accuracies % :

No. of inventories/yr:

0.5, 1.0, 5.0

1,2,6,12

3. Amounts assumed to be diverted :1,5,10 kg Pu/yr




Table II-3:

Comparison Between the Different Estimation Methods for the Reprocessing Plant

Accuracy of inventory measurement :5 7

No. of inventories/yr 2 6 12
amounts diverted lfkg/yp;7 1 5 1 5 1 5
Method 1 14,1 0.92 19,9 56.9 30.8 53.2
FL Method 2 12,7 0.56 18.4 44,2 29,5 45,2
| Method 3 14,1 0,92 19.9 56,9 30.8 53,2
Py Method 1 | 14.1  0.92 | 19.9 57. | 30.8 53,
2 7 FL Method 2 12.7 0.86 18.4 44, 29,5 45,
LA 2 Method 3 | 14.1  0.92 | 19.9 57. | 30.8 53.
Method 1 12.4 0.83 18.3 51. 30.4 50.
FL Method 2 11,7 0.79 18.3 43, 29,5 44,
3 Method 3 12.5 0.84 19.4 52. 30.5 51.
Method 1 0.95 0.6 0.82 0.72 0.65 0.81
FL Method 2 0.95 006 0.87 0087 0083 0093
’ 1 Method 3 0.95 0.6 0.82 0.72 0.65 0.81
Tdm F Method 1 0.9 0.65 0.95 0.62 1.0 0.85
< L, Method 2 [l 0.9  0.65 | 0.93  0.83| L.0 1.0
[yr7 - Method 3 || 0.9 0.7 0.95 0.62 | 1.0 0.85
Method 1 1.0 0.6 0.93 0.73 0.81 0.77
FL Method 2 1.0 0.6 1.0 0.83 1.0 0.94
3 Method 3 1.0 0.55 1.0 0.65 0.74 0,95

Accuracy of Throughput Measurements F217ﬁ47

Level of accuracy for

throughput measurements Input Output | High active waste 1 | ﬁigh active waste 2
FL] 0.136 0.03 4.1 10.8
FL2 0.68 0.15 20,6 53.9
FL 3.4 0.75 103.1 269.3

-)E~
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1: A>0,B<0
II: A>0,B>0

11

Fig.I-2: Graphical representation of the differential

equation (2.13)
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I: A>0,B<0
II: A>0,B>0

Fig- 1-3: Graphical representation of the solution of the

differential equation (2.13) xas a function of y
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Fig-I-4: Graphical representation of the solution of the

differential equation (2.13)y as a function of x.
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12
08 - y calculated with (2.13)
Yo=0]16
— b=25
o4 c=0125
(é;calculated with (2.4) ya=1707
0 { 1 1 | | | ] |
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number of inventories
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0150 ! | | | L | { I I
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number of inventories

——

Fig. I-5: Variance ot the estimator according to
maximum likelihood method as a function of

the number of inventories.
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FIG.I-6 ARGUMENT X OF THE PROBABILITY OF DETECTION AS A

FUNCTION OF THE NUMBER OF INVENTORIES PER
YEAR,FOR EQUAL AMOUNTS DIVERTED IN EACH

INVENTORY PERIOD
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FIG.I-7 ARGUMENT X OF THE PROBABILITY OF DETECTION AS
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