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Zusammenfassung

Die Amplitude für den Aufbruch von Deuteronen durch Protonen wird

unter Einschluß der Coulomb-Endzustandswechselwirkung in allen

Partialwellen analytisch berechnet. Die Rechnung basiert auf der

Annahme einer Zweistufenreaktion, wobei der Aufbruchsmechanismus

mit einer zero range-Näherung erfasst wird. Bei der Berechnung der
"nuklearen Komponente" der Endzustandswe~hselwirkungwird unter

Verwendung der gleichen Näherung nur der s-Zustand berücksichtigt.

Der Vergleich mit den experimentel~en Ergebnissen zeigt, daß das

Modell dem ursprünglichen Watson Migdal-Ansatz klar überlegen ist.

Abstract

The amplitude for deuteron break-up in deuteron-proton-collision

including Coulomb final state interaction (in all partial waves)

is derived analytically. The calculation is based on the assumption

of a two-step reaction with break-up mechanism of zero range.

Nuclear final state interaction is taken into account under the same

approximations in s-waves. Comparison with experiments indicates

a clear improvernent compared to the Watson-Migdal theory.





1. Introduetion

It is weIl known that in eonsequenee of the long range of the
Coulomb potential low energy proton-proton seattering eannot be

deseribed suitably by a partial wave expansion. ~s the pure

Coulomb seattering amplitude ean be evaluated analytically, the

appropriate method is a partial wave expansion of the differenee

of exaet and pure Coulomb scattering amplitudes 11j. This differenee

is eonventionally referred to as "nuelear" seattering amplitude.

The relative proton-proton state that oeeurs after a deuteron

break-up indueed by a deuteron-proton-eollision eontains mueh fewer

higher partial waves than a plane wave. The subsequent proton

proton seattering (proton-proton final state interaction) at low

relative energies ean therefore be deseribed in fair approximation

by pure s-wave seattering 121. However, seattering in higher

partial waves is apparently more important than for the analogous

neutron-neutron or proton-neutron final state interaetions.

Deviations of the experimental cross seetion 131 from the results

cf pure s-wave final state scattering caleulations 141 indicate a
non-negligible Coulomb seattering in higher partial waves.

It is demonstrated below that the amplitude for deuteron break-up

by protons with pure Coulomb final state interaction - in analogy

to Rutherford seattering - ean be ealeulated analytieally if

a) the break-up is assumed to be a two-partiele

meehanism of zero range,

b) Coulomb interaction is negleeted in the ineoming

ehannel, and

e) the deuteron wave funetion is deseribed by a HUlthen-type

wave funetion.

The "nuclear!! final state scattering amplitude then can be expanded

again by partial. waves.

The results deseribe a slightly asymmetrie final state peak strueture

as weIl as a proton-speetator peak. They have therefore a mueh
wider kinematical range of applieability than the pure s-wave

(Watson-Migdal) theory. Nonetheless, they are still analytieal.
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2. Method of Calculation

Specificreaction mechanisms for three particle reactions are
known to be dominant in different kinematical regions. Fig. 1
ror instance illustrates the mechanism responsible for deuteron
break..up in the reaction d+p+p+p+n in regions of large neutron
angles and large relative neutron-proton final statemomenta.
This diagram isdefined as representing a matrix element of the
following type.

. +++ -++-+
. ö (P-Q-p )ivl(P,p ,k)n . n

. -+........ -+ -+ -+

= ö(P-Q-Pn ) < Pn,k \T23\P > =

(1 )

The matrix element is given here in the rest system of the free

proton before scattering. P, Q, Pn and kare the wave number-s of
the incoming deuteron, the final proton-proton center cf mass,
the outgoing neutron. and the final proton-proton subsystem. <Pd is
the deuteron wave function. x:-> denotes the proton-proton
scattering wave. T23 is the k proton-neutron scattering operator.

The graph given by fig. 1 includes both mechanisms conventionally
referred to as quasifree scattering (QFS) and final state inter
action (PSI) by assuming the reaction to proceed via two steps.
The validity of such a two step mechanism has been verified
experimentally for a limited kinematical region 151.
The special kinematical conditions quoted above are expected to
guarantee that there i5 no considerable contribution from p-p QFS
and n-p FSI. Of course, the applicability of the model i5 not
restricted to this special case. Similar calculatiöns may be

performed in all cases where complementary conditions are met.
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Taking into account spins and antisymmetrization leads to the
following expression for the differential cross section.

dn d~2 QJ:,
P n· P I

~ a .. 1 1 1 1)= A. L(2S+1)(2s+1) L(-1) C2cr+1)i:H"2"2 'i So;cr x
Ss cr

'1.
-+ -+ -+

x \~ C~ ~ ~ S ; o s ) 11s cr ( p , P n ' k ) I
(2)

Here, A is a pure kinematical factor. S, sand a are total spin,
and the spins of the final state proton-proton system and proton

neutron scattering (2-3)-system, respectively. The matrix elements
Ms a depend on a, because of the spin dependence of the scattering

operator T~3' and on s by the antisymmetrization:

Written explicitely, eq. (2) becomes

di2 dn dEp n p (4 )

The proton-proton scattering wave function
the sumof a regular Coulomb wave function

Nuc . t'term X-+ due to nuclear ~nterac ~on

k

-+
x-+(r) can be written as

k X~b and a correction
k

-+
x-..(r)

k

Cb(-+)X+ r
k

TIn- -"k -++= e 2 I' ( 1 +in) e 1 r F ( - in! 1 Ii (l{r - kr )1
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The parameter n is defined by n=(2kR)-1 with R=28.8 Fm, the

Bohr radius. Forfurther definitions concerning the Coulomb

functions see 161. Outside the range of nuclear forces the
correction can be expanded

x (Gt(~r) + iF~(kr» P~(cos 0~ ~)
k r

proton

wave

(6 )

According to eq.

decomposed into
MCb d MNuc

so an so·

Here 61 and (Jt are the "nuclear" and the pure Coulomb phase shirts,
respectively.

(5), also the matrix elements Msa can be

"Coulomb" and "nuclear" parts

(7)

(8)

More precisely, MCb describes contributions without final state

interaction (i.e., essentially the spectator mechanism) and with
pure Coulomb final state interaction whereas MNuc contains nuclear

and mixed final state interactions. The "Coulomb" matrix element

MCb does not vanish for vanishing Coulomb coupling and therefore

will more appropiately be called "spectator" matrix element MSp

hereafter.

This spectator matrix element can be evaluated analytical1y if

T~3 is replaced by a ö-function.

T~3 = VOO(~1-~2)

"l ~ ....

T23 = uoVoo6(r1-r2)

and if the deuteron wave function is represented by a HUlthen-type

function.

+
<Pd(r)

r
(9)
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with the normalizatiön constant N given by

This procedure is in the spirit of both the Watson-Migdal theory

and the usual impulse approximationjwhich assume that the

momentum dependence of the matrix element is essentially due to

the final state interaction or to the momentum distribution of the

deuteron respectively. As the results of this paper will be

applied to a larger kinematical range than the final state inter

action region, the validity of the zero range approximation will

of course have to be tested anew. It is expected to hold in a

limited range of medium energies.

With the above assumptions the (unsyrnrnetrized) spectator matrix

element aasumes the form

M Sp = M Cb
--0=0 0=0

( 10)

The integral ean be

171 or Morinigo 181

~ ~ ~

where q is defined by q=Pn/2
~

Bere the time reversal relation xi->(;) =
k

evaluated by applying

x ~ (~) has been used.
-k

the method of Sommerfeld

(11)
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This leads to the following expression for the spectator matrix
element.

M Sp ::
0=0

(12 a)

Sp
M-- (ß) =

0=0
(12 b)

where the relation

has been used. The "Coulomb penetration factor" Co is defined

by C~=2nn/(exP(2nn)-1)

According to eq. (8) one obtains

(12 c)

This matrix element describes a spectator peak at k=q modified by

Coulomb interaction. In particular it becomes zero for vanishing

relative proton-proton mömentum. It should be noted, that the

angular dependence does not vanish for k~O (n~~), as

(13)
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For n-+o (k fixed) one obtains the weIl known expression valid for

neutron-deuteron scattering.

Nuclear final state interaction will be assumed here to be

relevant only in s-waves. We did not succeed in finding in
analogy to Equ. 11 a closed analytic expression for the radial

integral of

-ß r -ß r
MNuc (2'IT)3V N I d3r

.++

xN~C(;)
1 2

e1qr e - e=0'=0 0 -k r

-i(2'IT)4V N iO' 210
o(e 0 -1 ) x= e

0 k

(14)

This expression remains after sUbstituting the lowest term of

expansion (6) into eq. (1) The power expansion of the spherical

Coulomb functions leads to aseries converging for k < V q2 + ß2'.

For k > V q2 + ß2' the approximation (G +iF ) !:: e i kr may be used ,o 0
because in this region a) the parameter n is small, b) the

spectator matrix element predominates. One obtains inthis case

(15)

2io o
e -

( C k
o

]

1 ) ~f{ arctg q+k+ arctg 9~k} +
2qL ß ß

This approximation is valid for n«l and used for k > -V q2 + ß2'.
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Otherwise the power expansion 191

(16)

with the subsequent simple recursion relations canbe used.

1 and a 1 = 0...

The parameter y isEuler'sconstant.The special function h(n) is
defined as

h(n) = Re [r' (.:in) / r (- in) 1- tn n

The expansion (16) leads to the following integrals.

1(1) ( . sin qr -ßr n= Jdr e (kr )n qr
.;t,n,_ ~ .... f"\
,J,IV.&.- J! ~ v

1(2) ( sin ar e- ßr(kr)nl n(2nkr)= Jdr ~

n qr

f,or n > 0

(17 a)

(17 b)
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They can be evaluated~ccording to 1101

I(l)(ß)=
n

for n = 0

(18 a)

(!:- 1 ) ! (- k 1n
Im ---

q ß-iq
for n>l

) ()
r n-1

1(2 (ß)= 11-1! lf-y + 'i' 1
n (2n)l1q ' m~l m

for n > 1

For the "nuclear" matrix element one obtains

NNuc = I'lIuc( q) _ j'INu c (S )
0=0 0=0 Pi 0=0 2

(18 b )

with
2i6

io 0
e oCe - 1) x

eok

(19 b )
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This is valid for k < Vß2+q2'. I n ana l Ogy to eq. l12c) the matrix

elements for the intermediate interaction occuring in the n-p
triplet and singlet state, respectively, are related by

~TNuc ~'Iuc
"·0 --1 :: CL M"

0=0

For small values of k the lowest order

(19 c)

N 4 ioo io o sinoo 1 r o arctg(Oß- )1 (20)
M uc :: 2(2Tt) VoN e e (C k )-q larctg(~) -

0=0 0 _ 1 2 -

closely related to the original Watson-Migdal-Ansatz is sufficient.

Comparison with eq. (15) shows that the simple expression

2io",
e \J_

( (' k
v o"

1 .) _1 f, { q+k q-k,arctg ---+ arctg ~I +2q L p p

(21)

is valid as weIl for small as for large values of k.

It is noteworthy that the method developed here can also be applied
easily to a deuteron-deuteron double break-up reaction with two-fold
final state interaction. Results which should be particularly
helpful for determining the neutron-neutron scattering length from

the reaction d+d+p+p+n+n will be published by H. Thies.
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3. Results and discussion

Fig. 2 shows the theoretical prediction for a kinematically

complete experiment. The deuteron bombarding energy of 52.3 MeV

and the detector angles of e =22.40 for the proton- and e =48.30
p n

for the neutron detector are chosen in accordance with an
experiment carried out previously at the Karlsruhe Isochronous

Cyclotron. The special choice of kinematical parameters should

warrant a possible contribution cf the neutron spectator mechanism

to be very small only.

The differential cross section divided by the phase space factor A
is shown as a function of the proton energy Ep ' Because for ßach

proton ener~y the energy of the coincident neutron may assume

two different values, the spectrum splits up into two parts.
One part is dominated by the p-p FS! whereas the other part

shows the typical shape of the spectator peak. The contributions

arising from the pure "spectatorll- and the pure"nuclear" matrix

elements are shown separately. Apparently the spectator

amplitude is very important even in the FSI-region, which is

characterized by a small relative momentum in the p-p sUbsystem.

Because of the strong interference of the "nuclear"= and the

"spectator" amplitude in this region the valueof the p-p scattering

length a extractedfrom experimental data by using this theorypp
must be expectedto differ considerably fram thase obtained by a

Watson-Migdal fit. Vice versathe ltnuclear" matrix element is

still large at the spectator maximum although its influence is small

because of " a ccidential" neutron interference behaviour.

For the calculation of the matrix elements the standard parameters
-1 ·-1 . ... .81=0.232 fm and 82=1.202 fm were used 1n the Hulthen funct10n.

For the"nuclear" phase shift 60 the wellknown shape independent

effective range approximation

+ 1 r k2 _ h(n)j
2 0 R·

with scattering length a =-7.66 fm and the effective rangepp
parameter r o=2. 62 fm derived from p-p scattering data have been

used.



- 12 -

In order to derive conclusions from the experimental results it

is of particular interest to understand the dependence of the
theoretical results on these basic parameters. Fig. 3 demonstrates
how the spectrum given by fig. 2 is affected by varying the
value of the scattering length or the effective range respectively.
Far comparison also the result of calculation without Coulomb
forces but with fixed scattering length is shown. As a consequence

the characteristic p-p FSI minimum at zero relative energy is

replaced by a maximum. On the other hand all these variations of

basic scattering parameter and the electromagnetic coupling
constant have only a small influence in the region of the
spectator peak.

Deviations of this theory from Watson Migdal are characterized
by fig. 4. It shows the spectra for some pairs of angles as a
function of the p-p subsystem wave number k together with the
predictian of the Watson-Migdal theory. In contrast to the

Watson-Migdal theory the spectra show an asymmetrie shape with

respect to the origin of the relative momentum axis. This effect

is demonstrated ror the spectrum at 8p=22 . 4° and en=4863° by

mapping one FSI-peak onto the other.

The superiority ofthistheory compared to the original Watson

Migdal-ansatz is demonstrated by fig. 5. Theoretical results

obtained after a scattering length fit are compared with
experimental·data at scattering angles Sp=22.4°, en=48 . 3° . The
theory leads to a scattering length of a =-7.7 fm whereas from

a slightly modified Watson Migdal fit I tl a value of a pp=-8.8 fm
was obtained. These values have to be compared with a two partiale

value of a =-7.66 fm. Former discrepancies between the two- andpp
threeparticle values derived from Watson Migdal fits therefore

seem to be resolved by the introduction of Coulomb-effects.
While on the one hand good agreement is observed in FSI region,

the agreement in the spectator region is a qualitative one. In fact
there remains a small deviation if the experimental and the

theoretical spectra are adjusted inthe FSI region. These discre
pances may be removed only by more sophisticated calculations
including Coulomb effects.
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Figure Captions

Fig. 1 Graph corresponding to the matrix element defined by eq. (1)

Fig. 2 Theoretical prediction for a kinematically complete

experiment with Ed=52.3 MeV, 0p=22.4°, 6n=48.3°. The

cross section devided by phase space is given as function

of proton energy E • Contribution of "spectator"- and
p

"nuclear" matrix element are shown separately.

Fig. 3 Influence of basic scattering parameters on the shape of
spectrum.

Fig. 4 Comparision of theoretical prediction (this work: full curves)
for different angles with the prediction of Watson Migdal

theory (hatched curve on the right sid) being independent of

angle. The hatched curve on the left side is obtained by

mapping the right hand side FSI-peak onto the left side in
order to demonstrate asymmetry.

Fig. 5 Comparison with experimental results in FSI- and QFS-region.

Experimental points are shown only for that part of the

spectrum, which can be projected onto the E axis. The
p

differential cross section is shown in relative units.
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