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Abstract: The total neutron cross section of 15N was measured in the neutron energy range
between 0.9 and 32 MeV. Between 0.8 and 3.1 MeV angular distribution and polarization
measurements were performed, Assignments for levels in 16N up to Ex = 6.7 MeV could be
determined using R-matrix and phase-shift analyses, The positions of the d! single-particle
resonances were established. Above Ex = 6.7 MeV estimates of the angular momentawere
obtained from the total cross section by the 2J+1 rule,

NUCLEAR REACTIONS 15N(n), (n, n), E = 0.9-32 MeV; measured anT(E), a(E),
E a(E, 0), P(E, 0). R-matrix and phase-shift analyses, 16N deduced resonances, J, n, r.

Enriched target.

1. Introduction

The n +1sN reaction has been the subject of much experimental 1- 6) and
theoretical 7-14) study, However, previous experimental workhas beenrestricted to
the energy region below about En = 6 MeV and gave partially contradictory results
with respect to energy and spin assignments of levels in 16N.

From the point ofview of the independent-particle shell model, the reaction n+1sN
is a favourable case for study, since the t - ground state and the low-lying 1-- state
of 1sN are describable in tenns of single-hole excitations in a doubly closed-shell
core. Practical calculations using microscopic theories of nuclear reactions have so
far been restricted to such relatively simple structures. For comparison between
experimental and theoretical results, therefore, an.unambiguous identification of the
particle-hole resonances is required, in particular the d! single-particle resonances.
. Since isospin T = 0 is not allowed in n +1 SN and the density of T ~ 2 states in

16N is negligible in the energy region of interest.vene may hope to see the simple
T = 1 resonances 01' particle-hole character in a not too dense background of more
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444 B. ZEITNITZ et al.

complicated excitations. Also below En = 5.65 MeV, only the elastic channel is open,
which considerably simplifies the theoretical analysis.

The motivation for the present experiments was therefore threefold:
(i) To resolve by means of phase-shift and R-matrix analyses of the measured

cross sections previous discrepancies regarding spin and parity assignments.
(ii) To establish the positions of the dt single-particle resonances.
(iii) Tc extend the measurements to the region cf the giant dipole resonance.
In sect. 2, we discuss the measurement and R-matrix analysis of the total cross

section. In sect. 3, the rneasurements of the differential cross sections are presented.
The results of a phase-shift analysis are described, whichyields adetermination of
the d.a single-particle resonance energies. In sect. 4 we compare our assignments with
the results of previous work. In the paper following this 15), the present results for
differential and total cross sections are compared with those of microscopie eoupled
ehannel calculations.

2. Total neutron eross section

2.1. EXPERIMENTAL ARRANGEMENT

The total neutron cross seetion of 15N has been measured with the time-of-flight
spectrometer at the Karlsruhe isochronous eyclotron. The speetrometer eonsists of a
57 m flight path, a 9 cm diameter by 1 cm thick proton recoil deteetor and a 20 kHz
pulsed neutron souree with approximately 1.5 ns burst width. Details ofthe operation
have been given elsewhere!").

The 15N data were obtained for the neutron energy range 0.9 to 32 MeV by
transmission measurements.Standard time-of-flight methods were used for data
colleetion. The measurements utilized a 45 g sample of 15N in the form of liquid
151"~R3 in a stainless steel container. The enrichment of 15~~ was 99.0 %. The chemical
impurity other than 14NH3 was less than 0.01 %. The sample area was 3.75 cm2

and the neutron beam was eollimatedto 1.2 em by 3 em at a distance of 1.1 m from
the source. Further eollimation at 10 m and 37 m limited the solid angle at the deteetor
to ~ 3 x 10- 6 sr. An identical empty sample cell was used for the sample-out measure
ment. The neutron beam was monitored by a y pulse-shape diseriminating detector
plaeed at 6° to the beam at a distance of 11 m from the eyclotron target. Normalizat
ion difiieulties for sample-in and sample-out measurements were eliminated by auto
matieally alternating the sample in and out of the beam on a 250 sec eycle.

The proton reeoil deteetor eonsisted of a liquid scintillator NE-213, 9 em by 1 cm,
viewed by an XP-1040 phototube. The average counting rate was 0.8 neutrons per
machine burst when the sample was out of the beam. Up to two counts per
machine burst could be accepted by the time analyzer, Laben UC-KB, and on-line
computer. Corrections for dead-time losses were performed in the data reduction code.

The overall timing resolution aehieved in the measurement was 2.7 ns. This value
was determined from the observed width of the prompt y-peak from the cyclotron
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target. With the exception of the lowest and highest portions of the spectrum, the
counting statistics were better than 2 %.

2.2. DETERMINATION OF THE CROSS SECTION

The total neutron cross section of 15N was calcu1ated by combining samp1e-in,
samp1e-out and background measurements. The effect of hydrogen in the 15NH3

sample was corrected for using recent Karlsruhe measurements and effective range
:615 of the total neutron cross section for hydrogen 17). Dead-time corrections were
performed using a formu1a which has been experimentally verified for the condition
of two stop-pu1ses per machine burst. The combined background and dead-time
corrections were typically a few percent of the open beam counting rate. At the 10w
energy end of the spectrum the background reaches about 10 %.

The energy resolution for the measurement was 0.93 keV at 800 keV increasing as
Ei: to 240 keV at 32 MeV. The absolute cross-section va1ues are expected to be
accurate within 4 %. The total neutron cross section for 15N is shown in figs, 1-5.
The representative error bars inc1ude on1y the counting statistics. The experimental
energy resolution is indicated by horizontal error bars at several points throughout
the range. The solid curves are the results of R-matrix fitting which will be discussed
in the next section.

This experimental result has been compared with the neutron data of Fossan et
al. 5, 6) and of Sikkema 2) in the appropriate regions of overlap. Except for
resolution effects, the agreement is good. Up to En = 11 MeV, 41 resonances were
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Fig.1. Total neutron cross section for n+15N from Ea = 0.8-1.8 MeV. The solid line is the
result or an R-matrix caicuiation.
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Fig.5. Total neutron cross section from Ea = 12.0-32.0 MeV.

resolved. Above this energy, the cross section shows broad, slowly varying
fluctuations.

2.3. R-MATRIX ANALYSIS

The total neutron cross section of 15N has been analyzed up to En = 10 MeV.
The analysis has taken two different forms. Be10w 4.5 MeV, the multilevel R-matrix
formalism was used to determine E;.., T;.. and whenever possible J" by a X2 fitting and
minimization technique. Above this energy, the resonance amplitudes with corrections
for experimental resolution were used to infer the l-value via the simple 2J+1
dependence. In this energy range the parity of the resonances cannot be given since
no marked interference effects are observed between resonance and potential
scattering. Above 5.65 MeV all J-values must be understood as lower limits
since the inelastic channel is open.

In energy regions where the width of resonances is approaching the spacing, the
Breit-Wigner single levelformulae are not valid. -Anappropriate representation below
the inelastic threshold is the multilevel R-matrix description with a single open
channel for elastic scattering. This formalism has been extensively discussed in the
literature 18-21) and the following is intended only as a summary of the formulae
used in the present analyis.

With a single open channel, the R-matrix is a simple function which is re1ated to
the collision matrix UlJS by,

UlJS = exp( -2i<pz) [1 «ue, RlJS J, (2.1)
l-LzR lJ S
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where cPI represents the hard sphere of background scattering phase and LI = SI+ iPI

is defined by the logarithmic derivative of the external region wave functions at the
channel surface.

Lane and Thomas 20) suggest a division of the R-matrix into an explicit multilevel
sum and a background term R?J'

(2.2)

The sum extends over the A. levels having orbital momentum 1, channel spin S,
total angular momentum J and reduced width Y?J: Substitution of eq. (2.2) leaves the
form of eq. (2.1) unchanged but the cPI and LI now include the background term
R~.

For the application ofthis formalism to resonance analysis, real boundary condition
parameters BI have to be specified. These parameters are closely related to the level

TABLE 1

R-matrix resonance parameters a) for 15N+n

0.341 228 -0.282 0.484

0.14 0.12
X 10-6 xlO- 4

0.14
xlO- 6

J1l E;.(MeV) F..(kev) r«

(1+) 7.31
(3-) 7.44 105 ~2

(2+) 7.71 150 ~2

~2 8.07 30 ~3

~1 8.30 175 ~2

~2 8.77 130 ~2

~3 9.61 ~3

9.77 ~3

~4 10.25
~2 10.64
~1 11.09
~l 11.41
~1 12.10

~2

E;.(MeV) F;.(keV) J1T E;.(MeV)

0.921 14 i+ b) 3.987
1.095 3 1 4.126
1.563 ;'2;2 1 4.252
1 QAA 29 1 + C\ 4.64.1..7""1''''' . ,
2.038 56 1- C) 4.80
2.30 412 d) 1- C) 5.055
2.399 107 2+ C) 5.43
2.732 35 1- 5.56
2.830 12 3<-) 5.73
2.84 714 d) 2- C) 5.90
2.915 ;'2;4 ~2 6.28
2.93 260 1+ 6.42
3.225 6.65
3.454 24 1+ 6.76
3.69 297 1- 7.10

1= 0

J 0 1 0

A lJ 0.466 0.394.
x 10- 1 X 10- 1

B lJ(keV)-2 0.218 0.49
x 10- 5 X 10- 5

C lJ(keV)-2 0.14 0.40
xlO- 6 xlO- 7

r:,,(keV)

88
78

113
> 150

37
25
30

165

45

110

1=1

2

1=2

2 3

-0.524
X 10- 1

a) Analysis performed with channel radius a = 4.69 fm,
b) Parity determined from angular distribution.
C) J1T also obtained by phase-shift analysis,
d) The uncertainty in the R-matrix results are estimated as E;.±70 keV and T;.±100 keV.
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shifts LI"IJ = (SI-BI) Y;lJ and thus are energy dependent via the level shift factor SI.
In this analysis, the level shifts and their energy dependence have been omitted. This
procedure corresponds to a special choice of boundary condition parameters BI =
SI(Er ) where the Er represent the experimentally observed resonance energies which
at resonance coincide with the internal eigenvalues. For s-wave neutrons, where the
level shift is identically zero, this procedure is exact and there is no change in inter-
pretation for the usual zero boundary condition ..

3 I!.=1000 keV

===8 10 12

12

1210

1a

8

I!.=300 keV

I!.= 500 keV

6

6

"

8

En (MeV)

Fig.6. Energy averaged total neutron cross sections for n+ 1 5N. The averaging interval LI is
shown on each curve.

In practical analysis of total neutron cross sections, the parameters E.., T.. can be
determined only for levels in a restricted energy region. However, the influence of
levels outside the region of analysis may not be negligible. This may be accounted
for by an expansion of the background term R?J about the median energy Ern of the
energy range under consideration 22)

Rf, = AlJ+BlJ(E-,Ern ) +ClJ(E-Ern)2. (2.3)

The coefficients A, Band C are land J dependent in general and represent additional
parameters to be determined along with the E.. and Y~. The R-matrix program
utilizes a X2 minimization technique, with a particular set of resonances and their I
and J values as input. The results are the parameters E.., T.., Au, BlJ and CLJ which
best fit the experimental data.
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The 15N data up to En = 4.5 MeV have been fitted and the resonance energies,
widths and J-values have been determined. These results together with the Alb

Eu and Cu parameters are given in table 1. The parity can be obtained from total
cross-section analyses only when substantial interference occurs, either between
resonances or between resonance and potential scattering. Thus for some of the
resonances listed in table 1, the parity has not been assigned. In cases where a partic
ular I value is very probable but not certain, the parity is written in parentheses. The
total cross section calculated with the parameters of table 1 is shown as the solid
line in figs. 1 and 2. In order to 0 btain maximum self-consistency for the S-, p- and d
wave background phase shifts and the A, Band C coefficients, it is desirable not to
subdivide the analysis region into smaller analysis intervals. Thus the entire energy
region from 1.8 to 4.5 MeV was fitted with a single-parameter set.

Above 4.5 MeV, no R-matrix analysis was performed. The values E)., F). and J
for this region are the observed resonance energy, the width (FWHM) corrected
for resolution effects, and the spin inferred from the 2J+ 1 rule, respectively.

To facilitate comparison with the p-h calculations of the following paper 15), it is
desirable to eliminate the effects of narrow resonances in the total cross section. To
this end, we have calculated the energy-averaged cross section using averaging inter
vals of 300, 500 and 1000 keV. The results are shown in fig. 6.

3. Differential scattering cross sections

3.1. EXPERIMENTAL ARRANGEMENT

The differential cross sections were measured with a time-of-flight spectrometer
using pulsed beam techniques 23). The measurements were performed in the neutron
energy range between E; = 0.8 to E; = 3.1 MeV at the 3 MeV Van de Graaff
generator of the University of Hamburg, Neutrons produced by the reactions
3H(p, n)3He (below E; = 2.7 MeV) and 12C(d, no)

13N (up to En = 3.1 MeV) were
used, The energy spread of the neutrons at 2 MeV was 24 keV for the 3H(p, n?He
and 22 keV for the 12C(d, no)13N reaction.

The neutron scattering target consisted of the 45 g of fluid 15NH3 already
described in the previous section. It was filled in a stainless steel flask of 6.3 cm height,
3.4 cm diameter and 0.5 mm wall thickness. A photomultiplier XP 1040 with liquid
scintillator NE 213 of 10 cm diameter and 7.5 cm length served as a detector for
the neutrons.

The distance between the neutron source and the neutron target was 30 cm, that
between the detector and the scattering sample 105 cm. The scintillator was
surrounded by a ring of heavy metal (20 cm length, 10 cm thickness). A cone of
heavy metal served as a shadow shielding for both the scintillator and the ring.

The background, mainly produced by the stainless steel flask, was eliminated by
automaticallyalternating once per minute the 15NH3 flask and an identical container
fiiled with 0.45 g of 14NH3 (corresponding to the 1 /~ concentration of 14N in the
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target). Fig. 7 shows a time-of-fiight spectrum taken at (Jlab = 40° and 2.18 MeV
neutron energy. The left peak corresponds to the neutrons scattered by the protons
of 15NH3, the right peak to those scattered by 15N nuclei. From the counting rates
of the neutrons scattered by the protons we obtained the normalization for the
absolute cross sections. The relative efficiency of the detector as a function of energy
was determined by measuring the known 3H(p, n)3He cross sections. For angles
smaller than about 60° the n...p counting rates simultaneously served as an additional
monitor.

3.2. EXPERIMENTAL RESULTS

In order to determine the level parameters of the broad resonances' (r > 20 keV)
between En = 0.8 and En = 3.1 MeV, we performed measurements of the excitation
functions at (Jlab = 40° and (Jlab = 140° and a total of 33 angular distributions. The
excitation function at (Jlab = 40° is shown in fig. 8. The positions of the resonances
with r > 10 keV at E; = 0.93, 1.56, 1.94, 2.05, 2.4 and 2.7 MeV are in agreement

3.08 I"

••
15N (n,n) 15N

dO' sr J

10:1

3.08 0

2.88 0

2.64 0

2.46 0

2.38 0 0

2.18 0 0

1.94 0
500 1000 1500 500 100°

En (MeV) bo scattering angle (crns)

Fig, 9. Some typical angular distribution and polarization data together with fits obtained from
phase-shift analysis (solid lines).
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Fig. 10. Differential cross sections for 15N(n, n) 15N obtained from Legendre polynomial fits to
the experimental data.
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with the results from the total cross seetions (sect. 2), whereas the narrower
resonances could not be resolved.

At the energies indicated by vertical bars in fig. 8, measurements of the angular
distributions da/dD were performed. Previous analyses 2,24) suggest that the broad
overlapping 1- and 2- single-particle resonances lie between En = 2 - 3 MeV. There
fore the measurements of the angular distributions in this energy region were mainly
performed at energies where the influence of the narrow resonances can be
assumed to be smalI.

The angular distributions were measured in steps of about 10°, mostly between
(Je.m.s. = 30° and (Je.m.s. = 160°. Several examples showing the statistical errors
typical for all the angular distributions measured are presented in fig, 9. In order to
give a compact representation of the measured data, we present in fig. 10 the results
ofaX2 fit including Legendre polynomials up to fourth order. There is an overall a
greement with the data ofrefs. 2,3) in the corresponding energy regions (see fig. 6 of
part H, ref. 15)).

TABLE 2

Analyzing power of 1sN

1.94
2.08
2.1S
2.3S
2.46
2.64

-O.54±O.17
-O.71±O.26
-0.42±O.16
-O.25±O.OS
-O.56±O.15
-O.2S±O.15

P(1300)1ab

+O.73±O.27
+1.20±O.23
+0.54±O.14
+O.34±O.12
-O.12±O.OS
-O.03±O.08

In addition, to decide between different sets of phase shifts, rough measurements of
the analyzing power of 15N were done at scattering angles e1ab = 40° and
(Jlab = 130° in the energy region between E; = 1.94 and E; = 2.64 MeV. The
12C(d, n o)13N reactions was used 25,26) as a source of polarized neutrons at
(Jlab = 20°. The analyzing power was determined by measuring the left-right
counting rate asymmetry. The results are presented in table 2 and fig, 9 together
with. the statistical errors.

3.3. PHASE-SHIFT ANALYSIS

In order to determine the energies and spin and parity assignments of the broad
resonances between E; = 1.8 and 3.1 MeV, a phase-shift analysis was performed.
It was based on a parametrization of the scattering matrix by phase shifts 6s lJ where
S is the channel spin, I the orbital angular momentum and J the total spin of the
compound nucleus state. A method similar to that described by Tombrello 27,28)
has been employed for the calculations. Phase shifts up to I = 2, allowing splitting
of the triplet phases, were used. Hard-core phase shifts served as starting parameters
for the X2 fits. We used a grid search method 29). For each energy, the experimental
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data for the total cross section, the angular distribution and (if measured) the
polarization were fitted simultaneously.

In fig. 9 several examples of the fits obtained (solid lines) are shown together
with the corresponding experimental values. The phase shifts as a function of
energy are presented in fig. 11. At 2.88 MeV, typical error bars are shown which
are the standard deviations for the fit, calculated from the variance matrix. The scatter-
ing of the points around the freely drawn solid lines mayaIso be due to
the influence of the narrow resonances. The phase-shift analysis clearly indicates
resonances at 1.94, 2.05, 2.4, 2.42 and 2.94 MeV.

In good agreement with the results of Hewka et al. 24), obtained via the
15N(d, p)16N reaction, the phase-shift analysis indicates broad 1- and 2- resonances
at E n = 2.42±0.08 and 2.94±0.1 MeV with approximate widths of r = 250±50
and 320± 80 keV, respectively. These widths were estimated directly from fig. 11,
as the energy range over which the phase shift changes from (j = in to (j = in,
the resonance energy corresponding to (j = !n. The rise of the (jll1 and (jOll phase
shifts near 2.9 MeV may be caused by a broad 1+ resonance also seen in the total
cross section in thisenergy region.

In the next section wecombine the results ofthe phase-shift analysis with those from
the R-matrix fits and compare with the assignments of previous work. The total cross
sections and the angular distributions in the region of the single-particle resonances
are compared with the results of microscopie coupled channel calculations in part II
of this paper 15).

4. Discussion

In this section, a comparison with previous resonance assignments is made, using
the results of sects, 2 and 3. The resonances below 4.5 MeV are considered individu
ally (see also table 1).

The 0.921 MeV resonance. This resonance is assigned J = 1+, in agreement with
refs. 3,5,24). Although the R-matrix analysis cannot distinguish with certainty
between I = 1 and 2 in this energy region, a positive parity assignment seems indi
cated by the forward peaking of the angular distribution.

The 1.095 MeV resonance. A value of J = 1 is determined from the total cross
section. This results is consistent with the values (0-1-2-) given in ref. 24). We
disagree with the assignment of 0+ suggested in ref. 5), since the observed peak cross
section does not seem to permit a value other than J = 1.

The 1.563 MeV resonance. Our assignment of J = 1 is consistent with that of refs.
5,24). The parity could not be determined.

The 1.994 MeV resonance. The phase-shift and R-matrix analyses are in agreemem
with the results ofrefs. 2,5,24), which all give an assignment of 1+ for this level.

The 2.038 MeV resonance. The R-matrix and phase-shift results definitely establish
the assignment of 1-, in agreement with refs. 2, 5).

•
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The 2.30 MeV resonance. Both analyses indicate a broad 1- resonance in the region
2.3-2.4 MeV, in agreement with ref. 24). The overlap ofthe R-matrix and the phase
shift results for the width, T ~ 412± 100 keV and T ~ 250±50 keV respectively is
poor. The phase-shift analysis is complicated by the presence of other resonances
in the neighbourhood of the wide I - level. The R-matrix widths in table I are the
energy-dependentwidths r;. (E) = 2Pz(E)y~, evaluated at the resonance energy E;..
The 0 bserved widths (FWH1vl) will be somewhat less than these values becauseof the
energy dependence of the shift function 20) Sz. In addition, the R-matrix fit program
minimizes Li( a~alc - a;xpY. This procedure leads to an increased uncertainty for
such a broad resonance. Nevertheless both results are in rough agreement with that
from the 15N(d, p)16N reaction obtained by Hewka et al. 24), r = 290±30 keV.

The 2.40 MeV resonance. Both analyses indicate a Z" state, consistentwith refs. 2,24).
The 2.732 MeV resonance. The R-matrix analysis assigns 1- to this. Ievel. The

inverted shape indicates an s-wave resonance. Attempts to obtain an inverted
resonance as a d-wave interference with the broad 1- resonance at 2.30 MeV were
unsuccessful.

The 2.830 MeV resonance. Analysis of the total cross section indicates J = 3. Be
cause of the very small penetrability of I = 3 neutrons at this energy, an assignment
of r is highly probable. This is consistent with ref. 2), where J = (r4-5-) is
given.

The 2.84 Mev resonance. Both analyses indicate a broad resonance near 2.9 MeV
with J" = r in agreement with ref. 24). As for the broad resonance at 2.30 MeV,
the width T ~ 320 keV observed in the phase-shift analysis is considerably less than
the R-matrix width of T ~ 714 keV.

The 2.915 MeV resonance. Due to the narrow width of this resonance, we obtain
only J ~ 2.

The 2.93 MeV resonance. The R-matrix fits to the total cross section require a
broad 1+ state at this energy. This assignment is also suggested by the phase-shift
analysis. This disagrees with ref. 2), where the values J = 2+ or 3+ are given and
with ref. 24), where no evidence for this level was seen.

The 3.454 MeV resonance. The interference shape seen in the total cross section
indicates a p-wave resonance. The shape is not consistent with an s-wave resonance
at this energy. The R-matrix analysis yields J = 1+.

The 3.69 MeV resonance. An assignment of 1- is given to this resonance. As
previouslynotedinref. 6), the amplitudeof the peakis consistent with either J = I or 2,
but J = 3 [ref. 24)] requires an unreasonable low background. An assignment of 2
is eliminated because the strong minimum predicted by the R-matrix near 3.56 Me.V
due ~ the interference with the broad r state at 2.84 MeV was not observed. The
possibility of 1+ or 2 + is ruled out because resonance-potential interference was not
seen as in the case of the 1+ resonance at 3.454 MeV.

The 3.987 and 4.252 MeV resonances. The shapes of these resonances are con
sistent with 1+ and 2 + assignments respective1y. The assignments should be considered
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tentative since the resonances between 4.0 and 4.5 MeV are strongly overlapping.
The 4.126 MeV resonance. The cross section calculated with 3- for this level gives

good agreement with experiment. However, since our analysis has been limited to
s-, p- and d-wave neutrons, the possibility of higher J-values could not be
excluded.. A broad level near 4.2 MeV underlying the three resonances resolved at
3.987, 4.126 and 4.252 has been reported in refs. 6,24) where it was assigned
(J == 3) and(2~) respectively. \Xle attempted to include this resonance in out ana
lysis. However, an assignment of J = 3 was inconsistent with the R-matrix ana
lysis and a 2- assignment gave a poor fit and large X2

• This analysis is complicated
by the presence of another wide resonance at 4.64 MeV. But the inclusion of this level
in the calculation would only decrease the probability of the existence of a broad
state at 4.2 MeV. We thus conclude that only the above three resonances are present
in this region.

Above 4.5 MeV only lower limits are given for the resonance spins. These were
obtained by estimating a smooth background from potential scattering and apply
ing the 2J+1 limit to the peak cross sections. The R-matrix analysis was not pursued
further since (i) the inelastic channel opens at 5.65 MeV, (ii) the cross section is
increasingly complex and a unique set of spins and parities is more difficult to obtain
and (iii) the limitation to s-, p- and d-wave neutrons is becoming more dubious.

5. Conclusions

We have presented the results of'phase-shift and R-matrix analyses of the total cross
section for the reaction 15N(n, n) 15N in the energy region up to En = 4.5 MeV.
This analysis has enabled us to resolve some previous ambiguities regarding spins
and parities of levels in the compound system 16N. In addition, a number of new
levels have been observed above En = 6.5 MeV, and tentative spin assignments are
suggested on the basis of the (2J+ I) rule.

The present experiments, plus the R-matrix and phase-shift analyses of the resuIts,
have resolved the uncertainty concerning the positions of the broad 1--' and 2- reson
ances which are assumed to arise from the (d t Pt1)1-2- shell-model configuration,
Our energies of En = 2.4 and 2.9 MeV for the 1- and 2- levels, respectively, are in
good agreement with the resuIts of Hewka et al. 24). These resuIts are analyzed in
terms of a particle-hole coupled channel calculation in the following paper 15).

The authors gratefully acknowledge the assistance of the cyclotron group at Karls
ruhe and the Van de Graaff group at Hamburg, in particular D. Kopsch, L. Kropp
and B. Pollermann. Much of the motivation for this work originated in discussions
with H. A. Weidenmüller and K. Dietrich. Useful discussions with W. Ebenhöh,
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Abstract: The total and differential cross sections for the scattering of neutrons from 1
5 N in the

energy region O;:i; En ;:i; 12 MeV are analyzed by the method of coupled channels, in a
Ip-Ih configuration space. The 1- and 2- resonances observed experimentally at En = 2.3
and 2.9 MeV, respectively, are identified with the (d t Pt-1h - 2 - coupling in the p-h model.
The absolute cross sections and angular distributions are in reasonably good agreement
with experiment in the region 2 ;:i; En ;:i;3 MeV of the dt single-particle resonance. Some
of the other particle-hole resonances predicted by theory are tentatively identified with
broad peaks seen in the energy-averaged total cross section.

1. Introduction

In the preceding paper 1), hereafter referred to as I, the experimental measurement
of the total cross section for the n +15N reaction is discussed. A phase-shift and R
matrix analysis has also been carried out in I to determine the spins and parities of
levels in 16N. In the present paper, we approach the analysis of the observed cross
sections from the point of view of a coupled channel calculation 2).

The coupled channel method provides a way of calculating the properties of com
pound nuc1ear resonances in the framework of a microscopic model. In order for the
number of channe1s to be numerically tractable, we restriet our attention to a simple
c1ass of compound states, i.e, lp-Ih excitations. Because of this limitation, we do not
expect to reproduce in detail all the narrow resonances seen in the experimental cross
section. Instead, the emphasis is placed on the energy-averaged cross section, in which
the effects of the narrow compound resonances have been smoothed out. The p-h
model is then invoked to explain the broad resonance structure remaining after a
suitable energy average has been performed.

The p-h model has been applied with some success to y-ray processes involving the
461
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excitation of the giant dipole state in light nuclei 3-10). The p-h model seems es
pecially appropriate for reactions like 160(y, n) 150 for example, since the y-ray is
expected to selectively excite mostly 1- p-h excitations. If 160 is viewed as a doubly
closed shell core (which may not be a good assumption), the entrance channel in the
above reaction is Op-Oh, and hence the simplest compound state which can be excited
after one interaction is a Ip-lh state. In the reaction 15N(n, n')15N, on the other
hand, the entrance channel is already a Ip-Ih state in the shell-model description and
after one interaction we can excite 2p-2h configurations. Thus in the reaction n + 1SN,
we no longer expect to excite selectively only the simple Ip-Ih compound states.
However, one might still expect to find a hierarchy of widths, in which lp-Ih reso
nances would generally be somewhat broader than more complicated excitations.
The existence of such a hierarchy would enable one to isolate the p-h structure by
performing an energy average of the cross section.

Since only T ~ 1 states are excited in the reaction n +15N, the density of compound
states is much smaller than in 15N(p, p')15N, for instance. The level density in 16N
is about 4levelsjMeV between En = 1 and IOMeV t. This level density is low enough
so that the spreading width of Ip-Ih states into more complicated excitations is not
necessarily large. Thus one might still expect to see compound resonances which are
predominantly of Ip-Ih character, at least in the energy-averaged cross section.

In sect, 2, the essential approximations which enter into the coupled channel ap
proach are discussed. The determination ofthe appropriate shell-model single-particle
potential is the subject of sect. 3, while the choice of the residual p-h interaction is
treated in sect, 4. Sect, 5 is devoted to a detailed comparison of the coupled channel
theory with the experimental results of I. A short summary is provided in sect. 6.

2. The coupled equations

The derivation and numerical solution of coupled equations for particle-hole scat
tering systems have been discussed extensively in the literature 3- 5,11-13). We do
not reproduce the details here, but give only the results necessary for our discussion.

If one expands the scattering wave function of the compound system (here 16N)
in terms of the fully antisymmetrized states CfJn of the target nucleus, one obtains in
general a set of coupled integre-differential equations for the radial wave functions
Un of the continuum particle. The direct numerical solution of these equations has
been carried out in ref. 4). In this paper, as in refs. 3,5,11), we shall solve a somewhat
simpler set of coupled differential equations, obtained by making the following ap
proximations:

(i) We use a phenomenological local Saxon-Woods potential (state-dependent)
to simulate the non-Iocal Hartree-Fock potential. (ii) We assume that the residual p-h
interaction has zero range (see sect. 4). (iii) We neglect overlap integrals of the scat-

t In this paper, the symbol En always refers to the lab. energy of the incident neutron, and r to
the Iab. width of a resonance,
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(1)

tering solutions un(r) with the single-particle states below the Fermi sea. Under these
assumptions, we obtain 3- 5) the following set of coupled Schrödinger equations for
the radial wave functions u;"(r) of the incident particle:

{
d

2
2p(E _ -V( ))_ ui:+ I)} J"() = 2p,", V () J"()+ c.m, B" " r u" r L. "p r up r.

dr 2 h2 r2 h2 p

The index IX or ß labels the quantum numbers of a p-h pair coupled to total angular
momentum J and parity tt, We use the j-j coupling scheme. The specification of the
particle and hole orbital angular momenta Ip and Ih and total angular momenta i,
and jh is included in the index !X. Since we restriet our attention to the reaction
15N(n, n')15N*, we always have total isospin T = 1, and hence isospin indices are
omitted. Further, p, is the reduced mass of the incident nucleon, Ec.m . is the incident
particle energy in the c.m. system, B" is the c.m. excitation energy of the target, and
V,,(r) is the central Saxon-Woods potential, which is allowed to depend on the orbital
angular momentum I" of the incident particle. FinaIly, V"ir) is the p-h coupling
matrix element, which is a product of a geometrical factor and the radial wave func
tions of the hole states in channe1s IX and ß. The reader is referred to the paper of
Buck and Hill 3) für details t.

The coupled eqs. (1) were solved numerically by using a slightly modified version
of the program REACT-1, which was previouslyapplied to the solution of the coupl
ed Lane equations 13). In contrast to refs. 3 - 5), which restriet attention to the J" = 1
channel relevant für dipole radiative capture, the calculation of cross sections for
15N(n, n')15N* requires the solution of eq. (1) for all possible J"combinations.

3. Choice of the shell-model potential and the eonflguration space

In this work, we restriet the space of 15N target states to include only the t - ground
stateand the ~- third excited state at 6.33 MeV. In the framework of the shell model,
we describe these states as pure 1p';:: 1and 1p; 1hole states, respectively, in the doubly
closed sheIl 160 core. Of course, 'such a de~cription is oversimplified. In particular,
we neglect the possibility of ground state corre1ations in the 160 core. The neglect of
correlations is dubious, since simple model calculations (in random phase approxi
mation) indicate appreciable polarization ofthe 160 core 14). The description ofthe
~- state as a relative1y pure Ip-!"l hole state has also recently been questioned 15).

In addition to assuming pure sheIl-model configurations for the r and ~ - states
of 15N, we also neglect the first two excited states of 15N (V at 5.28 MeV and t + at
5.30 MeV). These states are presumably of 2h-Ip character, and would lead to 2p-2h
or more complicated states of the compound system 16N. Since most of the reso
nances observed in 15N(n, n)l5N are probably of 2p-2h (or more complicated)
nature, as indicated in sect. 5, the neglect of the ~+ and t + states in 15N, as weIl as

tOur eq. (1) is the same as eq. (50) of Buck and Hili, the matrix element V"p(r) being
defined by eq. (51).
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all 2p-2h compound states, is probably the main shortcoming of our calculation.
To generate the sheIl-model wave functions for the Pt1 and Pt1 proton-hole states,

we have used a central Saxon-Woods potential with spin-orbit coupling:

Vlj(r) = -V~J)f(r)+V~t (~)2~~f(r)I'(J",
m"c r dr

where h/m"c is the pion Compton wavelength and

(2)

(3)

Here R = (A - 1)tr 0 is the radius and a the diffuseness of the potential weIl (A = 16).
In this work, we have used the values R = 3.08 fm and a = 0.53 fm. The values of
V(O) and V

S
•
O

• necessary to fit the binding energies of the 1p.;:-1 and Ip.;:l states at
their experimental values of 12.11 and 18.44 MeV, respectively:are V(O) :: 52.5 MeV
and V S

•
O

• = 9.88 MeV.
It should be noted that the potential parameters given above are used only in cal

culating the wave functions for the p~ 1 and p';:1 proton hole states, which are in turn
2 2

used only in the calculation of the coupling matrix element Vap{r) of eq. (1). The
potential parameters which describe the p-wave scattering of the incident neutron,
and enter in the potential Va(r) of eq. (1), are adjusted independently.

For the incident neutron, we have also used a Saxon-Woods potential ofform (2).
In most of the calculations reported here, we have restricted our attention to S-, p
and d-waves. In the absence of a single-particle resonance in the f-wave, this should be
adequate below about 8-9 MeV. To fit the potential parameters for s- and d-waves,
we fit the experimentally observed 16) binding energies -4.14, -3.27, +0.94 MeV
for the 1dt , 2st and ldt states, respectively, in 170 .

A value V S
•
O

• = 5.24 MeV was required to reproduce the drdt spin-orbit splitting.
This spin-orbit strength has been subsequently used for aIl partial waves in the con
tinuum. The resulting values of V(O) are listed as "potential A" in table 1. Potential A
corresponds to that used in a previous work 12). The dt state is actually a narrow
single-particle resonance with a width of about 90 keV. Potential Areproduces this
width as weIl as the position of the resonance.

The energies of the 2st, 1dt and 1dt states in 170 are weIl established, while the
distribution of the 2p and lf single-particle strength is subject to considerable doubt.
In a study of the positive parity levels of 160 , Eisenberg et al. 17.18) have used 1ft ,

2Pt' 2Pt and 1ft single-particle energies (c.m.) of 1.55, 3.57, 5.58 and 7.74 MeV,
respectively, with respect to the n + 160 threshold. To examine the possibility of
positive parity resonances in the 1p-1h model (see subsect. 5.3), we have also per
formed calculations in which the I = 3 weIl depth is adjusted in order to obtain a
1ft single-particle resonance at 1.55 MeV, as in ref. 17). A spin-orbit strength
V s

.
o

. = 5.24 MeV was used as in potential A. The resulting parameters are listed as
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potential B in table 1. This choice of 1ft resonance energy requires a weIl depth ~ 20
MeV deeper than other partial waves, which is somewhat unreasonable. Ifwe use the
same f-wave weIl depth as for the d-wave, the 1ft resonance lies at ~ 8 MeV and is
very wide. With potential B, the 1ft resonance has a width T ~ 18 keV. To obtain
the experimental width 16) T ~ 7 keV, we would have to make the potential radius R
somewhat smaIler, and the potential even deeper than in table 1. The above considera
tions suggest that the 1- state at 5.697 MeV in 170 only contains some fraction of
the 1ft single-partic1e strength.

TABLE 1

Woods-Saxon potential parameters

Potential

l=O

Central depth V(O)

l=l l=2 l=3 1=4

A
B
C
D

57.0
57.0
57.0
57.0

52.5
52.5
52.5
52.5

55.2
55.2
55.2
55.2

76.07
71.15
71.15 55.0

Wehave also adjusted the I = 3 weIl depth so that the 4+ resonance resulting from
the (ft pi 1) coupling lies at the energy En = 5.73 MeV, which corresponds to a
prominent resonance of high spin observed experimentally 1). The resulting param~

eters are listed as potential ein table 1. Again, V s
•
o

• = 5.24 MeV was used. For
potential C, the unperturbed ft resonance appeared at E; = 3.73 MeV with a width
of T ~ 240 keV.

It has been suggested 19) that the (ldt Ipi 1)4- configuration can perhaps be iden
tified with a resonance seen experimentally at En ~ 5.42 MeV in the n + 15N reaction.
To investigate this possibility within our framework, we have also performed calcula
tions inc1uding the g-wave, since this is the lowest partial wave which will endow the
4 - state with a width. The spin-orbit strength was again fixed at V s

•
o

• = 5.24 MeV
for all partial waves. The depth parameters V(O) are listed as potential D in table 1.
For all of the present calculations, we have used areal optical potential without ab
sorption. This is reasonable for the compound system 16N, since the first inelastic
channel opens at En = 5.65 MeV. We have also omitted the absorption above
En ~ 5.65 MeV, since none of the narrow resonances in our calculation (which are
primarily affected by the absorption) lie in this energy region.

4. Residual interaction

For the calculation of the p-h matrix elements V"ß of eq. (1) we assurne a zero
range spin-dependent partic1e-partic1e interaction of the form

(4)
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In previous work involving the n+ 15N reaction 12,20-24-), the parameters Vo = 504
MeV' fm" and g = 0.156 (Soper mixture) have always been used. These parameters
were originally obtained by Brown et al. 8)by requiring that the sum ofthe 1- energy
eigenvalues for 160 be the same as that of Elliott and Flowers 7), who used a finite

2

,
120010'00aoo600400

Jo'-------.--------r-----..-----:-r------.-----........
Vo (MeV 1m3)

Fig. 1. Resonance energies ER of the 1- and 2- single-particle resonances as a function of the
coupling strength Va of the residual interaction. The solid lines correspond to a spin

mixture g = 0.156 while the dashed line refers to g = 0.312.

range Yukawa force. This prescription gave reasonable agreement with the energies
ofthe bound states of 16N and the main components ofthe giant dipole resonance.

We adopt a somewhat different philosophy. We choose V o and g such that the ener
gies of the 1- and 2- resonances arising from the coupling (d! Pt1) lie at En = 2.3
and 2.9 MeV, respectively. As has been established by the phase-shift analysis of I, the
wide resonances observed experimentally elose to the above energies involve the cou
pling of the d-wave to the Pt 1 target ground state. Since we are analysing a scattering
experiment, it seems most reasonable to adjust the effective force (4) in order to repro
duce the dominant features ofthe cross section rather than bound state information,

The dependence of the 1- and 2- resonance energies on the parameters Vo and g

is illustrated in fig, 1. An increase in Vo moves the resonances to higher energy, in
creases the 1-, 2 - energy difference, and decreases the peak cross sections at reso
nance. The old force parameters 20-24-) yield the 1- and 2- resonances at too low
an energy with too small a splitting. Since the 1- energy is independent of g, we first
adjust V o to locate the 1- state at E; ~ 2.3 MeV. We then adjust g to get the correct
1", 2- splitting. This prescription gives in principle a unique determination of Vo
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Vo = 925 MeV' fnr',

g = 0.312.
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(5)

It should be remarked that the determination of gis not very accurate, since increasing
g from 0.156 to 0.312 only produces a shift of ~ 60 keV in the 2- resonance. Since
the 1- and 2- resonances are fairly wide, the phase-shift analysis does not determine
their positions to better than about 50 keV.

All calculations in this paper have been done with the parameters Va' g of eq. (5),
or with the choice Vo = 970 MeV' fm", which yields essentially equivalent results.

Since the force strength Vo of eq. (5) is about 85% stronger than the old value
[refs. 20-24)], one must inquire whether the agreement with the bound state energies
and the principle dipole state components has been appreciably disturbed. In ref. 21),

the 16N bound state energies (except for the first excited state (0-)) obtained are
consistently too low. In particular, the ground state lies at - 2.95 MeV in ref. 21) and
- 3.0 MeV in ref. 20), while the experimental value is -2.5 MeV (with respect to the

11+1sN threshold). In the coupled channel approach, one does not calculate the
bound state energies, so no detailed statement can be made. However, an increase of
Vo raises t the energies of all resonant and bound states and hence is in the right direc
tion for removing the above discrepancy with experiment. As shown in sect. 5, the
1- resonance corresponding to the unperturbed (dt pi 1)1- coupling lies at E; ~ 7.75
in the n + 1 SN reaction. When corrections are made for Coulomb effects tt, this reso
nance corresponds to an energy of 22.1 MeV in 160 . Various other calculations
[refs. 6-8,20-21,30-32)] give values ranging from 21.1 to 22.7 MeV for this state.
The experimental 9)position of the principal component of the giant dipole resonance
is ~ 22.3 MeV. The rather small variation in the calculated results does not seem
to provide one with a sufficient basis for preferring the old values of Vo and g to
those of eq. (5).

5. Comparison with experimental results

5.1. TOTAL CROSS SECTIONS

In this section, we restriet our attention to calculations employing potential A of
table 1 for the continuum and the parameters Va' gof eq. (5). The total elastic cross
section obtained by solving the coupled equations of eq. (1) is shown from 0-12 MeV

t The p-h interaction is repulsive in the T = 1 channel, and its diagonal element in eq.(l)
makes the effective central potential shallower, thus increasinq the energies of the bound and resonant
p-h states.

tt To compare with levels in 160 , we use Ec .m.(l60) = (15/16)En+ 14.82 MeV. The 1- level at
E n = 2.30 MeV in n+15N then corresponds to the same energy as the 1- resonance observed
at E = 17.0 MeV in 160(y, n)! sO. Both levels are attributed to the (d t Pt-1h - coupling. In ref. 20),

a shift of 15.46 is used in the above formula. The difference is not important for our con
siderations.
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2

in fig. 2, along with the corresponding partial cross sections for the 1- cnannel. From
this partial cross section and the corresponding ones for other J" combinations, we
extract the resonance energies and widths. These results are tabulated in table 2. It
should be noted that the widths given in table 2 are only estimates, and are not the
results of a fit to the partial cross sections. The 0", 1- and 3- resonances expected
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Fig.2. Total elastic cross section for n+15N (solid line) and corresponding 1- partial cross
section (dashed line) as a function of neutron Iab, energy Eu. These calculations were perforrned

with Va = 925 MeV' fm" and g = 0.312, using potential A (s, p and d-waves only).

TABLE 2

Calculated resonance energies and widths for n+ 1 5N

Unpert, conf. J Enunpert. Eu Eexc r

dtpt -1 1- 0.99 MeV 2.3 MeV 16.97 MeV 460keV

dtpt -1 2- 0.99 2.9 17.54 720

dt Pt- 1 3- 2.34 3.76 18.34 210

2st Pt- 1 1- 3.27 4.89 19.40 80

dt Pt- 1 2- 2.34 5.02 19.52 120

2st Pt- 1 2- 3.27 7.3 21.72 1200-1400

dt pt- 1 1- 2.34 7.75 22.06 800-850

dtpt-1 2- 7.74 10.25 24.42 2-3 MeV

Notation as follows: Euunpert. = unperturbed lab. energy in MeV; Eu = lab. resonance energy
(MeV); Eexc = excitation energy (c.m.) relative to ground state of 160 ; r = estirnated width
(lab.) obtained frorn partial cross sections for each PT.
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from the dt pi 1 coupling are washed out on fig. 2, because of the increased force
strength.

The first point to note is that the lowest 1- and 2- resonances, corresponding to
the dt pi 1 unperturbed configuration, have widths of 460 and 720 keV, respectively,
which are elose to the results obtained from the phase-shift and R-matrix analyses of'I.

• 1...

3

~e
2

5
b

0

2.0 25 3.0 3.5

En(MeV)

Fig, 3. Total cross- section for n+15N in the region of the d4 single-particle resonance. The
solid curve corresponds to the experimental results given in I.-The upper dashed curve is the
result of a calculation using Vo = 925 MeV' fm", g = 0.312, and potentialA. The lower dashed
curve represents the difference of the experimental and ca1culated cross sections, The resonances are

labelIed with the spins and parities suggested by the R-matrix analysis of I.

This supports the interpretation of these states in terms of a dt single-partiele reso- ,
nance (SPR) shifted upward by the residual p-h interaction. Equivalently, the cal
culated 1- and 2- widths are essentially those characteristic of a d-wave resonance
at the appropriate energy in a potential weIl.

In the experimental results 1), one sees a number of small resonances in the region
1.9-3.5 MeV superposed on the much wider 1- and 2- resonances, These narrow
resonances are not predicted by the p-h model. They are presumably of 2p-2h or more
complicated character. However, when these narrow resonances are averaged out,
the average cross section is very weIl reproduced by the p-h model in both absolute
magnitude and shape between En ~ 1.2 and 3.1 MeV. This fact further solidifies our
interpretation of the dominant reaction mechanism in this region as a d-wave single
partiele resonance. This fact is illustrated in fig. 3 which compares experimental and
theoretical results in the region of the dt resonance. The difference curve (Jexp - (Jlh

between the experimental and theoretical cross sections is almost entirely interpretable
as the effect of the small resonances.

It is tempting to try to identify some of the other experimentally observed [refs.
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nos. 1,19,25- 28)J resonances with calculated p-h resonances. This identification is
rather speculative, since no phase-shift or R~matrix analysis has been attempted above
E; ~ 4.5 MeV and hence the spins and parities ofthe resonances seen experimentally
are not known.

Before launehing into a detailed comparison of experiment and theory, we first
discuss what one apriori expects to see in the n + 15N reaction. There are two extreme
situations imaginable: (i) One observes strongly excited p-h resonances with widths
considerably greater than the surrounding narrow 2p-2h resonances. In this picture,
one imagines a hierarchy ofcompound nucleus states ofvarious degrees of complexity
(np-nh), in whieh states of different complexity do not appreciably mix with each
other. Equivalently, the p-h states would have a small spreading width 29) and hence
should be seen as relatively pure p-h resonances in n+ 15N; (ii) The strength ofthe
resonances calculated in the p-h model is fragmented due to the mixing of the p-h
states with the 2p-2h "doorway" states 29).

For the (d t pi 1)1- 2- single-particle resonance configurations discussed above,
case (i) seems to apply. Aside from narrow resonances of mostly different spin or
parity superposed on top of them, these resonances are weIl described by the p-h
model without fragmentation of their strength. This is understandable, since these
excitations lie at relatively low energies (4.65, 5.22 MeV for 1-, T respectively) in
the compound system, where the density of complicated states of the same spin and
parity is expected to be small.

Für the resonances predicted by the p-h model above E; = 3 Mev the situation is
much less clear. Above En = 4.5 MeV, no R-matrix analysis has been performed, and
hence our knowledge of the spins of the observed resonances 1) is restricted to lower
limits based on the maximum allowed fluctuation AlT = 0.74 (2J + 1)/En in the cross
section. No information concerning the parities of these levels is available. In view
of these facts, the following comments on the possible identification of p-h resonances
are necessarily somewhat speculative,

We now consider each of the calculated p-h resonances in turn:
5.1.1. The (dt p';lh_ resonance at E; = 3.76 MeV. Experimentally 1,25), a wide

ir ~ 300 keV) resonance is seen at E; ~ 3.70 MeV. However, both the cross-section
fluctuation AlT and the R-matrix analysis of! suggest an assignment of 1- for this
state. The only nearby s: resonance seen experimentally 1) is at En ~ 4.126 MeV.
Unfortunately, the width of this resonance is only r ~ 80 keV, which is a factor of 3
smaller than the calculated width ofr ~ 210 keV. Thus the identification ofthis state
with the 3- p-h resonance is somewhat doubtful. Another possibility would be a 3
assignment for the state at En ~ 4.25, as suggested by Fossan et al. 19). The R-matrix
analysis of I is incompatible with a r assignment, however. FinaIly, the state at
En ~ 4.64 MeV with J ~ 2 is also a candidate for identification with the 3- p-h reso
nance. Although this state lies about 900 keV above the calculated 3- resonance, its
width ir > 150 keV) is more in accord with the theoretical value than that of the
state at En = 4.126 MeV.



15N NEUTRON SCATTERING (Il) 471

5.1.2. The (2st pi1)1- resonancetat En = 4.89 MeV. This resonance is expected
to exhibit an interference pattern characteristic of an s-wave. No resonances which
show a elear interference with the background are observed above En = 3.5 MeV.
However, it should be noted that such interference effects may be difficult to observe
because of the problems of energy resolution and overlapping resonances. Because of
the very crude contact force which we use, the predicted p-h resonance energies could
be in error by 1-2 MeV. Alternatively, one can try to identify 1- p-h states by com
paring observed resonances in n +15N with T = 1 levels seen in 160(y, n) 150 . In the
region ofinterest here, photoneutron peaks are seen at 19.08, 19.5 and 21 MeV c.m.
energy in 160 . The first peak lies in the neighborhood of a wide 1- resonance in
n+ 15N at 18.28 MeV (En = 3.70 MeV), but the assignment of J = 2+ seems well
established for the 19.08 MeV state 9).The peak at 19.5 MeV also does not seem to be
identifiable as a p-h resonance 3). Only the 21 MeV resonance in 160 (En = 6.6 MeV
in n +15N) 'is a reasonable candidate for identification with the (2s t pi1)1- p-h state
[refs. 3,9)]. Thus on energetic grounds, as weIl as onthe basis of the coupled channel
calculation, it does not seem possible to identify the wide 1- resonance at En = 3.70
MeV with the (2st Pt 1)1- configuration. The small resonances at E; = 6.28, 6.42
and 6.65 MeV, on the other hand, are alI consistent with J = 1 and could be compo
nents of the p-h state. This hypothesis is supported by a consideration of the energy
averaged cross sections of fig. 6 of I. For averaging intervals of 300 or 500 keV, the
above three components merge into a single peak at En = 6.5 MeV, very elose to the
energy En = 6.6 MeV expected für the (2st pi!)1- state.

5.1.3. The (d-i-pi 1)2- resonance at E; = 5.02 MeV. The most promising candi
date for identification with this resonance is the wide state seen experimentally at
E; = 4.25 MeV. The calculated width of r ~ 120 keV is somewhat smaller than the
value r = 300 keV obtained in ref. 25). However, the experimental level lies eloser
to the (d t Pt1)2-p-h resonance than the calculated one, and the larger width could
be due to a greater admixture of the dt single-partic1e resonance.

Another candidate is the wide (r > 150 keV) resonance at E; = 4.64 MeV with
J = 2. Further comment is futile without a firm spin and parity assignment for this
state.

One could also suppose that the 2- p-h resonance is fragmented, and search for a
number of small components whose total width is roughly equal to the calculated
width H. Narrow resonances consistent with J = 2 are seen experimentally at
En = 4.8, 5.06 and 5.9 MeV with widths of r ~ 40, 25 and 70 keV, respectively.

t As in 160 ca1culations3-S.30-32), the (lds: p...-1),- state lies above the (2Stp.a -1),- state,
although the unperturbed energies are reversed. ~This has been verified by following the trajectories
of the resonance poles as a function of the coupling strength Vo.

tt The expected sum ru1e is that the total width of the calculated p-h resonance is about
equal to the sum of the total widths of the fragments. Such a sum rule must be viewed with caution
since (i) if the fragments are appreciably split in energy,one must consider the infiuence of
penetration effects on the widths (ii) the 2p·2h states which mix with the p-h resonance also
have a natural width which should be inc1uded in the sum rule.
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These three resonances have a summed width of 135 keV and a center of gravity at
E; = 5.25 MeV. The good agreement with the calculated p-h resonance may be for
tuitous.

5.1.4. The (2St Pt 1)2- resonance at E; = 7.3 MeV. The experimental cross sec
tion in the region around En = 7.3 MeV is quite complicated. However, if the cross
section is averaged over a sufficiently large energy interval (LI = 500 keV in fig. 6 ofT),
a single broad resonance around En = 7.3 MeV emerges. It is very tempting to identify
this energy-averaged structure with the calculated p-h resonance at the same energy
but see subsect. 5.1.5 below. The calculated total cross section of about 1.2 b at
E; = 7.3 MeV agrees reasonably weIl with the experimental value of 1.45 b. The
remaining discrepancy is certainly due in part to our omission ofthe inelastic channels
(t+ and 1-+ in 1 SN) which open up at E; = 5.65 and 5.67.

5.1.5. The (dt Pt 1)1- resonance at s, = 7.75 MeV. In 160, this componentis
observed at 22.3 MeV, corresponding to En = 7.3 MeVifwe use the Coulomb energy
of ref. 20) and E n = 8 MeV if the value given in sect. 4 is used. Thus the 1- p-h reso
nance could conceivably be identified with either ofthe broad peaks seen in the energy
averaged cross section at En = 7.3 or 8.5 MeV. Although the calculation suggests
J = r for the peak at 7.3 MeV (see subsect. 5.1.4), the calculated energy is not
reliable to better than ±1-1.5 MeV. Thus we could have either J = 1-, r or r, 1
for the peaks at En = 7.3 and 8.5 MeV.

5.1.6. The (d t pi 1)0 -1 - 2 - 3 - resonances. Because of the increased force strength
Va which we have used, as compared to refs. 8,20 - 24), these resonances are no longer
visible in the theoretical cross section of fig. 2. Although the experimental cross sec
tion still displays considerable structure between 9 ~ En ~ 16 MeV, the energy
averaged cross section (fig, 6 of I with L1 = 500, 1000 keV) exhibits only one clearly
defined resonance at about En = 9.7 MeV. This resonance arises from two prominent
peaks at En = 9.61 and 9.77 MeV (see table 1 ofI) with spins J ~ 3, and hence one
is tempted to identify this structure with the (dt pi1)3 - p-h configuration. Indeed,
some previous calculations 12,20-21) have placed this r state in the region 9.5 ~ En

~ 10 MeV.
In the reaction 160(y, n) 150 , the prominent peak at E = 24.3 MeV is usually

interpreted as the (d t Pt1)1- p-h state 9). In n+ 15N, the 1- state should thus appear
at about 10.1 MeV. Unfortunately, the presence of the two large peaks (J ~ 3) dis
cussed above would tend to mask the effects of a further broad 1- peak in this region.

Finally, there seems to be no evidence that the (dt Pt 1)0 - 2 - configurations are
seen experimentaIly. Several very broad undulations still visible in the average cross
section above En = 11 MeV cannot be meaningfully associated with these resonances.

5.2. EFFECT OF VARYING THE SINGLE-PARTICLE POTENTIAL

To explore the sensitivity of the results to the choice of single-particle potential,
calculations have also been performed with potentials other than those listed in table 1.
For example, a Woods-Saxon plus Coulomb potential was used to generate the Pt 1
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and pi 1 proton-hole wave functions, the depths ofthe Woods-Saxon potential being
readjusted so as to reproduce the correct binding energies. The total cross section
obtained is practically identical to that of fig. 2, indicating that Coulomb effects are
unimportant. In addition, the depth of the p-wave potential for the continuum has
been varied between 48 and 60 MeV, other parameters of pot. A being kept fixed.

2

b

5 7 9
En (MeV)

11 13

Fig. 4. Calculated elastic (upper solid curve) and inelastic (lower solid curve) total cross sections
using Vo = 925 MeV· fm", g= 0.312 and the parameters of potential C. The total cross
section obtained using potential A (dashed line) is given for comparison. The difference in cross

section is due to the inc1usion of I = 3 in potential C.

The magnitude of the total cross section varies somewhat, but the positions and
widths of the p-h resonances remain unaffected.

!

5.3. EFFECT OF HIGHER PARTIAL WAVES

The calculations described in subsects. 5.1 and 5.2 have included only S-, p-, and d
waves in the continuum. In this section, we investigate effects due to higher partial
waves.

It has been suggested in ref. 19) that the prominent resonance at En ~ 5.73 MeV
may be due to the (1ft 1Pt1) configuration. To investigate this possibility, we have
performed calculations including the f-wave. We first adjusted the I = 3 weIl depth
so that a single-particle resonance was obtained at the energy of the f2. single-particle
state given in refs. i7,18). The 3+ and 4+ resonancesarisingfrom the z(ft Pt 1) coupl
ing then lie at E; = 4.02 and 3.8 MeV, respectively, with widths of r ~ 250 keV.
No resonances which are likely to have J = 4 are seen experimentally in this region.
This suggests that the 1ft single-particle energy given in refs. 17,18) is inappropriate
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here. We then adjusted the l = 3 weIl depth so that the solution ofthe coupled equa
tions yielded the 4 + resonance at the desired energy of En = 5.73 MeV. The total
elastic cross section 0 btained with this potential (C) is shown in fig. 4. The 3+ and 4+

resonances are practically degenerate (En = 5.9 and 5.73 MeV, respectively), so that
they merge into one bump in the total cross section with a peak at E; ~ 5.77 MeV.
The peak cross section of 2.86 b agrees weIl with that of the large resonance seen ex
perimentally at En = 5.73 MeV. However, the 3+ and 4+ resonances both have cal
culated widths of T ~ 750 keV, while the resonance seen experimentally 19) has
r ~ 165 keV. This indicates that at best only some fraction ofthe (f~ Pt1) configura
tion is present in the resonance at E; ~ 5.73 MeV. The uncertainty in the value for
the f~ single-particle energy renders even this modest conclusion somewhat dubious.

In ref. 19), it is also suggested that the narrow (r ;;;; 30 keV) resonance seen at
E; ~ 5.42 MeV is perhaps due to the (ld~ lpt"1)4- configuration. In order for this
state to have a width in our model, we must include continua with l ~ 4. We have
performed calculations with potential D which includes the g-wave. The 4- resonance
was found at an energy En = 6.325 MeV with a width of r ~ 1.1 keV. There would
be no chance of observing such aresonance, since the experimental energy resolution
is about 20 keV in this region.

5.4. ANGULAR DISTRIBUTIONS

In fig. 5, the calculated angular distributions are compared with experiment in the
region 2 ;;;; En ;;;; 3 Mev of the dt single-particle resonance. The agreement with ex
periment is reasonably good except that the calculated cross sections have a tendency
to be somewhat low for backward angles.

The calculated coefficients BL of the expansion

der
- = 'f,BLPL'{COS e)
dQ L

are shown in fig. 6, together with experimental results taken from refs. 1,26).

6. Summary

'Xle have presented the results of a calculation of the total and differential cross
sections for the reaction 15N(n, n) 15N using the method of coupled channels. A
simple contact force for the residual interaction was used, and calculations were
restricted to a Ip-Ih configuration space.

The main success of the model is in the region of the d t single-particle resonance.
The strength and spin mixture of the residual interaction were adjusted so that the 1
and 2- resonances arising from the (dt Pt1) configuration are found at E; = 2.3
and 2.9 MeV, respectively, corresponding to experimentally observed wide resonances
ofthe same spin and parity 1.25). With this choice ofresidual force, the absolute mag
nitude of the cross section and the angular distributions are in good agreement with
experiment in the region 2 ;;;; e, ;;;; 3 MeV.
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The main weakness of the model is the omission of 2p-2h (and more complicated)
configurations. Although the number of resonances seen in the compound system
16N is not particularly large, there are still many more states observed than are pre
dicted by the p-h model. However, the p-h model is capable of describing the enerqy
averaged cross section. The averaging interval LI must be sufficiently large so that the
narrow compound resonances are smoothed out. Indeed, when LI ~ 300 keV, four
broad peaks emerge in the energy region 6 ~ En ~ 10 MeV, which have been ten
tatively identified with the (zs, Pt 1)1 -,2-' (dt Pt 1)1- and (dt Pt1h- p-h configura
tions. The p-h caIculation also reproduces the magnitude of the average cross section
in this region, when allowance is made for the effect of inelastic channels.

It should be noted that not all resonances which have an appreciable width rare
explainable in terms of the p-h model. Two examples are the 1+ and 1- resonances at
En = 2.93 and 3.70 MeV with T = 260 and 300 keV, respectively. Even if these states
are predominantly of2p-2h character, their large width could be due to an appreciable
admixture of the nearby dt single-particle resonance.

Thanks are due to R. H. Lemmer, C. Mahaux and H. A. Weidenmüller for many
discussions. Most of the numerical ca1culations were performed on the CDC 3300
at the Max-Planck Institut für Kernphysik in Heidelberg.
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