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Abstract

The methods utilized in the computeéer program KAPER
(Karlsruhe Perturbation Evaluation Routine) are
presented. The program is a multigroup cell code
for the calculation of cross'sections,.fiuxes,
reaction rates, and small-sample reactivity worths . -
in the plate geometry of zero power critical assem-
blies. The methods in the program are based on inte-
gral transport theory in the collision probability
formulation. The resonance self-shielding of the
cross sections in the multiregion cells are calcu-- .
lated with a formulation based cn the f-factor con-
cept. The program has the unique feature of treating
local perturbations in the normal unit cell in which

the local properties of the -cell have been changed

‘s a result of the experiments. Small-sample reacti-

vity worths are found with perturbationfthedry in-

which the perturbed flux in the sample and environ-

_ment is used.

Application of the program in the analysis of measure-

ments. performed .in the zero power critical facility -

‘SNEAK~at-Kaflsruhe is described., The measurements in-~-

clude reaction rates and small-sample reactivity worths.

1. Mive 1972




Zusammenfassung

Die Methoden, die in dem Rechenprogramm KAPER (Karlsruhe
Perturbation Evaluation Eputine) verwandt wurden, werden
erliutert. Das Programm KAPER ist éin'Vielgruppen—Zell—-‘
programm zur Berechnung #on-Querschnitten, Fliissen, Reak-
tionsraten und den Materialwerten kleiner Proben in Plat-
tengeometrie von kritischen Nulleistungsancrduungen.'Die
Methode in dem Programm basiert auf der Integral-Trans-—
porttheorie in der StoBwahrscheinlichkeitsformulierung.
Die Resonanz-Selbstabschirmung der Querschnitte in der
Vielregionenzelle wird durch Verwendung des f-Faktorbe--
griffs. beriicksichtigt. Das Programm hat die. einmalige
Eigenschaft, lokale Stdrungen in einer Normalzelle zu.
behandeln, in der die lokalen Eigehheitén der Zelle in-
folge des Experiments veridndert wurden. Die Materialwerte
der kleinen Proben werden mit Hilfe der Stdrungstheorie
berechnet, in die der gestdrte FluS von Probe und Um-

gebung --eingeh-t-. e e e S S

Die Verwendung des Programms zur Analyse von Messungen
an der kritischen Nulleistungsanordnung SNEAK in Karlstuhe
wird begchrieben. Diese Messungen schliefier Reaktionsraten

und Materialwerte von kleinen Proben ein. - . o
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" Introduction

This report describes the methods utilized in a program,
called KAPER'(gérlsruhe ggrtufbation Evaluation Bputine);

for the calculation of hétéfogénEOus trbsé’sections; fluxes
(real and adjoint), reaction rates, and reactivity worths

in the heterogeneous plate structure of fast critical assem~

blies, e.g. the critical assembly SNEAK /1/ at Karlsruhe.

The theoretical foundatioh‘of”the program is integral trans-
port theory in the first-flight collision probability formu-
lation. The cross sections for the cell of the assembly are

prepared in a manner similar to that devéldped by Wintzer /2/

which accounts for ‘the resonance self~shielding in mult1reg1on

cells. The fluxes are calculated by solv1ng the 1ntegra1 trans— -
port theory equatlons in which 1eakage is accounted for through
the neutron balance. The program has the'capability of treating
local disturbances in the periodic unit cell structure, which
can be of importance for some reaction rate and reactivity worth
calculations. To obtain the teaétivity worths the cross sections
and fluxes are used in a perturbation theery formulation of the
integral transpor;'theggyrgquggign,'The”pertﬁfbed'flux in the

sample and in its environment is obtained by solving the integral

transport equatlons as a flxed source equatlon.

This report is divided into three main sections. The first deals
with the calculation of the resonance self-shielded cross sections
and fluxes in periodic unit cells. Also included is the calculation
of fluxes in the special case in which a local disturbance has been
introduced in the uniﬁ cell. The second section is devoted to the
calculation of small-sample reactivity worths. Finally in the last
section numerical results are given for the verification of the
methods used in the progréﬁ; In addition, results derived from

the application of the KAPER program to the analysis of measure-
ments performed in some SNEAK /1/ assemblies are also given.

.



Calculation of Heterogeneous Cross Sections and Fluxes

In the interpretation of nearly all experiments performed in

the lattices of fast eritical assemblies it has been found

‘that “heterogeneity effects_cxe of importamce and must be taken

into account. This is frequently accomplishe& by utilizing equi-~
valence theorems for the effective cross sections. However the
usefulness of thls procedure is restricted to very simple cells,

for example cells of one fuel region and one moderator region.

Therefore a procedure was developed by Wintzer f2/ fcr the cal—
culation of heterogeneity effects in per1od1c fast reactor cells
in which there are no restr1ct1ons on the locatzon of the reso-
nance materxalsnor the d1v131on of the cell into regions. Wintzer's
procedures lead to the develppment of the computer code ZERA at
Karlsruhe,.Ihe methods employed by the code may bé charactefized

as follows: S
. a) Collision probability method,

b)), Concept of the self—sh1e1d1ng factor

(£~ factor concept e

c) A method devised by Wintzer to calculate
resonance self-ghielding in complex multi-

. region cells,

.d} Solution of the integral Boltzmann equation

in terms of the neutron source densities, and

e2) A method based on neutron balance considera-

tions to account for leakage

The ZERA code is used on a routine basic at Karlsruhe, and seems
to give good results in most practical cases. Howegcr, the appro-

ximations used by ZERA are complex and may not be valid in cases




of extremely strong'heterogeneity. An objective of this work
was to modify and’ improve the procedures used in the ZERA code
primarily in the applicationof the 'f-factor-concept' to he-

terogeneity calculations.

The concept of the composition-dependent self-shielding factor
('f-factor'), which was first introduced by Abapjan et al. /3/,
is used in the standard 26-group calculations for fast reactors
at Karlsruhe., The obvious limitation of this concept comes from
the fact that it contains no information on the distribution of.
the resonances of one particular isotope within am . energy group..
Therefore, for very accurate calculatiéns one has to resort to
codes like RABBLE, developed at Argonne, or GENEX from Winfrith,.
which take account of the exact parameters of each particular
resonance., These codes necessarily have to use an ultrafine
energy group structure, and are, therefore, not suitable for
routine calculations. On the other hand, the 'f-factor concept’
is'a fair approximation”in most calculations for hemogeneous

media, and will certainly be used extensively in the future.

In this contezt, the question ériéeé whetﬁer the 'f4facﬁor concept'
can be satisfactorily applied to hﬁt,?rqgéﬁeify' calculations. The
manner in which the concept is used in ZERA is not entirely con-
sistéﬁt;"bééauéémﬁhé“fééétidﬁ”ébéfficiéhts, which are calculated
for each isotope separately./2/, depend'réther strongly on the
background cross section due to the othef isotopes, so that some

ambiguity is present.

In éeetion 2.2 it is &emonstrated.that a_consisteht formalism
whichrusés the f-facﬁbr“ccﬁcept for hetérbgenéoué problems is
possible in principle; however, it is far too éomplicated to be
used.in practical calculations. Therefore, an approximate method
must be used anyway. The method suggested in this report is based
on éffective'éross seﬁtiéﬁs,“which depend opiy weakly on the back-
ground cross section used. With these cross sections, one solves

\



. the Boltzmann equation in terms of the.fluxes, rather than
. the neutron source densities. The approximations used in
this method are similar to those inherent in homogeneous

calculations.

2.1 Basic Equations

The basic equations of the coliision probability method will

be briefly summarized here.

The integral energy dependent Boltzmann equat1on is in the case’

of isotropic’ scattering,

I, (E,F)0(E,F) = @SB, E)p(E'> F,E), _' (2.1)

The nomenclature used is standard.

The-firstfflight collision probability p is given by: 4

_ B Et(EsE) e_rT (i“ si::E) ]
P{ET E,E) = e 5 : (2.1a)
_ : fe'-ti -

where 1 is the optlcal path length between r ~and ¥ at energy E
The neutron source den51ty S(E ) is composed of the fission

source and the slow1ng down source in the f0110w1ng manner :

S(E,E) = [dE'6(E',D)(f (B'—>E,H«ENIE,H) (2.2)




For practical calculations, one has to derive equations in the
multigroup formalism fr&m (2.1) and (2.2); The usual manner is
to postulate the narrow resonance approximation and to observe
that the source density S{E,r) shows no resonance structure
withip this_apprqximation. Then, the obvious procedure is to
eliminate the flux ®(E,r) between Eqs. (2.1) and (2.2), and
to write the egquations in the muitigrbup form ﬁith the source

density S as a variable

| g'— g “
sB(z) = ):jd r'sé (f )I\m(r)p(‘r"—> T E)/ '
g’ (2.3)

vl g' -
+ xB <>: £ (B)p(F'—> T, E)/
t

'where g is the 1ndex of the energy ‘group, and the brackets <:>

1nd1cate averages over energy.

The energy-averaged quantities

Ah§f15?) = \\ (E,r)p(r'—a T E{> : (2.4)

referred to as reaction coefficients for the reaction of type a

by Wintzer /2/, are solved iﬁithe ZERA code.

There is, however, an alternative procedure which consists of
eliminating the source densities § between Eqs. (2.1) and (2.2).

The resulting flux equations are, in multigroup form,




3.,/

\\ 1
= [a%t {pEF'E,E), E}}: 87 By
8 ¥l S
- o gl _ L
- . (2.5)
! 1 ] 1
+ xgvzfg_(f')l@g (F")
where the effective cross sectioﬁs_zag(f) are defined by
/ \
Jerl EEDpE =0, 56
1 B = i ' (2.6)

fd?’r‘ <Et—1(E—,f—)p(f'-—? ?,E)> g Sg(?')

It must be emphasized that the systems of eqﬁations (2.3) and (2.5)

which is inherent in the f-factor concept anyway. At first sight,
the systgmk(2}5j sgéms_tombg unpgcegpé;ily complicated beéause the
source densities appear in the definition (2.6) of ﬁhé effective
cross sections, and consequently must be calculated ényway.'Thus,
it appears, that the method used in ZERA should be preferred.
However, it is shown that the cross sections (2.6) depend oniy
weakly on the source demsities. In fact, they can be calculated
mqre.accuralety than the reaction coefficients_(Z.A);,as is shown
in.Section 4.1, Therefore,”the flux equations (2.53) and effective

cross sections (2.6) are utilized in this work.

2.2 A consistent formalism for fast reactor cell caleculations based

on the f-factor concept

It will be shown that a consistent formalism based on the concept

of the self-shielding factors is possible under the additional =

are completely equivalent within the narrow resonance approximation,




hypothesis that the resonances‘of'ah'isotoRe are randomly
distributed within an energy group, and, therefore, the

average of the product
b .
f(o,) g (0,) ~
B YAy

over energy is simply the product of the averages

\f(ox)g(cz)_/ = \fﬁot(E))// \g(cz(E))/

where 9 and o, are cross sections of different isotopes and f
and g denote functions of o, and Tpe This hypothesis is the only

plausible one, as there is nothing known about the actual distri-

bution of resonances.

The quantities which must be calculated in the collision probability

method are the reaction coefficients defined by equation (2.4)

am \3:-; (E) pmn(E)/ , (2.4a)

which in actuality are reaction probabilities. They are defined as
the number of reactions of type a in region n due to a uniform unit
source in region m. Once the Aamn are known, the solution of the

source equations is straight forward.

Aumn may be defined as an integral over regions m and n.

To be specific,'ﬁe write for an infinite slab lattice

A
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N |

A = Xﬁc g;dXA(X' X)) N e

m
where

e N

A X',X) = (E)p(X-% X E)

o \\\Ztn ,/

The cross sections are sssumed constant in eaéh'part{cﬁlar tégion.
In Eq. (2.7) Xm is the thickness of region m, and the integrals
are over regions'm and n, The probabilities Au(X?,X) are given

by

_ " Tanem “f-d_t 'e-r(X',X,E‘)t\ | (2.8)

\NT?Z 3t f s

A, X'5%)
where T is the optical path length between X' and X

L . _ B . ‘
T(X‘ ’X,E) = f zt (X“ ,E)dX"

Obviously, T may be split into contributions of the isotopes present

L4, 00,®

¥

. . . - 2 .
where dv is the number of nuclei of isotope v per cm” between X'

and X. If Non is the atom density of isotopev in region n, one has

1
3

e
:

@9

A (X,D = gaﬁﬁwm@mng&%wvy

—te §

A




By hypothesis, the product over isotopes in the brackets can

be written as follows

°4 S e L S ed o
AR = %. _%.Z o (Ee tdvot:\1 1t e th'Gtv'
v R o\we | 7 ety
(2.10)
= Tii— I, S (€d )T T (ed )
2 1 t v GV v v! v?!

visy

where the Tv' are traﬁsmission probabilities, and Su_is an effective

microscopic cross section of isotope v, defined by

S,(y). = {(E)e"yqt ®>

e /

Leaving out the subscript v, we observe from the relation

that Sa is . the.inverse Laplace transform of Rﬁ, which is related

through the equation .

L%

UG(GO) o
Ru(oo) =

Ny
+
at(co) co

to the self-shielded cross sections g' , il.e. to the self-~ sh1e1d1ng

‘factors. The transmission probab111ty T is g1ven by

7/“ng\\ N
T {y) = ‘\s // C



[ ————r

_10_
It is connected to R£ through. the equation

VA
Rt(oo)= = K\gt+°d/ =1-0 L I*1 - (2.12)

which follows immediately from

I
St /dy

Thus, we have shown that-therreactionrcoefficients Aamh in a
slab lattice can be_gxpressed-rigorously,‘via the Eqs. (2.7},
(2.8), (2.li), {2,12), through the function Ra(co)’ which is
immediately given by the self-shielding factors. Oosterkamp /4/
has carried the argument one step furthér and observed that,

for a given isotope,

Su(y) = ffca e W (Ua’ct) da dct_

where w.(od,ct)dcddot,.is"theuprobabilitywthat the -cross. section
for reaction a and the total cross section take on the pair of

values ba,d 'in ap energy group which contains resonances. Thus,

t
Sa(y) is the Laplace transform of the probability distribution

Wa(at) = foaw(oa,cij dca : (2.13)

~and. one could work.out an analysis.which is based on. tabulated

functions of the type (2.13). However, if one notes that a lattice
may typically contain a dozen isotopes, a simple count of the

integrations which have to be performed starting\from Eq. (2.10),

shows that these equations are definitely not feasible for use




2.3
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in routine calculations., Therefore, one has to resort to approxi-

mations which drastically reduce the complexity of the equations.

It.should be enpkasized that it is not of interest to have &
hetercgeneity code based on the f-factor concept which requires
léﬁg”running times, and thus cannot be used in routine caicu1a4
tions. At the expense of long computer time, one cam rum a RABBLE
calculatlon, and get answers whieh are free fron the reatrxctlous
of the f-factor concept. Howvever, it may also be reasonsble to
integrate Eqs. (2.7) to (2.10) in a few simple cases in order to
check the valxdxty of the approximate methods,

Approximations Utilized

In the original ZERA code, the reaction coefficients defined by
{(2.4) are comstructed from the contributions of the single iso-
topes, -labeled v '

wvhere

' _ : . /T
aVR
Aamn - E Aann ' A-'cwmn = <<:Ftﬁ Pmn

Thie quantity is-spproximated-by ——-—

: . o
av :
A = P (o, , 0.) (2.14)
GV é v+0°n L B AV 0>

where ctQ ‘= total effective cross section of isotope v

and oéﬁ = sum of total effective cross sectiom of all iso-

topes except v in regiom h, norugliized to one

atom of v.

The backgrouud cTo8s sections o on and % are assumed constant
in energy. This means that they have to be aversged over re-
sonances in & way that is not well defined. However, these

quantities avre fairly sensitive to the choice of the
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background cross sections, especially in strengly heterogeneous
lattices, It is for this reason that the KAPER prdgram uses,
instead, the effective cross sections (2,6), which are for one

particular isotope-

\ S
< v %on mn/ "
)/;_;_l__. N 8
\dtvﬂjon Pm - m

Qg
8

avn (2.15)

B 8o

The approximation (2.15) is certainly good since, as will be ;
shown, the effective cross sections are insenéiﬁivé.ﬁoithe' -
backgfound cross section. This was observed, for example, in
/5/ for the homcgeneous case. It is demonstrated in Section 4.1
that this is also true for the heterogeneous case. It should
be noted that the reaction coefficients (2.14) are needed to.
calculate (2.15).

The group averaged collision probabilities{i%mn(E;>>g must be
calculated. The averaging process over enmergy defines a certain
manner of éelfisﬁielding; which, however, is rather complicated.
Therefore, at this point, the assumption is.made, that the ___
collision probabilities may be calculated approximﬁtely with

the effective cross sections defined by Eq. (2.15).

Obviously, this approximation is the equivalent in the hetero-
geneous case to the approximations used in homogeneous calcu-
lations, and in fact the expreséion (2.15) is.completely analogous
to the expreséion fé; the self-shielded cross sections in the
hemogeneous case. Tﬁus, though we were not able to derive the

use of the cross sections defined by (2.15) to calculate the
collision probabilities from mathematicél principles, we believe
that thlS method ia as accurate as most other standard calcula—

tions w1th1n the Karlsruhe program system. N




2.4

In the XKAPER code, the source densities Sm, which appear
in Eg. (2.15), are first approximated by the fully self-

shielded total cross sectlions

An iteration on the source densities can be carried out if
required. The results that are quoted in Section 4 show that
iteration leads only to small changes in the effective cross
sections, so that the first approximation (2.16) is good

enough in most cases,

Leaxage Corrections

To discuss the formalism used to account for leakage in the
code, let us assume a homogeneous medium and seek the fun-

damental mode solution of Eqé. (2.1) and (2.2) in the form

, == =D

S (E,F) = S (B) e © BT
& (E,F) = & (E) e = °°F
In this case, we have
L §T' ~ T
z
=y t e t

and, if the variable 3 = ¥' — ¥ is introduced, the right side
of ¥q. (2.1) becomes

-5 P
3 ) t T:
fd pS () T ep2 exp !1 B.7 + i -]?«E)’

!



The above integration can be carried out,
Eq. (2.1),

I _(E)

I, (D)NE) = S(E)

Averaging the equation over emergy group g leads to .

L
B o8 . o8 7 B~
Zt & S N ‘arctg - 5 // "

It iz now assumed that the flux curvature B is weak, 80 that

resulting in, for

t B

(2.17)

/Z << ] over the entxre range of E, the enetgy. Then one has; ,

to fltBt order in B /z 2
... .. B . - B £ .,B .3
aretg T~ < 3 < ?J‘(f”?
[ 4 T t

and, therefore, Eq. (2.!7) may be written

a2

g 8 _ o8B . B” i~
1% s (1-3 lzz/g)
t
if we zeplace Ve Lo
" e 2
.
1k
-3 -

™

by p® in the sp1r1t of the transporc approximatlon, we have to

first order in B !x 2




EEI AR BN | ,' (2:18)

This equation has a simple physical interpretation: The
source neutrons in a certain volume make either a colli-
gion in the volume, or else they leak out without a colli~

sion.

We now require that Eq. (2.18) should be valid, in the case
of a cell calculation, for the cell-averaged rates. Thus,
the cell-integrated equation, Eq. (2.1), for the infinite

" lattice

el — 3 "
Veely T ¢ = [ 47z 8(D)
: cell

is replaced, for the finite lattice, by"

T . TRl - 3. a(r (2.19)
Ve G, + D89 ¢ &7 s |

cell

to account for the leakage. This equation is in line with the
method used by Benoist /6/, so that D can be calculated by the
methods described in /6/. From Eq. (2.1), it is obvious tha;
(2.19) is equivalent to scaling the collision probabilities‘

in the following manner




2.5

- }H -~

The methsd just outlined is equivalent with the one derived

by Wintzer /2/ from meutron balance consideratioms.

Heterogeneous flux éﬁd adjoint calculation in7a‘§ef{66iq cell

The hetercgenecus flux distribution within a unit cell is cal-

culated by solving numerically the following equation: .
V-z::n - Evnzn ¢, P - (2,20)

where n and m are geometrical region indices,
g and k are energy group indices,

Vn = yolume of the nsﬁaregion,

k—-g _ ko g k g
Ia :s + Av;f X"»
n Ba -
A o= -eigenvalue = 1/k_..-(no-leakage)..-

*-=~-=l/geff“(le§kage 1ntrodgced),"

and Pu;. - pﬁobabilityfarﬁéutton'o;iginating in group g
and 'region n of suffering its first collision
in region m. (This probability includes the
contribution of those neutrons from region n
that_leak from the cell, without suffering a
collision, and coliide;in'{déntical regions

m of the surrounding cells).

The Eq. (2.20) is obtained from Eq. (2.5) by integrating over

the regions of the cell and assuming the flat-flux approxima-
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tion. Since one can divide the platelets that constitute
the cell into as many regions as desired this approxima-

tion 18 of little consequence.

Because the Pnﬁ in Eq. (2.20), and all other equations having
collision probabilities, are calculated exactly (see appendix)
there is no assumption made about the flux, or neutron current,

at the boundary of the cell.

The macroscopic cross sections in Eq. (2.20) are defined' from

the microscopic cross section as givén-by:Eq. (2.15).,

Eq. (2.20) can be thought of as the microscopic integral trans-
port theory equation since by definition of the collision pro-
babilities the unit cell has been isolated from the remaining
portion of the core. This same equation could be used to obtain
the eigenvalue and flux for a coreiand blanket Eonfigu;ation
simply by redefining the collision probabilities to include

all regions of the éﬁre and Blanket. In this case the equation
can be referred to as the macroscopic integral transport theory

equation.

The adjoint flux is obtained from solution of the equation ad-

joint to Eq. (2.20) above. This equation is

B Lt g 2k ot k :
g 4 }:):zn e P o C(2.21)
m nk

where the constants are the same as defined in Eq. (2.20).

These two equat1ons, Eq. {2 20) and (2. 2!), are solved by the
power iteration method. Convergence is assumed when the f0110w1ng

condition is fulfilled in an outer iteration,



- §8 -~

( (1*1))2

m N ST - S (2,22}

whers c(l) is the total cell fiseion gzource in Eq. (2.20) for

outer iteration mumber i, .

P .y { v uzk (2.23)
: n £
unk n
or, for the adjeimt equation, -
m(x)-is-the total cell importance source in Eq. (2.21) for
outer iteration number i,
nm k _ o o

The  three point convergence formula, Eq. (2.22), is-slightly.-
more strinmgent than the normally used two point formula for a.: -

given convergence parameter €. T

‘Within 2% outer itération a convergence criterion is utilized
for the fluxes. The fluxes in an inner iterstion are considered
converged when for energy region B and group g the fluxes satisfy

the following condition:
- ¢8C1) , 8G-D |
n m -

wvhere j 13 the inner iteration aumber and § is the convergence

paraneter.

Normally convergence is achieved quite rapidly with this proce~

dure, for example, in less than 5 outer iterations to a conver-
. _
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gence of 10"5. The flux is then normalized to one fission

neutron in the unit cell and the adjoint to a total impor- .

tance of one for all fissiom meutrons.

The leakage from the reactor in the microscopic equations,
Eqs. (2.20) and (2.21), is accounted for by multiplying
the collision probabilities-Pﬁ:-ﬁy~the non~leakage preba-
bility L8, as defined in section 2.4,

1

2§_+ 3852

1% -
8

where %g and 33 are, tespectxvely, the cell flux-averaged
total cross sectxon and the cell flux-avetaged d1ffusion
coeffxcient. S1nce the fluxes needed to calculate %3 and
B® are not known a priori the calculntzon of the nonmlelkage
probabilities is included in the outer iteration procedure
of the solution of Eq. (2.20). With the fluxes calculated
in 8 given iteration the hon*leikase probabilities are
calculated. Then all collision probabilities inm Eq. (2.20)
are multiplied with these probabilities before another
series of inner iteratiouns are initiated.

In the solution of Eq. (2.21) the collision probnbilities

are also multiplied by the non-leakage probability as cal-

culated from the flux equationm,

Flux and Agjoini Calculstion in a Local Perturbation of the

Periodic Resctor Cell

In many incidences measuxements in a fast critical sssembly

involve a disturbance of the repeating unit cell. The following

M . s s \
cases can easily be envisioned:
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a) A cell, or a portion of a-cell, is removed for the
insertiom of a channel in which reaction rates are .

to be measured.

‘B) A laﬁ dengity plate of inert material may be inserted -
between two plates of the cell in the position in which

2 sample is to be placed for reactivity measurements.

e} The immediate environment of a reactivity worth ssaple
may be altered tc study the affect of the environment

on the sample worth.

For clarity in the following discussion we will define the mormal
cell as that which coustitutes the normel unit cell of the core.
The perturbeé cell is deflned as a cell which contains a local
petturbation in the nornxl unxt cell, Therefore we nny plcture'
the sxtuation as shown below in whxch a perturbed cell 1: sur-

rounded by ‘an 1nf1n1te

Normsl _ Normal _ Perturbed  Normal . Normal
cell cell cell  cell cell

repetition of nornalfceilé.'Theie ceils.nhy be conpose& of many

plates of different materiais.

One further pbiné sust be made clear boncetﬁing what constitutes
a perturbed cell. Because of the mamner in which the program
KAPER works, and the assumptions utilized in the derivation of
the followxng equations, 2 perturbed cell must consist of the
region of local perturhatxon plus several pormal unit cells on
gach side of the perturbed region. The exact number of normal
unit cells depends on the magmitude of the perturbation intro-
duced and the mesn free path length of a neutrom in the normal
unit cell. Normally a perturbed cell of approiilatelyituo megn

free paths in width is more than sufficient. The reason for
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this restriction on the size of the perturbed cell is a resdlc 
of the methods, as explained below, utilized in the KAPER pro-
gram, The flux spectrum at the boundary of the perturbed cell

must reach approx1mately its equllxbrxum value.

In these cases to solve for the ;pﬁropriate flux and adjoint
distribution in the perturbed cell it is assumed that the
change in the reactor core (imtroduction of the perturbed
cell) is sufficiently small as to not affect the criticality
conatant of the reactor ner the spectrum a few mean free
paths from the pertutbéd cell position. With the above
assumptions the flux and adjoint distribuzion in the per-
turbed cell can be obtained by solving the fixed source
equa:ions. The source is the first-flight leakage (uncollxded
neutrons) from the surround1ng normal ctlls, or in the case
of the adjoint equatiom, the importance a neutron from the
perturbed cell has upon eacaping from the perturbed cell.

To distinguish quantities which are a function of the normal
cell from those of the perturbed cell we will write the quan-
tities with an N or P in brackets for the normal and pefturbed
cell respectively. For example the- région m, group g flux is
OS(N) 1n the normal cell and Og(P) 1n the perturbed cell. With
this notatxon in mxnd the fxxed source equutions may be wrxtten

in the following manner:

A) Flux equation

2 g - k> gk +2 8
vm(r)zt‘(rnm(r) l{‘ 32 v I T (P)#n(P)Pna(PMSm(P) (2.25)

where the region indices n and m are for regions only within the
perturbed cell,

p'8

T f1rst~fl1ght collxsxon probabilxty of a neutron in

group g orlg1nat1ng in region n to suffer a collision

in region m of the perturbed cell.
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and s:. = total externsl neutron source in group g and

ﬁregiog‘n from the surrounding normal cells.

The renaiaxng constants are the same &8 def1ned in Eq. (2. 20)
except that they &re defined only for the perturbed cell. The cross
sections are calculated a8 described 1n the prevlous sec—

tions, namely w1th Eq. (2 15), except that now the collisxon

probabilities in, fot exawple Eq. (2.15) are defxngd for the

pertnxbed cell sutrounded by an inf1n1te repe:1txon of nor-

mal cellt._

One can derivg”‘zq. (2.25) quite eﬁsily_byqéqu@ting the,.
total collision'density in a gTOUP B ind :egibn = of the .
perturhed cell to the total collisxon source fron other
regions. of the perturbed cell and from the surrounding
normal cells (sg},

: The external source in Eq. (2.25) is found from the definition

k=g k

sty - E z v I (R, (N)a (n) - . (2.26)

vhere the region summation is over the vegions in the normal

cell and

egm(n) = probability that a neutron from any region m of
the normal celis suffers a collision in region m

of the perturbed cell.

When the leakage ftén the réactor is aééouﬁﬁed for in the
solution of Eq. (2.25) the same nou-leakage probabiiity_Lg
as calculated for the normal cell is us?d'ih Eqe. (2;25)'
and (2.26) above. Ia this case the prébabilities ?;i(P}:
and eiﬂ(ﬂ) arg:mpltiplied §y_Lg. This_agproxination is

kS
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reasonable since the leakage from the core is determined
by the mean free path in the core material (normal cell)

and is influenced little by a change in one or two cells -
of the core.

B) Adjoint é@uation

g~k
z_(P)
08 = ] ]2 ptk@e @)esEp) (2.27)
nk

Et (P)

The constauts in thxs equatxon are the same as defxned for
Eq. (2. 25) except fot s g(P), the flxed adJo1nt source. Thxs

is defined in the f0110w1ug manner:

_ - 8~k o _
k EB n ma n
t_ (P)

_ where the region summation n is over the regions of the normal

cgll and

e::(P) = probability that a neutron from region m of the
-perturbed cell suffers a collision in any.

region o of the normal cells.

One can see that S;S(P) is the total importance of those neutrons
in group g and region m of the perturbed cell which leak from the
. -cell and suffer a collision in the surrounding normal cells. There-
fore Eq. (2.27) represents a balance of importance for the colli-

ding neutromns. It can easily be derived from this principle.

Again if leakage from the reactor core is accounted for the
probabilities P;z(P) in Eq. (2.27). and e;:CP) in Eq. (2.28),
are multiplied by the non-leazkage probability L of each group.
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The solutions of Eqs. (2.25) and (2.27) are obtained in
the same manner as those from Eqs. (2.20) and (2.21), by
the power iteratiom method with the conmvergence criteria

of Eq. (2.22). The initial estimate of the flux apectra

-ig chosen to be that of the mnormal cell. However in this

case no renormalization of the fluxes is used since it is
determined by the magnitude-of-the-soufces-s:(p).gnd S;g(P)

in the respective equations.

Heterogeneous Pertuvrbation Calculation for Reactivity Worth Samples

Small-sample teaétifiﬁijeasmreégnti performed in fu;t ¢titici1:
assemblies are iniegia17experimenth"which can'be'perfbrped'with:
high precision. Representative of these experiments is the ma-
terial substitution mezsurement. In this measurement a sample
of material under study is imserted into ﬁhe agsembly and the
resulting reactivity ef the asieubly;frélative to a reference,

iz measured.

However the calculation of the reactivity worth of small-samples
in the heterogensous enviromment of the fast critical 'is generally

a difficult problem. Normally the self-shielding within the sample,

and the heterogemeity of the sample emviromment, are neglected.

That is, as performed at Karlsruhe, the worths are calculatedﬂl
with a first-order multigroup homogeneouz diffusion theory
formulation of perturbation theory. The cross sections, for

the h@mogenéous core materisl and for s composition containing
core wmaterial plua a small smount of the sample material, are

cbtained utilizing the concept of composition - dependent re-~

‘somance self-shielding factors, ss described by Abagyan et al./3/.

The reactivity worth of the sample is then calculated as the
difference betweem the core material amd the core material with-

the small smount of sample material,
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In hard spectrum cores (long mean free paths) with small
simple umit cells and thin eamples, this approach is ge~- -
nerally adequate since the self-shielding factors in-
volved are those of the core materigl. When these condi-
tions are not present the above procedure can give resultas
sévéril perceﬁt in errof. Since.snail sample reactivity
worth studies in SKEAK and other fast critical -assemblies
have been performed in relatively soft apectrum cores with
complex cell structures it seems imperative to refine our
calculational nethods:for the analysis of this pattiéqlqr

type of experiment.

Over the past few. years there have been many xmprov.-entl_

in the calculatlon of heterogeneons Teactivity uorths. The
vork of several authors 17,8/ lend to corrections for flux
depression in an absorber when the cross sections are smooth.
Fischer /9/ developed a program to correctly account for the
self-shxeiding in the sample, thereby delcr1b1ng the flux
depression in an ablorber and the dependence of the tasonance
oalf-shxeldxng on the geonetry of the sample. Bowever in this
work the sample env1ronnent ig treated as honogengous. Ooster-

kamp /4/ treats in his work the hgte:pggngggﬂenvlronment of

the sample as well as thg self—shielding of the sample.
The objective of the work described in this report was to
develop a program similar to that of Oosterkamps but more
flexible in utility, with simplier methods (thereby sasing
the numerical problems), and with better defined cross sec-

tions for the sample.

In nany.cises the measurement of the tegctivity wvorth of-g
sample pecessiates a perturbatien of the normal cell st:uc-'
ture ofrthe‘ansémbly..For exgmple a ;oﬁ denlity.platg Qf,
inert material may be inserted between two plates of the
cell in the position im which a sagple is to be placed for

A
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reactivity measurements. In some incidences it may be necessary

to account for this perturbation whem calculating the reactivi-
ty vorths. Thevefore a program flexible emough to account for

thig effect is desirsble.

3.1 Perturbation Formulatiom

For the cslculation of hetercgenecus reactivity worths pertur-
bation theory is used. Perturbation theory offers sn advantage
for the calcuiation of emall éhanges in 2 system; this being
that the change in the system is expressed directly in equation
form rather tha&'beiag"the"différence'ef'téu'nearly'equxl quan-
tities as @ne would get by calculatxng the exgeavalue separately

for the perturbed and unperturbed systemsa

Therefore the heterogeneous fluxee and cyross sectioms, obtzined
as described in the previous sectxons, ‘are used in a perturba-'J
tiau theory formulatlon of the 1ntegtal transpott theory equa—’
tion to obtain reactivity worths of small changes introduced
inte the resctor core. It would be poseible to produce homo-
geneous-ctoss seczioas—by~averagingwwthefheterogeneous' cross
sect1ons with the haterogeneous fluxes for ule iu, for exnnﬁle;
2o ome dxmenslonal diffusion theory perturbation theory préééaﬁ;
Thie procedure was not utilized for the primary reason that the
first otder'petturbatiou'theory'formulaticn'based on integral
transport éheoxy,faq. (2.1), resulte in & highér order results
/10/ than thac of a formulation based om diffusion theéry;-This 
is related to the fact that the perturbatiom of the operator in
integral tramsport theery is not linear inm the cross sectiom
perturbstion but comtains terme of higher order. These higher
order Cermm are a result of che’ collxsxon pxobab111t1es in the

petturbation operator.

However simce the flux depressiom, or peakimg, in the sample cam

be a3 important 28 the self-shielding of the sanplé\crcss sections
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the exact form of the perturbation equation is utilized in
the KAPER program rather tham a first-order form as is
commonly employed im perturbation programs. Therefore for-
mulating the perturbation equation with the macroscopic
integrsl transport theory flux equation (representing the
perturbed state) and the adjoint equation (representing

the unperturbed state) one obtains

-] g'-g'bg g-pkk'l'k
P /ng E Vol I: 5z, ¢, +E Eé(zn Pmp)én (3.1

where zg‘* k. Ig —k, 1v£2 xk, and the region index
m

sumaations are over all regions, in the perturbed ceil -
and the normal cell, where the perturbation operator

G(Zi'* & Pm;) is non-zero. The denominator of Eq. (3.1) is

Hh R

@g z xkész:n
™ _k n

Dea AY ) vV eI
g m

The petturbatlon operator, in genetai terme &N, is defined
as (N'—N) where the prlmed qu&ntlty ‘denotes that defined for
the perturbed state and that without the pr1ne for the un-

perturbed state.

From experience it was foumd that the two terms in Eq. (3.1)

are generally of the same order of magnltude with the d1fference

being two or three cerders of magnltude snnller than the indivi-
dual terms. This is undesirable from a numerical point of vxew.r

Therefore rather than use Eq. (3.1) directly we can rewrlte 1t

in a d1ffetent form.

Let us write the perturbation operator 2s the following:
i
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og—'k
8P (E. - )

E ~
B »
R

In addition we may also use the relation between the source .
xmportance function w and the colliding neutron importance

function @ (the adjoint flux as calculated in Section 2.5
and 2,.6).

Introducing these telations into Eq. (3.]) we can write the

results as, sfter some rearranging,

3 ‘g 8,087 5K ek_ 4z
po= /m]] Va'a Lty ) 8L, (Vy 4y )
g m mo k. m
3.2)

f

} & k i
R UGB ) P M L R R gxk)¢:k |
m k k n n ®

vhere Eag = total absorptiom cross sectionm in region m and

energy gxoup g.

This eéﬁatién hés'é fotn ch&t.tenders itsaif'to easy phyéical
1nterpretat1ou. A source neutron, from a fxssion or zcattet1ng
reaction, is welghted by the sourece importance function while
a collndxng neutron ig wexghted by the collidxng neutrou xm-
portance function. The last term of Eq. (3.2) sccounts for
diffusion effects.

) N
However the form utilized in the KAPER program is slightly

different than Eq. (3.2). We can rearrange the equation to
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obtain the following results -

g = m k m =om

o = Yyl v b I}-axf=¢;3 v Jor_ (prE-y’E)

e 28z ®) Pk ear B(plB-0'8) (3.3)
m k tm A m N

8-k .g
+ 17 5P.:(z +lv2f x")e+k
kn e '

The only”advanﬁage to.EQ. (3.3) is thit the first three terms
can be identified as the mormal absorption, scattering, and

fiasion perturbation terms.

The perturbed flux in Eq. (3.3) is obteined with the procedure
explained in Section 2.6. I ;hii case the'dintrubance in the
unit eell is the 'snpié;‘ By utilizing Eq: (2.25) to find the
flux in and around the sanpie one accounts also for the per-

turbation, due to the aanple, in the sanple environment.

It muit-bé rémeabetedrihat the derifatioé.of Eq.'(3 3) is based
on the nacroscoplc 1ntegtal transport equatxons, therefore it
is assumed that we have an infinite plate geo-etry medium which
consists of the petturbed cell surrounded by an infinite num-
ber of normal cells as shown in a f1gure on page 20 in

Section 2.6. When the region summations are over the perturbed
cell, the flux sad adjoint from the solution of Eqs. 52.25)

and (2.27) are used, and for the nornal cell: the flux and
ad]Olnt are from the solution of Eqs. (2 20) and (2.21). The
perturbed cross sections are found in the cross section phase
portion of the KAPER program with the sample inserted in the

A
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-the-deuomxnatox,mormnormalxzst10n~integralmas_it-13 connmnly

perturbed cell. For cores which have a significant flux .
survature within a few mean free paths from the perturbed
cell an emergy group dependent cosime curve is superimpo-
sed upon the flux and adjoint d;atrzhutxon in space. This

curve is calculated uxth
£8(x) = cos (8%

whege B® is the square root of the group g Bucklingiandﬁx
is the distance from the geometrical center of the pertur-
bed cell. Therefore we have then quasi-one dimensional

fluxes with the heterogeneocus fine structure superimposed.

Normalization of Perturbation Equation

ance the calculatxon&l procedure explaxned above 1: a zero

dxnensxonal, at best a quasi-one dimensxonal calculation,_
the denam;nator of Eq. (3. 3) can not be calcullted correctly

for the actual reactox cere and blanket. The cslculat1on of

called is best dome with a multx-d1nenaionnl flux program,
i.e. two—dxmensxonal dszusxon theory prograu DIXY of Karls-_
ruhe. Therefote the procedure selected for the calculltxon N

of the denomlnator 1: a8 follovs,

I = Flo) Dyop
where
N A Jvve Bl I xko;kp: o
D 9w 8®m @ k= ' (3.5)
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In tﬁeserequatibns it is assumed that the effect of the
sample in the calculation of the normalization integral

is negligible. Therefore the perturbed fission source is
replaced by its nﬁpgrturbed value. For small sample reac-
tivity worths, for which this program is designed to.handle,

this approximatien is quite valid.

The fECtOY‘DHOR is calculated for a normnl_cell.mE(@)mia_.
the normalization integral normalized by the neutren and
importance source at the center of the reactor. The inte-
gration in F{o) is over the entire reactor, core and blanket.
The factor is obt;ined in an independent calculation, such
as a two dimensional diffusion calculation, and is used .

as input data to the EAPER program for Eq. (3.3).

Numerical Results.

In the folipving section a number of test calculations are
given as verification of the methods utilized in'ﬁhe KAPER
program. Following this the results derived from the appli-
cation of the KAPER program on the analysis of neauﬁrgnents

performed in some SNEAK assemblies are given.

Comparison of Numerical Results from Heterogemeity Calculations

In a first series of calculations with KAPER and the ZERA pro-

gram /2/, k_ was calculated for a cell simi%;r to SNEAK-5C /ii/;
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this was a null-reactivity aésembly.vith a'koft spectrum
and strong heterogemeity effects, éhich‘contéined ﬁainlﬁq
mixed oxide and graphite, The calééi&tiané'uied-Q regioﬁs.
In order to simplify the eaieuiatioms,'the less important
nxsotopes were lefc out. The dsta used BYe g1ven in Table Is
and Ib, ' A ' -

Tables 11 shows thé’k;'values obtained for cells of dif-

ferent thickness. The following comments canm be made:

a) As expected from the theory, 211 results for the qussi-
. homogeneous case agree well., This. indxcates that no.. pro—

graming -errors are involved.

b) The two codes, ZERA and KAPER, using the same approxi~- -
mation for the collision probsbilities, give &k values .
vhich differ by 0.6%7 6k for the full cell, and less than
that for the smaller celils. Thus, the standard ZERA code-

B8y be used unless large hetercgeneities are imvolved.

¢) The k_ values before iterstion om the source dguéities

ata giver im bracketg. The figures indicate that the -

“changes duz to ihe iteration are by ome order of mag-

ﬁltude snalier than the dlfferemce 1n values ngen by
the two codes._Tharaf@te the xteratlon is neceasaty

ealy in cases of 1arge heeategenexty.

The'deﬁéaderte“of t&e‘heiérogéneiﬁy éffec& ﬁﬂ:éhﬁ‘baCkﬁrﬁunﬁ”
cross seciion is denonakreted ia Table IT1. The ztandsrd caz -
culation uses background crosz sections of 0238 in the reseo-

Bance groups equal to the p@tentlal cYoEs section whxeh ia‘

~ap = 10.6 barus. For camparisoﬁ wzth ZERA calculatxons by '

Kiefhaber /12/, the background cross section was set equal

to the tétéi'uﬁshieldeé cross section dt in a second calcu-

RN
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lation. Whereas the 6k obtained by Kiefhaber with ZERA
(Table III) depends stromgly on the backgtound cross
section, this dependence is very weak in the KAPER
resulte. In fact, the KAPER.kﬂET depends on b;@kground
cross section in much the same way as kHﬂH’ which is _
additional evidence for the comclusion that the approxi-
mations in the KAPER progran are similar to the approxi-
mations in homogeneous ealculations. Eutther;o:e, a8 the

238 are sirongly self-shielded, one would

resonances of U

expect better results from ZERA by using o p8 rather thnn
G.g 8% 8 backgtound CTO83 section. This expec:ation is

borne out by the results shown 1n Table II, vhete the

ZERA &k is fsxrly close to the true KAPER &k.

The same KAPER calculations with %08 and d.g were used
te obtsin the dependence of the gelf-ghielded cross sectxon
of Pu239 on the background. The results are showm in Table IV,
Though the ch#nge in background cross sé&tion is very large,
and 98 is certainly an extreme overeltinate,_the changes

in the self*sh1elded cross sections are small, except for
group 8. Thus, it is demoastrated that the cross sections
defined by Eq. (2.i5) are insensitive to the background.

CTOBS .secti_ons...._ e e

For 2 second test case SHEAK-3A~2 /!3/ vas ;opsidergd; which
has been thoroughly studied, including bunching effects. For
this high leakage core; the KAPER program gives.ngainrsnaller
6k's than ZERA. The results are shown in Table V. Noge that

the §k is not linear; rather, in the bunched cases, thc nega-
tive leakage 1ncreasgg stronger than ;he_posi:1ve effects, so
that the &k becomes even smaller. The small differencé.in the
Sk vzlues for the honoggngo&s case.frqm the two programs is

probably due te different numerical procedures.
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4,2 Calculation of Resctiom Rates in a Perturbed Envirommenat

In the bsid speatrﬁﬁre@fe of SHEAK-7B /16/ studies were made

on the effect'af SCructuralzmateéisié.(staialess steel and
alum1n1wm) on spectrai indxces measuted with foils. The core
of SNEAR-7B consisted of 2 ‘simple unit cell of one mixed
oxide platelet (vranium aad plutopiumm) and one uranius oxide
platelet. For the Qéésuremeaés ﬁﬁsniﬁé foils were placed
betwsen the nnrmal'platelets of the cell to serve as refe-
rence. Addxtxoaai foils were pi&ced between stainless steel
plsgelets, snﬂ alumxmxun platelets, of twe thicknesses. This .
arrangenent is 111ustrated in ‘Fig. 1.- The addition of the.
stainless steel, and alunlaxuﬂ repfesents 2 local perturba-

tien in the mormal repeating unit cell.

The metheds demcrxhed 1n Sectzon 2.6 of this report vere
used to obtnin the Elux, sad therefore the resction rates,
wichin these 1@ca§1y 1ntroﬂuced ‘pierturbations in the nor—”'
mal umig cell. For the caitulation a perturbed cell (as
defined is Ssctxen 2.6) was selected £o be the pertutba-
tion plus four pormzl unit celle on esch side of the per~
turbation. The tesults of these caleulstions sre shown

in Fig. 2 and 3 for the MOXTOT cross section set of
Karlsruhe. They are given a8 the percent chamge in the
spectral 1géicec o BIﬁfS gnd dfald §5° respectxvely, with
reapect to the reference measurement (without additional
structural materzai} While the agreement of the caleu-
laced and meagured results does depend on the cross. sec—
ticns of the stTuctursl materlale in this patticular case‘
the disctepnncy between BeasUTEnent and calculstion is
mostly due to the inadequacy of the one- dxmen510nal

modal sf th& calculatn@n to treat what “actually ia a two~
dimensional prabieme This can ba seen quite clearly for

the results of cfsiaf5 which depends oa the high energy

A
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flux. In the SNEAK-7B core the mean free path in. the high
energy region is greater tham 4 cm. This should be compared -
with the pitch of the lattice in SNEAK which is 5.44 cm.

The stainless steel and aluminium platelets were contained in
only one eélement. Therefore in.the calculational model (in~.
finite slabs) the influence of the steel, or aluminium, is
greater than existed in the actual case. This was verified
in SNEAK-8 /17/ in which nine elements, in an 3 x 3 array,
were loaded with stainless steel platelets so that one had
2 large slab of steel of thickness 6.4 wm. In the center
of this slab the spectral index °f8’°f5 was measured. The
reduction im thie imdex in comparison to a reference measurement
without stainless steel was determined to be 7.140.2%. The
KAPER calculation gave 6.90% with the MOXTOT cross section
get and 7.55% with the KFKINR cross section set, the latter
having smaller inelastic scattering cross sections for U238*

than the former.

Analysis of Rezctivity Worth Measurements in SNEAK

Two series of small uample reactlvxty worth neasurements per-
formed-in SNEAK have been analyzed with-the nethodn described
in this report, These 1nc1ude measurements in SNEAK-SC /1t/
and "’ SNEAK*ﬁA /l&/, as well aa two sod1um vo1d measurements in
SNEAK—GB llkl. ‘

The aasenbly 5C of SNEAK vas a null-react1v1ty core with a
soft specttun and strong heterogenelty effects as explained
prevxously. The corecon51stedof mixed oxide fuel (PuOZ-UOZ);
ursniuw and graphite plates. The sample reactivity measure-
ments were perforued in two p031txons within the unit cell

of the core. The unlt cell of SNEAK-SC with the measure—

ment posztlans shovn, is glven in Fig.,&.
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For comparison with experiment the ratio of the sample worth
in positior | to that in position 2 is used. This eliminates
the uncertainty associated with.seff and the absolute magni- .
tude of the normslization integral. These resuits are given
in Teble VII. All calculationswere performed with the MOXTOT

cross section set of Karlsruhe..

The results for SNEAK-5C are also given in Table VI nporma-- -

lized to the reactivity worth of the 233

‘sample. Here the
results are compéred to a homogeneous diffusion theory per-
turbation calculation, In this soft spectrum core the sample
worths sre very positiom dependent, and therefore, can not

be described by a homogenmeous calculation. \
In ¥Pige. 5 and 6 are given the reactivity worths of 0338
and Pu239, respectively, as a functiom of sample thickness.
This dependence is quite sat1sfactoxily delctxbed by the

KAPER program.

One can see that the methods described in this report (KAPER)
reproduces the experimental resuits quite sstisfactorily. This
is certainly an indicatiom that the procedures used in the

KAPER program are valid. .

The results of the measurements in.SNEQK-ﬁA and calculifions
with the MOXTOT set are given in Table VIII. The SKEAK-6A

unit cell igp shown in Fig. 7.

Tha nomhzatlon 1ntegral and £ eff (0 0042!) fot the SNEAK-6A
Tesults were cbtained from a two d1nenaxona1 dxffus1on theoty

calculation.

in geuernl the KAPER results improve the agtee-ent betveen '
experiment and cslculation, The lnrge Ta sanple has a signi—

ficant heterogeneity effect.
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In SNEAK-6B two small sodium: void experiments were performed .
in a bunched cell configuratiom as shown in Fig. 8. In one
experiment the sodium was voided in a fuel material: eaviron- -
ment and in the other im a structural material environment.

The experiment gave a differeace in sodium worth in the two
environhents of more than 30Z. The results are given in Table IX

as cazlculated with the MOXTOT cross section set .

it is seen that the KAPER program reproduces the experiment

results quite satisfactqriiy.

Conclusions

As it has been demonstrated in the previous sections, the
methods smployed in the KAPER program are generally adeguate
for the snalysis of measurements performed in a heterogeneous

environment of fast critical assemblies.

The application of the "f-factor concept" to heterogeneous
calculations, in slab geometry, has been shown to be consistent

with it use in homogensous czlculations. Whereas this procedure

" is not as accurate as the methods used in ultrafine group

slowving-down code it certainly yields a sufficient accuracy

for routine calculations.

The flexibility of the program in treating local perthrbntionn
in the normal unit cell is valuable in the analysis of many
experiments since the measurements themselves many times in-
troduce a disturbance in the cell. The adequacy of the proce-
dures in the program for treating these problems has been

sufficiently demonstrated.

Finally, the use of the KAPER program for the interpretation

of small-sample resctivity worth measurements significantly
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improves our understanding of these measurements. This is
demonstrated particularily for the case when one calcula-
tes the worth for the same sample in differ?nce positions,
or enviromments. The ratio of these two calculations eli-
minatea~the-uncertaineies-associated"withmﬂeff and  the
normalization integral. We have then a direct test of the -
calculation of the sample cross sections and the local

flux snd sdjoint.




-39 -

APPENDIX

Methods used for the calculation of ¢oilisidﬁ probabilities

1f one integrals the first-flight collision probability p(r' — ¥),
as given by Eq. (2.1a), in slab geometry, ome encounters exponen-

tial integrazls of order 3
1 -x/t
By00 = f dee e

Congider the case of calculating the probability a neutron ffom
region a collides in region m of the same cell. In the sinplifigd

gketch below of a cell

e X P Xp T TS Xg ™

of optical thickness x_, where

X © ztt.di
i i



I = total cross section of regiom i (cm*l)

di = thickness of region i (cm)

one can easily calculate P o to be

| S I/2xﬁ { E, Otp)=Eq (X X)) “Eg (xgx ) +E 5 (X +xp¥xy) } - (A1)

However the collision ptobabxlztxes in Eqs. (2. 20) and (2 2!),
as stated inp their definition, must include the probability
the neutron from region n collides in all regions m of the
surrouad1ng cells. Therefore we must sum over of regions =

of the surrounding cells

P - E P . (A.2)

where Pnj = probability a nentron from region m collides

“{n vegion m of the it LIPS L

For j=o, Pnj is'equal to Eq. (A.1).
n

We have therefore an infinite gsum of exponential integrals.
These infinite sums are evaluated by utilizing a special

Gauss quadrature formula /15/ of the form

- 4 ' . H
] E ety m)= .Xl w, exp(-xt;) (A.3)
n=o i=
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where v, are the wveights and t. are the modes. The error in
this formula is of the order of 1!0*5. With this formula one
is able to evaluate the collision probabilities quite rapidly

with reasonable accuracy.
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Tahic la Atomic Densities for the SNEAK~5C Simplified

T Cell (in 1020 cm’3)
Composition c 12 CR 52 Fe 56 0 16 pul3? y238
No. ’ '
1 0 42.5 99.4 | 325.9 | 39.35 | 118.76
2 o | 2.9 | 39.5 | o 0 390.0
3 777.5 16.8 39.5 0 0 0
Table Ib Ihicknési of Plates for the SNEAK-5C Simplified Cell
Region No- 4+ - . Thickness, cm .- .Composition No.
1 I 2,08 | 3
2 e 3
g e e e i - risST T T 2
4 | 0.15 1
5 0.328 1
6 0.15 1
7 0.157 2
8 0.157 2
9 1,00 3




Table II

k_ for the SREAK-5C Simplified Cell

ZERA KAPER
Relstive Thickﬁeéé. _
of the cell | k. 8k ke 8k .
107> (quasi _ - -
homogeneous) 0.9342 - £ 0.9343 —_—
1/4 | 0.9640 0.0298 | 0.9627 0.0284
©.9628) "
/2 10,9849 00,0507 | 0.9828 " 0.0485
(0.9825)
Pall - 1.0156 | 0.0814 1.0101 0.0758
(1.0094)

)

source demsities

k_ values in parentheses are values before iteration on the
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Tabie IV Dependence of the effective cross sections of Pu239
e 238

on the background cross section due to U (KAPER)
(SNEAR-5C simplified cell, region 5)
' . ' ' ) . : 239
Background Self-shielded cross sections of Pu
cros8s section | . . ' .
238 cfg 4 dlffereqce Cug Z difference
of U » b

Group 14 (1.00 -~
2.15 keV)
Infinite Dilution - . 3,929
Self-shielded 3 C ‘ - |
with %58 10.6 - 3,718 ~3.8 - 2.192 | -5.7
Self-shielded o o ) :
with Geg 19.9 3,79 +0.4 . 2.206 +0.6
Group 16 (215 -
465 eV)
Infinite Dilution - | 12,48 - | 8.63 L
Seif-ghielded ' : :
with o 10.6 10.91 -12.8° 6.72 -22.1
Seif-shielded U ] _
Group 18 (46,5 - |
100 eV)
Infinite Dilution - 54.5 | |'50.8
‘Self-shielded ' '
with apa 10.6 31.8 -42 21,6 -57
Self-shielded : :
with-ots 40.2 3.0 - + 7 23.9 +10
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Table VI Reasctivity Worths im SNEAR-5C

i Sample | Samplgjweight " Posiries .".Expefigent_ -..Calculation / Exp. -

_ug#, . ué/gm Homogeneou§+) ﬁAPER
g3 3 i | 3 wss. | ho 1o
P’ | 50 I S N 1.08
Fm239 : i_ --5 ‘_; ; 12” _ iﬁ390i5°_; ).09 . -ﬁ’?07
y?38 5 | ff: | 8623, .35 7} By
e | 2 2543, .21 [ 1.07
ﬁ535 , | éb ? i: 11 , | -37,734;' 80 | 1.09
5233 L 60 2 424,433. | 1.2 S 1.09
pu’?0 3 RN R LS S 78 L%
Fe,0y | 3 1 -2245. .70 .48
Fézﬁs 3 2 - 5085, .31 .50
) Homogeneous Qne—ﬂimensiunai diffusion thgéry pértu:bation

N




Table YII

Reactivity Worth Ratios in SNEAK-5C

Position 1 ' | Calculation ~
. : Sample Weight - w

o ! (1 Experiment KAPER

Position 2 *,g"

pu?3? 5 1.135 1.146
238 5 3,440 34127
p238 60 1.545 1.540
pu240 3 1.635 1.310
Fe203 3 L4540 .430




Table VIIT Material Worth in SNEAK-6A

Sample weight Experiment Calculation / Exp.. -
:_g i?S/g” Diffusion KAPER -
B 3.3 | sizer0 | 122 19
y238 62. -33.230.5 | s .19 |
py?3? o | 74047 | 1.&5 1.03
pu240 2.7 | 'io7¢|o_ | .99 .97
ss | 15. | -27.232 .89 .90
Fe,0, | 3. | . -10.0 g ER )
B,C 6 -172045 it 1.04
Eu,0, | @. - ~705+8 .91 .88
Ta | 220. -143s0.2 | 1.90 1.07
Na - 30, - =31,3 114 1.38
Table IX Na-void in SNEAE-6B (ug/g)
Experiment KAPER
Na in fuel --25.5 -31.33
Na in structural msterial «~19.0 ~-23.70
- Ratio: o
fuel / structural meterial 1.342 1.322
N




PuQs - UOy

V02
; =15 or 3.1l.rnm: Aluminum

Pu0; - U0, Uranium foil

5 Celis

Pu02 - U072
U032 |

%::_—___——___—-—_f_a—Uruniur_ﬁ foil {reference)
" PuO -U02 | R

U0y :

5 Cells -

Uos

D e et e el bk
CATTIIIT TR TITIIIITIEIINT:

Pu0y - UO2

[———=1.6 or 3.2mm Stainless steel

Uranium foil

Fig.1 ~ Spectral indices measurements in SNEAK-78
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= u depl.

S PuQ2 - UO2
position2 —— = :

" U nat
position 1— graphite

Fig.4 Principal cell _'structUre of SNEAK-5C
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30 | : 3
. ) - g B ?-i
20
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0 - w —
0.1 0.2 05 ... 1v 2 5 - 10 ZQ 50
——== Thickness of U238 "sample in glcm2
{ measurement with sample in graphite
{ measurement with sample in U nat
| p— ;sumple_‘:.in graphite } het_erogel}\epus perturbation
—e——-—  Ssample in Unat J calculation with MOXTOT set
Fig.5 Central Reactivity Worth of U238 in SNEAK-5C
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!
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0
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——> Thickness of Pu 239 sample in g/cm?2

} - meusﬁré'm-én.t wzth scl"mple. in grd‘p'hithe ’

¥ measurement: with. sample.in U nat

sample in graphite } heterogeneous perturbation

=== sample in U nat calculation with MOXTOT set

Fig.6 Central Reactivity Worth of Pu 239 in SNEAK-5C
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Fig.7 Unit cell of SNEAK-6A
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E— SS.100°%/,
Ferrit
PuO, UOs
PuOy U0 -
__YUnat _.
| 'NF" o | Void - experiment 1
{ fuel - environment )
Na : ‘
Unat _ :
PuO7 UO2

Fig.8 Bunched cell in SNEAK - 6B
(for Na -Void - experiment )
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