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Zussmmenfassung

Es besteht allgemeine Ubereinkunft, daB die Materialbilanz eine der
wichtigsten Mafnahmen zur Uberwachung spaltbaren Materials ist, da
sie Zahlen produziert. Das Ergebnis der Materialbilanz fiir eine kern—
technische Anlage widhrend einer Inventurperiode ist eine Aussage am
Ende der Inventurperiode, ob die Differenz zwischen dem Buch— und dem
realen Inventar (Material Unaccounted For, MUF) signifikant ist, d.h.
auf eine Entwendung hindeutet, oder nicht. Daher kommt der Analyse des

MUF besondere Bedeutung zu.

Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil werden die
denkbaren Komponenten des MUF (zuféllige und systematische Fehler, ProzeR-
verluste usf.) zusammengestellt, und es werden mit Hilfe historischer Daten
Aussagen iliber die relativen GrdRenordnungen dieser Komponenten gemacht. Im
zweiten Teil werden die méglichen Aussagen der Inspektionsbehdrde iiber den
Wert des MUF analysiert. Dabei wird dem Problem der Fortpflanzung der Fehler
1. Art im Falle einer Folge von Inventurperioden besondere Beachtung geschenkt.
Die Relationen zwischen den das Problem charakterisierenden Parametern: Fehler
erster und zweiter Art, kritische Masse, Zahl der Inventurperioden und Varianz
t

des MUF werden mit Hilfe von Nomogrephen illustriert.
Abstract

It is accepted generally that material accountancy is one of the most important
safeguards measures as it produces numbers. The result of the materiasl account-
ancy during one inventory period is a statement at the end of the inventory
period whether or not the difference between the book inventory and the physical
inventory (Material Unaccounted For, MUF) is significant. Therefore, the

analysis of MUF is of central importance.

This paper consists of two parts: In the first part the possible components

of MUF (random and systematic errors, process losses etc.) are collected.

With the help of historical data statements are made on the relative orders

of magnitude of these components. In the second part the possible statements

on MUF of the safeguards authority are analyzed, in the case of one inventory
period as well as in the case of a sequence of inventory periods. In the latter
case special attention is given to the problem of propagation of errors of the
first kind. The relations between the relevant parameters error first and second
kind, critical mass, number of inventory periods and variance of MUF are

illustrated with the help of nomographs.

als Manuskript einger. 19.4.1972






Safeguards Statements Based on Relevant Components

of Material Unaccounted For (MUF)

)

R. Avenhaus, D, Gupta, H. Singh+

Institut fir Angewandte Reaktorphysik
Kernforschungszentrum Karlsruhe

Federal Republic of Germany

1. Introduction

According to Article 30 of INFCIRC/153 / 1 7/, the technical conclusion of the
Agency's verification activities shall be a statement .... of the amount of
material unaccounted for over a specific peribd, giving the limits of accura-
cy of the amounts stated. However, a safegﬁards organization has to be in a
position to know whether the MUF and the standard deviation of MUF are signi-
ficant or not. In other words, the safeguards organization should be able to
decide — in case the MUF is found to be other than zero with some value of
standard deviation - whether these values can be explained by the known operat-—
ing conditions in a facility or whether further information 1is required to ex-
plain them. For this purpose the safeguards organization requires a formslized
model with the help of which it can arrive at a decision of this nature. In such
a model different components of the MUF and s number of statistical quantities

are required as input data.

In a recent publication ZT-2_7'some published data on MUF were analysed mainly

to understand the behaviour of the MUF data and to discern its various components,

The present paper has been divided into two parts. In the first part an effort

has been made at the beginning to formalize the relation between all conceivable
components of MUF which may be considered to be relevant. Some of the results in
/2 7 are then discussed with a view to find out those components which contri-

bute most to the actual values of MUF, On the basis of this analysis a number

+)
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of components considered initially for formalization has been eliminated
to keep the subsequent itreatment perspicuous. The second part deals with
statements which an inspection organization can make on MUF after coming
to a decision. With the help of some monographs the variation possibilities

of a particular decision have been analysed with reference toc a single
inventory and a sequence of inventories.

2, Anglysis of MUF-Components

2.1 Components of MUF

Under a diversion free condition, the difference between the book and the
physical inventory (MUF) mey be considered to consist of measurement errors

a and process losses b.

Thus ,
MUF =a +b (2.1)

Both these components have random and systemstic parts.

The measurement errors may basically be composed of three parts, the repro-

ducibility a, the systematic errors a, which are of random origin (calibra-
. 1 . . . 2 . .

tion errors) and biases a, which will have a fixed value for a given laboratory

and a given instrument, so that

The process losses which may consist of unmeasured process losses which have
the facility and the hidden process inventories which remain in the facility

may have random parts br and systematic parts bs’ too:
b=b_+Db (2.3)
r s

Both the two components a and b may consist of one part which is proportional

to the feed F of one campaign, and an sbsolute part which is independent of F.

a=a+a’ F; b = b+ b2 F (2.k4)

Thus one obtains in the diversion~free case the following list of MUF-contri-

butions:



1 1 1 1 1 2 2 2.2 .2
MUF = a_ + +a +b_ +b + )
r, ar2 & br bs (ar1 +ar2 +as+br+bs)F (2.5)

By definition, the expectation value E(MUF) of the MUF, if one assumes all

contributions to be mutually independent, is given by

1.1 ,2 . 2 1.1 2 2
E(MUF) = E(a + = . EF+b°.
( ) (as bs+(as+bs)F) as+bs+as EFtbs EF (2.6)

The variance of MUF is given by

var(MUF) = var(a 1+a ! +b1+(a 2 +g 2 +b2)F)
B PR r T, X, r
1 -, 1
= var s +yar a +var b1+E2F(var a‘2+var a 2+bar b2)
r1 » r r, r, r

(Terms with products of variances are neglected here.) (2.7)

If one consideres the relative MUF which is defined as MUF divided by feed,
one has instead of (2.6,7)

1 1
Ea Eb
MUF s 8 , 2.2 A~ as
E( T ) = i ﬁaSvas (2.8)
a1 a1 1

T T _
Ml] r ~
var(-Fz) = var(—§;)+ var(-§§J+var(—§£)+var ar2+var ard+var bi (2.9)

1 2
It mey be seen that the biases of the measurement errors and the systematic
part of the process losses contribute to the expectation value of the MUF,
whereas the random and systematic parts of the measurement errors and the

random parts of the process losses contribute to the variance of the MUF,

Remark :

It is possible that some other operating conditions and usages contribute

to the MUF, as for example write offs, or transfers from one inventory period

to the other. However, it is difficult to study them theoretically; therefore,

it is assumed here that these contributions, if they are significant, are classi-

fied in a second action level.
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The formalization procedures could be considersbly simplified if before pro-

ceeding further, answers to the following two questions could be obtsined:

(i) What components of MUF, listed in eq. (2.5) are important?

(ii) What is the distribution of MUF or relative MUF?

One statement can be made without further analysis: As a material balance con-
sists always of sums of batch data, the contribution of the reproducibility

of the measurement errors can be neglected in comparison to those of the cali-
bration errors and the biases. Thus one has instead of eq. (2.5,8,9), if one

writes a_ instead of &,

2
MUF = a1+a1+b1+b1+(a2+a.2+b2+b£)F (2.10)
r s r s r s r s
1 1
Ea Eb
MUF, _ s s 2 2
E(F)—EF * g7 * Fa_ + Eb] (2.11)
1 1
a b
MUF r r 2 2
= Vv - _ 2.12
var( T ) xar(F ) + var( F) +var & + var b ( )

However, for small campaigns the contribution of the reproducibility may not

be negligible, and has tc be analysed carefully.

The question of the order of magnitude of the other MUF-components and the que-
stion of the MUF-distribution can be answered only on the basis of extensive
analyses of historical data. Since such an analysis of more than 200 historical
values of MUF has been made recently L:’2“7; particularly in respect of these

two questions, the results of this analysis are summarized below.

2.2 Order of Magnitude of MUF-Components; Distributions of MUF and Relative MUF

2.2.1 Measurement eroors vs process losses

In Table 1 a list of presently attainable systematic measurement errors is

given.

In Tables 2A,B,C,D and Table 3 a list of MUF-values is given for different
cases; they consist of MUF-values from a single reprocessing plant (2A), from
a single unknown plant (2B), from a group of facilities handling U-235 in puri-
fied form, i.e. not reprocessing facilities (2C), from a group of facilities

handling Pu in purified form (2D), and from a known type of facility and
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material (3). The data presented in these tables indicate that

(i) in Tables 2B,C,D and 3 the standard deviations are comparable to the

standard deviations of the systematic errors alone,

(ii) In Table 3 80 % of the MUF-values can be explained by the systematic

errors of measurement alone,

(iii) There is always a small but positive mean value of MUF,

From these facts one can conclude: The largest contribution to MUF comes from
systematic errors of measurements. However, as the positive mean value of MUF
indicates, there is a small contribution of process losses which cannot be
neglected. This cannot come from measurement bisses as they have to be positive

or negative by nature.

2.2.2 Feed-dependent components vs feed—~independent components

As the variance of the relative MUF-values appears to be much more stable than
the variance of the absolute MUF-values and as the measurement errors contri-
bute mainly to the total MUF-variance, one can conclude that the feed independent
parts of the systematic errors which contribute to the variance of MUF are small
compared to}the feed dependent parts - that means one can neglect the terms a;

a

and var (“%") in eqn. (2.10) and (2.12).

Furthermore the mean value of the relative MUF is much more stable than the mean

value of the absolute MUF. Therefore, one can also neglect the feed independent
. ' 1

systematic part of the process losses, that means the terms bs and

b1

8 o}
oF in ean. (2.10) and 2,11),

Besides, it can be argued further that in most cases, the total integrated amounts
of feed during the campaigns considered here are large, so that the random part
of the feed-independent process losses as well as the feed-independent systematic
measurement errors can also be neglected. This means that one can neglect the

terms a; and b; in eq. (2.10).
Therefore one has instead of (2.10,11,12)

WF a +8 +b +b (2.13)
F b o s r 8



MUF
2 =

E( =

MUF
+ . — - - ‘.
8 bs, var( = ) = var &, + var br (2.14)

2.,2,3 Distribution of absolute MUF vs distribution of relative‘MUF

The analysis of the distribution of the MUF in / 2_/ with the help of the
'k-statistics' / 5_/ showed that:

(1) Both the absolute as well as the relative MUF are normsl distributed,
if they are considered facilitywise; they are not normal distributed if

MUF-values of different types of facilities are considered together.
(ii) The relative MUF is 'better' normally distributed then the absolute MUF
in the sense of the k-statistics.
One can therefore conclude: For the purpose of making statements on the signi-
ficance of MUF the relative MUF, i.e. MUF divided by feed, is the most appro-

priate quantity; it is normally distributed with an expectation value and a

variance which are given by the formulase (2,1k4),

3. Inspector's Statement on MUF

3.1 General

At the end of one inventory period, when the value of MUF for that inventory
period is established, the safeguards organization has to decide whether the
MUF is significant or not, in other words, he has to decide whether the MUF
can be explained by measurement exrrors and process losses or whether a second

action level has to be started to obtain further clarification.

For this purpose a two step procedure is proposed in the following:

The first step consists of a trial by the organization to explain the MUF with
the help of the measurement errors alone. That means, it fixes an error first
kind probability o and calculates the significance threshold x for the relative

MUF according to the formula
*a,
T—a = ¢(==) -
g, (3.1)
where Oy is the standard deviation of the relative systematic error for the

inventory period considered and ¢ is the Gaussian distribution function -

according to chapter 2 the relative MUF can be assumed to be normally distributed.
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If the relative MUF is smaller than X, the safeguards organizstion will be

justified in accepting the MUF value as normal.

Note: The described test is a one—-sided test. One can also construct a two
sided test which means that the safeguards organization will not be justified
in taking the MUF value as normal if it is found to be smaller than —x, and

greater than ka. In this case the relation between o and X, is given by

-2 = ¢(-—-xa) (3.2)
2 o *
a

For reasons given later, the one—sided test is used here. If the relative MUF

iS”">xa, the safeguards orgenization as a second step, fixés & new significance
threshold according to the formulsa

1~a = ¢(£F) ‘ (3.3)

o
v

where ¢ is the standard deviation and u the average value of the relative MUF,
as given by a collection of historical MUF-data and which is lsrger than X .
Only if the MUF value is still greater than x+u, a second action level is

started by the safeguards organization,

The reasons for this proposed procedure are the following:

As discussed in the second chapter, the greater part of the MUF-standard devia-
tions are comparable to the standard deviations of the systematic errors, in
one set of MUF-values 80% of the values could be explained with measurement

errors aslone; this therefore can be considered as the normal case.

The standard deviation of the systematic errors can be obtained by one or more

of the following three possibilities

(1) Collection of historical data of stendard deviations for one plant,
{(ii) Comparison of the results of measurements with the same type methods
in similar plants.
(iii) Performance of an interlabtest in the case of a new plant when no

historical dsta are avsilable.

The process losses should be taken into consideration only in s second step,
as historical data on them are scarce and are much more difficult to establish
(data on systematic errors could be obtained in principle with one interlabtest).

In the case of new facilities such historical data do not exist at all, However,
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in these cases one could eventuslly consider historical data from similar

plants.

3.2 The Case of one Invéntory Period

For clarity of presentation, it has been assumed here that the MUF consists
of systematic measurement errors alone which can be déscribéd by a variance,
and possibly of a diversion. However, the calculations can very easily be

generalized to the cases in which biases of measurements and process losses

have to be taken into consideration.

For a given inventory period the error first kind probsebility o and the signi-
ficance threshold x, are related to each other according to éqn. (3.1). The
probability of detection p (which is one minus the error second kind probabili-~
ty 8) in case the fraction M of the feed is assumed to be diverted, is given
R M 3&

p(M)= 1-8(M) =¢(> - ==) (3.1)

or with (3.1)

-1,%g

pON) = 0(G - Uy )3 Uy = 07 (GR) (3.5)

[+

Here, ¢_1 is the inverse function of the Gaussian distribution function.

Note: The probability of detection in the case of the two sided test is given

by

p(M) = o(% - U,_ o + 1-8(3 , oo (3.6)
2

As this formuls is more complicated than that forthe one sided test, the one
sided test is used here although the following calculations can also be per—
formed with the two sided test. .
nization which is interested in the value of a MUF which is too large and not
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in that which is negative,

The relation between the four quantities p,M,0 and a is given as a nomograph
in Fig. 1. This kind of representation is especially useful if one desires to
fix any three of the parameters occuring in (3.5) and to determine the remain-

ing one.



=] =

The use of the nomograph is illustrated with an example. Let p = 95 % and
a =5 %; following the dashed line, a value of §-= 3.3 is obtained. This
means that an amount = 3.3 times the value of the standard deviation

(in %) of the systematic error for the inventory period considered, can be
declared as diverted for the chosen values of p and a. If now one chooses
a value of M = 2 % of the feed as significant, i.e. above which an amount,
if diverted should be detected, then the actual value of o has to be (by
following the dashed line up to the right hand side ordinate) 0.6 % of the

feed.

It is also possible to perform sensitivity tests with regard to the four variab-
les with the help of this nomograph; for example; one could investigate the de-
pendence of M and o if p and o were kept constant., For p = 95 % and a = 1 %
(instead of 5 % as in the previous case), one gets a value of M = 2,5 % for

the same ¢ = 0,6 %, Thus a reduction of the o value by a factor of 5 (which
means only 1/5th the number of false alarms than before) causes an increase

of M from 2 to 2.5 % only. It is to be notéd that in the renge of p values of
90-99 % (i.e. B = 10-1 %), the results are symmetrical with respect to M and ¢ ;
i.e, the same value of M = 2.5 % would be obtained for the fixed value of

o= 0.6 % if the o value was kept at 5 % and the value of p was increased from

95 % to 99 %.

Since both the value of M and ¢ are normalized withArespect to feed, the nomo-
graph can be used for practicelly any absolute values of throughput in a facility.
Also, by varying the values of p and a, the absolute values of significant amounts
could be kept in the same range for a given o, in facilities with different
throughputs. For example, in one plant with a throughput of 100 kg in a campaign,
an emount of or above 2 kg could be declared as significant with a systematic
measurement error ¢ of + 0.6 %, with p = 95 % and a = 5 %. The same amount of

or above 2 kg can also be declared as significent in ancther facility with a
throughput of 80 kg in a campaign. with the same systematic measurement error of

+06%forap=99%and a=5%,or forap=95%and a=13%,

It is to be noted that the probability paper is particularly suitable for this
type of nomographs. The parameter o is linear in the p, %’plane, Besides, for

& given set of values for p M and o the corresponding value of a can be obtained
fairly easily. A straight line parallel to the other a line is drawn through the
point at which perpendiculars drawn from the given values of p and %-values meet.
The point at which the straight line meets the p—axis is the value of a saught.
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3.3 The Case of More Inventory Periods

The case of a sequence of n inventories in one year brings with it a number
of new features’which were already the subjects of a number of previous pub-
lications /6, T, 87/. Since an exhaustive treatment of this problem runs into
very difficult mathematical.problems only a special case has been considered
here to indicate in a way similar to that for a singlerinvehtory periocd, the

relations between the different quantities involved.

The n MUF-values for the n inventory periods are given by

1
MUF(1) = I +T,-I,
. (3.7)
MUF(n) = I%+T -I
[o] nn

vwhere Ii is the starting inventory for the i-th inventory period, Ti the al-
gebraic sum of all throughput measurements in the i-th inventory period (i.e.
receivings minus shipments) and I, the ending physical inventory of the i-th

inventory period.

The main problem arises in the choice of the starting inventory Ii and as shown
later, of the amount assumed to be diverted in a single inventory period. If
one assumes that the accuracy of the physical inventory taking is considerably
bettexr than that of the throughput measurements for that inventory period, it
is reasonable to choose the ending physical invVentory of the foregoing inven-
tory period as the starting inventory of the following inventory period. In

that case one has instead of (3.T)

MUF(1) = I_+T,-I,

MUF(2) = 141,71, (3.8)
MUF(n-1) = Lot I

MUF(n) =1 R Sy

n
Let Fn be the feed per inventory period and F the feed per year, that is

‘F = nF (3.9)
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Further let o1 be the standard deviation of the inventory taking and Orp
the standard deviation of the throughput measurements divided by the feed
per inventory period, both expressed in percentage. The latter is assumed
to be independent of the length of the inventory period (i.e. only syste-
matic errors determine the accuracy). Then the variance of the relative MUF
ver inventory period is given by
2
MUE(i)) _ , o1
F 2

n F
n

var ( + 205 for all i=1,.,.n (3.10)

(One has 20%

put measurements are independent of one another.)

as it is assumed that the systematic errors of the input and out-

If one fixes for all inventory periods the same error first kind probability
- this is reasonable as by the chosen starting inventory the situation in
all inventory periods is the same — and if one assumes that in each inventory

the amount M, is diverted, where

i ' (3.11)

is the sum of the material assumed to be diverted in one year, then the pro-
bability of detection p(M1....Mn) i.e. the probability to detect a diversion

at least once is given by

oo e F

P(MyeeaaM ) = 1-p(—MU—§—§-1—l £ le1 M"z B) ¢ 4 | M) (3.12)

Here , x is the significance threshold for each inventory period, it is related

to the error first kind probability o by an equation equivalent to egn. (3.1).

If, as assumed, the physical inventory teking is much more accurate than the

throughput messurements, one can factorize the expression (3.12) and obtain

= o € ) s pOR) € x /) (3.13)

This probability of detection depends strongly on the strategy of the operstor
i.e. his choice of the n-tupel (M1,...,Mh) i.e. the smount diverted in a single
inventory period, with the boundary condition (3,11). If one assumes that the
operator diverts the same amount per inventory period, %3 then the probability

p(My...M )

of detection is given by
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~ M - n
p) = 1= [Tou,_ - —L—) 7
n} 20?+20§~F2
n
or,with (3.9)
P(M) = 1_ L_¢(U1_a" 1 . %)—7n (3.1’4)
12(n9—§:)2+20,§
Eqn. 3.1L4 simplifies to
p() = 1= [ou,_ - ==-2) 7" (3.148)
203 ‘

if the accuracy for the inventory determination is neglected in comparison to
that for the throughput. In this case the n probsbilities of detection for the

single inventory periods sre independent.

The error first kind probability o' for the sequence of n inventory periods
which is obtained by putting M = O in eqn. (3.1L) is connected with the error

first kind probability o for one inventory period by
1=a! = (1-a)? (3.15)
For a €1, one obtains
o' = na (3.16)

The relation (3.15) is illustrated in Fig. 2a.

T 2 mlhimerm anms T 3 3
It can be shown eéasil] that the mean number N of inventory periods

alse alarms is given by

H

between two

(3.17)

=
1
al—

Correspondingly, the mean number of years N' between two false alexms is given
by

N’ =u-3- (3.18)
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Therefore, the relation between N' and N is given by

1
N = ———— (3.19)

1\n
=0-p
For N »» 1 one obtains, corresponding to eqn. (3.16)

-1

N (3.20)

The relation (3.18) is shown in Fig. 2b.

One can either choose the error first kind probability for one inventory period
(or the mean number of inventories per false alarm) and calculate the error
first kind probability for one year (or the mean number of years per false

alarm) or inversely.

Again, as in the case of one inventory period, the relation (3.13) between the
different importent quantities is represented as a nomograph. In order that the
graphical representation does not become too complicated, the quantities oI°I/F
and o, are kept constant. In Figure 3a two sets of the parameters invemtory I,
standard deviation Trs expressed as percent of inventory and feed F per year,

which fulfill the condition oI-I/F = constant are given. The constants C1 and
02 are chosen in such a way that together with the chosen relative standard
deviations o of the throughput measurements the condition is fulfilled that
the accuracy of the physical inventory taking is much better than the accuracy
of the throughput measurements in the worst case i.e. n = 12, In Figure 3b the

nomograph of equation (3.13) is given for the two sets of parameters

OI.I cI-I
C, = —=— = 0.005%, 20; = 0.1 % and C, = —5— = 0.05 %, 20,= 1%
An example is again given in the figure. For the case C, = 0.005%, 20,20, 1 %
& probability of detection of 90 % is chosen. This gives for n = 1 inventory

period ?er year and @ = 1 % an amount of M = 0,36 % of the feed. This is the
éignificant amount, which if diverted in the course of one year, can be detect-
ed with a probability of detection of 90 % (dashed path). If one now chooses
n=12 inventory periods per year (this means according to eq. (3.16) a'=12 %,
as one has to keep the error first kind probability o' per year comstant in

order to have a common basis for the comparison) one obtains the corresponding
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value of M = 0.0k % of the feed for the same probsbility of detection
of 90 % (dashed point dashed path). Thus one sees that in increasing of the
effort with respect to the inventory taking by a factor of 12 brings a

factor of nine with respect to the amount to be detected.

In Fig. 4 the simplified eqn. 3.14a has been presented as & nomograph., Be-
cause of the elimination of the accuracy for inventory measurements, the
measurement accuracy op can be introduced as a parameter. A similar example
is given to illustrate the use of the nomograph. It is to be noted that no
significant change in the M/F values are obtained by using this simplified
nomograph instead of that given in Fig. 3b. For p = 95%, n=1, a=1 % and

' GT = 0,5% dné'bbtaihs>M/F =2,8%; for p = 95%, n=12, a'=12 %‘ana O = 0.5 %
M/F value is reduced to 0.3 %. Again, an increasing of the effort with res-
pect to the inventory taking by a factor of 12 brings a factor of nine with

respect to the amount to be detected.

4, Conclusions

In the present report an effort has been made to formaslize the relation bet-
ween the different components of MUF, to determine the more important of these
components on the basis of an analysis of availsble MUF data and to analyse
the relevant parameters which influence statements of a safeguards organiza-
tion with regard to a possible diversion. In summarizing the results, a number
of conclusions can be drawn. They are howevér, subject to the restrictions and

boundary conditions discussed in this paper.

4.1 The basic number of components of MUF in a facility appears to be two
namely, the measurement errors and unknown or unmeasured process losses and
hidden inventories in that facility. A part of these components may be through-
put dependent whereas, another part may be independent of the throughput. Both
the components may have systematic and random constituants. Furthermore, the
measurement and the process components may have a bias. The biases contribute
to the expectation value and the rest of the components to the standard devia-

tion of the MUF.
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4,2 The data on MUF published sofar, reveal s number of interesting points.
The relative MUF values normalized with respect to feed are better suited

for safeguards purposes than the absolute values. They are composed mainly

of feed dependent terms. They can mostly be explainéd by systematic errors

in measurements which are supposed to be normal distributed. The contribu-
tion of the random errors in measurements may be negligible as it reduces
rapidly with increasing number of measurements. Data specific to & particular
type of facilities when normalized with respect to feed follow & normal distri-
bution with a positive bias. The bias point to a feed dependent process loss.
The systematic errors contribute mainly to the standard deviation of the di-
stribution with a small contribution from the random variations of the feed

dependent process losses,

4.3 Because of the dominating role played by the systematic errors in the
composition of the MUF values, it is possible to develop a two step decision
model for the preparation of statements on MUF, In the first step, the safe-
guards orgenization tries to explain the MUF with the help of systematic errors
alone. For this purpose it fixes a threshold value of MUF with a given error
first kind o. In case the actual values of MUF do not fall within this thres-
hold, the organization sets a new threshold with the help of historical data
which may be available for that type of a facility with the same value of a.
Only in case the MUF values do not fall within this threshold also, & second

action level is necessary to explain the high MUF values.

4.4 The significant amount M i.e. the amount sbove which & diversion can be
detected with a probability p, depends on four parameters namely, the values

of the error first and second kind o and B(1-8 = p), the numbers of inventories
n and the systematic errors of measurements for inventory and throughput,

o1 and O respectively (expressed in percentage standard deviation) for the
material balance period. For the case op <<0y {which msy be true for a majori-
ty of ceses), the value of M expressed in ebsclute unite, cen be kept within

a close spread over a wide range of throughputs in a particular type of faci-
lities and a given Oips by choosing properly the values of a,8 @and n. This has
the direct consequence that measurement errors (expressed as percentage of feed)

can be kept at the same value for a large number of facilities of the same
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type but with varying throughputs. For very large throughputs, if the
value of M is found to be excessively high, it can be reduced by increas-

ing the number of inventories per year, but not linearly.

4,5 It is to be noted that the analysis of the dependence of M on different
parameters mentioned in 4.4, refers only to the first step of the decision
model, i.e. when the safeguards organization tries to explain the MUF values
with the systematic errors of measurements alone, If the actual MUF value is
found to be larger than the M obtained with a given set ©f a and 8 values,

the safeguards organization has to test this MUF value for the same o and B

values in the second step mentioned in k4,3,
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Table 1: Systematic Errors
Relative Standard Deviation § 1277
Values from an__ US values /&7
Error interlab test /3/ o
Description
Pu U Pa 9)

Input to CR

Analytical - ’ - 0.25 0.20

Volume - - 0.30 0.30

Sampling - - 0.20 0.20

Total for Input 2.7 l.h 0.hh 0.41
Product from CR

Analytical - 0.20 0.30 0.10

Volume - - 0.10 0.20

Density - ‘ 0.31 - -
-~ Sampling - - 0.20 0.10

Total for Product 0.25 - 10.37 0.24
Isotopic wt %

U-234 (0.004 %) - 8.02 - -

U-235 (0.35 %) - 1.2k - -

U-236 (0.06 %) - 2.51 - -

Pu-238 (0.7%) 1.32 - - -

Pu-239 (70 %) 0.08 - - -

Pu-240 (23 %) 0.16 - - -

Pu-241 (5.5 %) 0.35 - - -

Pu-242 (1.5 %) 0.95 - - -
UF, Cylinder

Measurement

Netweight - - - 0.1

Uranium Sampling - - - 0.1

U-235 Sampling - - - 0.03

Uranium Assay - - - 0.15

U-235 Asssy - - - 0.30

Total Uranium - - - 0.21

Total U-235 - - - 0.36
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Table 2A: HNormalized MUF (Mi) Values for a Reprocessing
Facility / L /. (Normalized with Respect to Feed)

Serial 5 Mi Serial Mi‘ Serial § Mi

No. (% of feed)| YO (% of feed) No. % % of feed)

1 3.3k 11 0.33 21 - 0.59
2 AL 12 0.74 22 - 0.62
3 1.1 13 0.62 23 - 0.73

N 1.30 14 0.45 24 - 0,73

5 1.27 15 0.32 25 - 0.84

6 1.08 6 0.31 26 - 1.0k

T 1.00 17 0.22 27 - 1,04

8 0.95 16 0.06 28 - 1.08

9 0.93 19 - 0.46 29 - 2.31
10 0.90 20 - 0.49 30§ =2.63

Mean value (u): + 0.18

Standard
deviation (g): + 1,25
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Table 2B: Normalized MUF (Mi) Values for a Single Facility / 5 /.
(Normalized with Respect to Beginning Inventory and Receipts.,)

E Serial Mi Serial Mi Serial Mi
: No. No. No.
(% of Input) (% of Input) (% of Input)
1 1.94 10 0.23 19 0.04
2 1.38 mo | oar | e | o002
3 1.30 12 0.12 21 - 0.06
4 1.00 13 0.11 22 - 0.15
Ps 0.85 1k 0.09 23 - 0.19
6 0.65 15 0.08 24 - 0.80
i 7 0.46 16 0.08 25 - 1.12
; 8 0.33 17 0.08 |26 - 1.23
9 - 0.27 1 16 0,06 ‘ |

Mean value (u): + 0.22

8tandard &
deviation (0): + 0.TO
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‘Table 2C: Normalized MUF (Mi) Values for Facilities Handling U=235,
other than Reprocessing Plants [{,7,10 7o
(Normalized with Respect to Input)

Serial M, Serial M, Serial M.
No. (%‘ o; Input) No. (% 011" I;,p'm) No. (% oflInput)
1 0.73 10 0.2L 19 0.06
2 " 0.67 11 0.21 20 0.06

'3 0.65 12 | 0.8 | 21 - 0.06
L 0.55 13 0.17 T 22 0.0k

5 0.4k IS 0.16 23 0.02
6 0.kb 15 1 0.16 2k 0.01
7 0.30 16 0,09 25 - 0,05
8 S 0.25 T YT 0.07
9 0.25 18 0,07

Mean value (u):+ 0.23

Standard :
deviation (o):* 0.22
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Table 2D: Normalized MUF (Mi) Values for Facilities handling Pu
and Pu-239, other than Reprocessing Plants / 6,7 7.
(Normalized with Respect to Input.)

Serial Mi Serial | Mi
No. (% of Input) No. (% of Imput)
1 1.6k 11 0.18
2 13} 2 1 0.0
3 1.1 13 | 0.10
b 0.51 | 14 0.08
5 0.u47 15 0.06
6 0.39 16 0.06
7 0.29 17 - 0.10
8 0.23 18 - 0.14
9 0.22 19 - 1.28 ,
10 . 0.19 ‘

Mean value (u): + O.1k
Standard
deviation (9): * 0.67
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Table 3: Normalized Values of MUF (M.) for Groups of Facilities. Types of
Facilities and Material Used Unknown., (Small Nulber of Data/Facility)

Serial M. Ref., | Serial M. Ref. Serial M. Ref.
No. 1 1 1
1 5.86 5 46 0.4 11 91 0.07 5
2 5.Th 5 L7 0.39 5 92 0.07 1
3 2,96 5 48 | 0,36 5 93 0.06 11
L c.ulk 5 L9 . 0.35 5 9L 0.06 5
5 2.4k 5 50 0.35 5 ' 95 0.06 5
6 2.22 5 51 0.34 5 96 0.05 5
T 2.14 5 52 0.31 5 97 0.05 5
8 2,05 5 53 0.30 5 98 0.05 11
-9 1.80 11 54 0.30 5 99 0.0k 1
10 1.78 5 55 0.29 5 100 0.04 5
11 1.62 5 56 0.27 11 101 0.03 5
12 1.52 5 5T 0.22 5 102 0,02 5
13 | 1.b43 5 58 0.21 5 103 0.01 5
1 1.35 5 59 0.21 5 1ok 0.01 5
15 1.24 5 6o | 0.21 5 105 0.01 5
16 1.23 5 61 0.21 5 106 0,01 5
17 1.20 5 62 0.19 5 107 -0,01 1
i 1,18 5 63 0.19 5 108 =-0,02 5
19 1.18 5 6k 0.18 5 109 =-0,02 5
20 1.16 5 65 0.17 5 110 -0.03 5
21 1.14 5 66 0.15 5 111 -0,03 5
22 1,06 5 67 0.13 5 112 =0.05 11
23 1.00 5 68 0.13 5 113 -0,06 5
2k 0.9k 5 69 0.13 5 11k -0,06 5
25 0.94 11 To 0.13 5 115 -0,07 5
26 0.92 5 T 0.12 5 116 ~0,.09 5
27 0.90 11 T2 0.12 5 17 -0.10 5
28 0.85 11 T3 0.12 5 118 ~0.13 5
29 0.82 5 Th 0.11 5 119 =0.17 5
30 0.78 5 75 0.1 5 120 -0.32 5
31 ‘0,69 5 76 0,11 5 121 -0.36 5
32 0.67 5 17 0.11 5 122 -0.38 11
33 0.64 5 T8 0.11 11 123 -0, 41 5
34 0.63 5 T9 0.10 5 124 -0,62 5
35 0.62 11 8o 0.10 5 125 -1,96 5
36 0.61 5 81 0.1 5 126 -3.22 5
37 0.60 5 82 0.09 5
38 0.5k 5 83 0.09 5
39 0.53 5 84 0.09 5
Lo 0.52 5 85 0.09 5
L1 0.49 5 86 0.09 5
L2 0.49 11 87 0.08 5
43 0.L9 1 88 0.07 5
LY 0.43 5 89 0.07 5
45 0.k2 5 9 | 0.07 5

Mean value (u): 0,48

Standard
deviation (o): + 1,01
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