
Januar 1973

Institut für Reaktorentwicklung
Projekt Schneller Brüter

SEDAP
An Integrated System for Experimental Data Processillg

I<FI< "1594
EUR 4730 e

M. Audoux, F. W. I<atz, W. Olbrich, E. G. Schlechtendahl

" ..
'1'

Als Manuskript vervielfältigt

Für diesen Bericht behalten ~ir uns alle' Rechte vor

GESELLSCHAFT FüR KERNFORSCHUNG M. B. H.

KARLSRUHE

KERNFORSCHUNGS ZENTRUM KARLSRUHE

KFK 1594

EUR 4730e

Institut für Reaktorentwicklung

Projekt Schneller Brüter

S E D A P
An Integrated System for Experimental Data Processing

M. Audoux .r
F. W. Katz

W. Olbrich

E. G. Schlechtendahl

Gesellschaft für Kernforschung mbH, Karlsruhe

.) delegated from EURATOM

SEDAP - Ein integriertes System zur Meßwertverarbeitung

Zusammenfassung

SEDAP (gystem for §.xperimental Data ,Erocessing) ist ein viel

fältig einsetzbares Programmsystem zur Verarbeitung und Reduk

tion experimentell gewonnener Daten. SEDAP wurde in FORTRAN IV

programmiert und auf den Datenverarbeitungsanlagen vom Typ IBM

360 und 370 der Gesellschaft für Kernforschung, Karlsruhe, im

plementiert.

Das System erlaubt die schrittweise Verarbeitung von Meßdaten

dateien, sogenannter "Experimental Records", mit der M5glich~

keit der freizügigen Kombination von Standard-Operationen (wie

Integration, Erstellen von' Diagrammen usw.) Eine der Grund

ideen in SEDAP war, dem Experimentator die M5g1ichkeit zu

geben, den Auswerteprozeß seiner Meßdaten mit Hilfe einer, in

ihrer Struktur sehr einfachen aber trotzdem mächtigen und spe

ziell auf seine Anliegen zugeschnittenen Sprache, selbst pro

grammieren zu k5nnen, ohne durch EDV-Probleme von seinen Ver

suchsproblemen abgelenkt zu werden.

Der Bericht beschreibt das gewählte Verfahren zur L5sung der

Probleme des Datena~swertungsprozessesund erläutert den Be

griff: "Experimental Record". Detaillierte Angaben zum Pro

grammsystem beschreiben die Datenspeicherverwaltung, das

Steuerprogramm, die verschiedenen Operatoren, die Subsysteme

(Transfer, Input/Output, Service) und die Fehlerinterpreta

tion. Der nächste Abschnitt enthält eine ausführliche Liste
aller Sprachelemente (Kommandos) zusammen mit verschiedenen

Beispielen, die eine rasche Einarbeitung in die Benutzung von

SEDAP erlauben.

Schließlich folgen noch einige Hinweise über m5gliche Weiter

entwicklungen.

SEDAP - An Integrated System for Experimental Data Processing

Abstract

SEDAP (~ystem for Sxperimental Data ~rocessing) provides the

scientist with a powerful tool to process various digital data

which are sampled during an experiment. SEDAP is a software

package based upon FORTRAN IV and implemented on the IBM 360

and 370 installations of the Karlsruhe Nuclear Research Center.

The system insures the modular processing of so-called "expe

rimental records" and provides a straightforward way to USa

standard operators (integration, conversion, plot ••• etc • ••).
The leading principle in designing SEDAP was to allow experi

menters who are not familiar with a programming language to

conduct their own data reduction with the help of a very simple

processing language. The report explains the approach which was

selected to solve the problem of the experimental da ta proces

sing and introduces the concept of "experimental record". The

detailed description of the system includes the storage manage

ment, the main program, the various operators, the different

subsystems (transfer, input-output and serviee) and the inter

pretation of errors. The different elements of the language
are listed with different examples which allow any prospective

user to become rapidly familiar with all the features of

SEDAP. The last part of the r~port gives a tentative evalua

tion of the system together with some guidelines for further

developments.

SEOAP - Syst~me de programmes int~gres pour le traitement de
mesures experimentales

Resume

SEOAP (System for experimental data Processing) permet a un- - - -
experimentateur de reduire un ensemble de donnees numeriques

acquises pendant le deroulement d'une experience scientifi

que. SEOAP est un systeme de software qui utilise exclusive

ment 1e FORTRAN IV et qui a eta mis au point sur les ordina

teur systemes IBM 360 et 370 du Centre Nucleaire de Karlsruhe.

Le systeme permet le traitement modulaire de "records experi

mentaux" et fournit la possibilite de combiner librement 1a

plupart des operations usuelles (integration, differentia

tion, conversion, filtrag~, transformation de Fourier, plot,

etc • •.•). L'idee maItresse de SEOAP est de permettre a
l'experimentateur d'effectuer lui-meme la reduction de ses

donnees numeriques gr~ce a un langage approprie. La simpli

cite de ce langage est teIle qu'elle ne necessite aucune

connaissance pralable dans le domaine de l'Informatique. Le

rapport explique la methode suivie pour aborder le probleme

de la reduction des donnees numeriques et introduit la nation

de "record experimental". 11 fournit une description detaillee

du systeme: gestion des ensembles-memoires, programme princi

pal, structures d'appui (Entrees-Sorties, Transfert, service),

routines de calcul et interpretation des erreurs. Les elements

constitutifs du langage SEOAP sont expliques en liaison

etroite avec de nombreux exemples qui permettent a l'utilisa

teur eventuel de se familiariser rapidement avec le maniement

du systeme. La derniere partie du rapport est consacree a
l'evaluation sommaire du systeme et indique certaines des

ameliorations susceptib1es d'etre apportees au systeme.

I

Contents

Abstract, Resume, Zusammenfassung

1. THE SEOAP APPROACH 1

1.1 Basic principles of the experimental data pro-
cessing 1

1.2 Guidelines for the development of SEOAP 2

1.3 The concept of »Experimental Records» 4

2. PROGRAM SYSTEM OESCRIPTION 6

2.1 Storage-management

2.1.1 The warehouse

2.1.2 The catalog

2.1.3The dumping file

2.2 Tha main program

2.2.1 Initialization of SEDAP

2.2.2 Command interpretation and execution

2.2.3 End of the job

6

6

7

9

9

10

13
16

2.3 Transfer-subsystem 18

2.3.1 Computing arrays 18

2.3.2 Transfer from the warehouse tothe compu-
ting arrays 18

2.3.3 Transfer from the computing arrays to the
warehouse 32

2.3.4 Remarks about the useof the transfer sub-
routines 33

2.4 Error interpretation 40

2.5 Service subroutines 47

2.5.1 Command file transfer (Subroutine DAKA) 47

2.5.2 Status of the warehouse and the command
list (Subroutine STATUT) 47

2.5.3 Oestruction of records (Subroutine LAGER) 52

2.5.4 Generation of simulated data (Subroutine
OAGEN) 56

II

2.5.5 Record delimiting by values or time
units (Subroutine WERT) 59

2.6 The input-output subsystem 64

2.6.1 Conversion of experimental data recor-
ded by the ERA da ta acquisition system
(SUBROUTINE ERAKON) 65

2.6.2 Processing of data on paper tape (Sub-
routines PAPTAP, PCHCK, RECO, PDUMP) 77

2.6.3 Restoring of data files (Subroutine
HOLE) 80

2.6.4 Printed data output (Subroutine PRINT) 80

2.6.5 Graphical output (Subroutine GRAPH with
entry GRAPH1) 83

2.6.6 Dump of the warehouse (Subroutine DUMP) 88

2.7 Operators 88

2.7.1 Sorting the channels of a multiplexed
record (Subroutine SORTIK) 88

2.7.2 Standard operations (Subroutine OPERA) 94

2.7.3 Smoothing package (Subroutine FILTER) 98

2.7.4 Differentiation and integration (Sub-
routine DIFINT) 116

2.8 The FOURIER package 127

2.8.1 Th~ al~orithm of the Fast Fourier Trans-
form (FFT) 128

2.8.2 Implementation of the FFT in SEDAP (Sub-
routine FOUR) 129

2.8.3 Real valued Fourier series and the com
putation of amplitude and phase (Sub-
routine BEFA) 136

2.8.4 Evaluation of power spectra (Subroutine
MEPODE) 137

2.9 U~er defined SEDAP commands (extending.of
SEDAP 151

3. USING SEDAP 161

3.1 Running a SEDAP job

3.1.1 Description of the files

3.1.2 System initialization

3 •.1.3 The 8EDAP commands

3.1.4 Programming of the. tasks

161

161

161

162

162

I

Contents

Abstract, Resume, Zusammenfassung

1. THE SEDAP APPROACH 1

1.1 Basic.principles of theexperimental data pro-
cessing 1

1.2 Guidelines for the development of SEDAP 2

1.3 The concept of "Experimental Records" 4

2. PROGRAM SYSTEM DESCRIPTION 6

2.1 Storage-management

2.1.1 The warehouse
2.1.2 The ~atalog

2.1.3 The dumping file

2.2 The main program

2.2.1 Initialization of SEDAP

2.2.2 Command interpretation and execution

2.2.3 End of the job

6

6

7

9

9

10

13

16

2.3 Transfer-subsystem 18

2.3.1 Computing arrays 18

2.3.2 Transf.er. from the· warehouse to the compu-
ting arrays 18

2.3.3 Transfer from the computing arrays to the
warehouse 32

2.3.4 Remarks about the useof the transfer sub-
routines 33

2.4 Error interpretation 40

2.5 Service subroutines 47

2.5.1 Command file transfer (Subroutine DAKA) 47

2.5.2 Status of the warehouse and the command
list (Subroutine STATUT) 47

2.5.3 Destruction of records (Subroutine LAGER) 52

2.5.4 Generation of simulated data (Subroutine
DAGEN) 56

11

2.5.5 Record delimiting by values or time
units (Subroutine WERT) 59

2.6 The input-output subsystem 64

2.6.1 Conversion of experimental data recor-
ded by the ERA data acquisition system
(SUBROUTINE ERAKON) 65

2.6.2 Processing of data on paper tape (Sub-
routines PAPTAP, PCHCK, RECO, PDUMP) 77

2.6.3 Restoring of data files (Subroutine
HOLE) 80

2.6.4 Printed data output (Subroutinß PRINT) 80

2.6.5 Graphical output (Subroutine GRAPH with
entry GRAPH1) 83

2.6.6 Dump of the warehouse (Subroutine DUMP) 88

2.7 Operators 88

2.7.1 Sorting the channels of a multiplexed
record (Subroutine SORTIK) 88

2.7.2 Standard operations (Subrouti~e OPERA) 94

2.7.3 Smoothing package (Subroutine FILTER) 98

2.7.4 Differentiation and integration (Sub-
routine DIFINT) 116

2.8 The FOURIER package 127

2.8.1 The algorithm of the fast Fourier Trans-
form (FFT) 128

2.8.2 Implementation of the FFT in SEDAP (Sub-
routine FOUR) 129

2.8.3 Real valued Fourier series and the com
putation of amplitude and phase (Sub-
routine BEFA) 136

2.8.4 Evaluation of power spectra (Subroutine
MEPODE) 137

2.9 USer defined SEDAP commands (extendin~ of
SEDAP 151

3. USING SEDAP 161

3.1 Running a SEPAP job

3.1.1 Description of the files

3.1.2 System initialization

3.1.3 The 8EDAP commands

3.1.4 Programming of the tasks

161

161

161

162

162

III

Pa~

3.2 Oescription of the commands 163

3.3 Some special features in the reduction of
da ta series 219

3.3.1 Synchronism of two records 219

3.3.2 The sampling frequency 222

3.3.3 Complex values 224

4. EVALUATION OF SEOAP

4.1 The command interpreter

4.2 Type dependent operations

4.3 Size of the system

4.4 Oata management

4.5 Conclusion

References

Appendix A: Job Control Cards for SEOAP

Appendix B: Example

225

226

227

226

229

230

231

234

235

IV

Figures

Page

Principle of the catalog 8

MAIN (general structure) 11

MAIN (command zone) 12
MAIN (command check and catalog retrieval) 14

Subroutine OPEIN 20
Computing arrays in SEDAP (size and equivalence) 21

Transfer scheme (ADDEIN) with two modes 25

ADDEIN transfer with overlapping 28

Entry ADDEIN in 8ubroutine OPEIN 30

Subroutine OPAUS 34

Entry ADDAUS in subroutine 'OPAUS 38

Error handling with RETURN scheme 41

Subroutine DAKA 48

Subroutine STATUT 50

Subroutine LAGER 53

Entry CTLG .in subroutine LAGER (systematic catalog search) 55

Subroutine DAGEN 57

Transfer scheme for subroutine WERT 60

Subroutine WERT (call by values) 61

Subroutine ERAKON 66

Subroutine PAPTAP 68

Subroutine PCHCK 70

Subroutine RECO 72

Subroutine PDUMP 74

Subroutine HOLE (restore) 78

Subroutine PRINT 81

Subroutine GRAPH 84

Entry GRAPH1 in subroutine GRAPH 86

Subroutine DUMP 90

Subroutine SORTIK 92

Subroutine DPERA 96

Subroutine FILTER 100
Subroutine FIL13 102

Subroutine FIL15 104

v

Subroutine FIL35 106

Subroutine FILVAR 112

Subroutine FILHAN 114

Subroutine OIFINT 118

Subroutine TRAP 120

Subroutine SIMP 122

Subroutine OIF3 124

Subroutine FOUR 132

Subroutine BEFA 134

Subroutine MEPOOE 138

Subroutine MEPOOE (continued) 139

Illustration of record segmentation 144

Illustration of the mixingalgorithm in subroutine MIWIBU 150

Subroutine EXTSEO (example 2) 156

Tables

Cross reference list of subroutine and function calls 17

Error code list 45

Table of valid commands 164

Table of valid modifiers 165

Format of the SEOAP command language 166

1

1. THE SEOAP APPROACH

1.1 Basic prinoiples of the experimental data processing

Because of their reliability and their accuracy the digital

data acquisition systems are more and more widely used to

record the different phases of modern technological experi

ments. The rational organization of such systems calls for

a two-sided approach which involves the two following close

ly related fields:

1) The da ta acquisition

The acquisition of the data requires a signal amplification

with appropriate filtering as well as a multiplexed analog

to digital conversion. Many of the off-line systems record

the converted da ta on magnetic tapes which are processed

during a further task performed by a large size computer.

Initially the adaptation between the analog to digital con

verter and the tape requiring a block segmented transfer

was provided by a buffer memory and its associated circuit

ry. The recent evolution of the relatively low priced small

size computers has radically changed the situation. The

minicomputers provide the interface with the tape units, a

buffer memory and a programmable operating mode which gives

such a versatility to the modern data acquisition systems

that they can be adapted to different types of experiment

by only typing in a few instructions on a keyboard.

2) The data reduction

An efficie~t data acquisition system must rely upon a good

software package in order to obtain the best possible infor

mation from the va lues stored on the magnetic tape. It is

quite unfortunate that one often does not take advantage of
the great flexibility achieved by the modern data acquisi

tion systems because of the rigid structure of the software

Zum Druck eingereicht sm 21.12.72

2

support. It has been often observed that an undesirable gap

exists between the planning and the recording of an experi
ment on one side and the data reduction and the interpreta

tion of the results on the other side. Many times the exi

sting subroutines have to be modified to take into account

the latest changes in an experimental set-up and the situa

tion can be worsened by a lack of communication between the

experimenter and the scientist in charge of the software.

All these considerations have led the Institut für Reaktor
entwicklung to develop an experiment oriented software

package called SEoAP (~ystem for ~xperimental oata Proces

sing).

1.2 Guidelines for the development of SEoAP

SEoAP was developed according to the following guidelines:

a) SEoAP should provide a rationalization of the data reduc

tion. In other words a bett er efficiency should be ob

tained from the available resources in di~ferent domains.

For the user the system should be easy to learn and should

offer real advantages concerning service and comfort.

For the programmer, a careful planning of the task and the

deliberate attempt to implement a modular system should

save many of the manhours which would be necessary to per

form the modifioations of small programs.

For the installation. the integration of the system should

save some of the computing time, not only by the optimi

zation of the programs but also by the reduction of abor

tes runs which are avoided by a good documentation of the

errors

b) SEoAP should be large enough to satisfy most of the

wishes of a users group which were invited to influence

the specifications of the options to be implemented. The

frame of the system should not be restricted to a special

branch of engineering sciences but should however full

fill the basic requirements of the IRE program (thermo-

3

dynamics, vibration analysis, sodium boiling etc ••••)

and similar experiments and should be relatively easy to

extend.

c) SEOAP should provide a computer assisted data reduction

without impeding the scientific aspects of the task. A

good interfaoe between man and machine requires a basic

study of the assisted activity in order to offer a more

comfortable and more efficient solution without radically

changing the methods which are applied in the current

state of art.

A basic study of the data reduction in our present context

has shown that the data acquisition system was used as a

kind of recording center for a wide range of technological

experiments and that the number of channels, the range of

frequencies as weIl as the recording time could considerably vary

from one type of experiment to the other. Furthermore, it

was determined that the data reduction was apart of the

research work and could be considered as an iterative pro-

cess. This process receives the sampled values as input and

should deliver, after suitable treatment, numerical values

or curves which are suitable for interpretation and adequate

to document the scientific aspects of the experiment. To

direct such a process, nobody is more qualified than the

scientist in charge of the experiment •. Theflexibility

should be provided by a set of commands which he can use in

many different combinations to perform his own data reduc-

tion. The system should be conceived as a tool which enables

the scientist to addapt the data processing to the task he

performs. The shape of a cross-correlation curve for in-

stance can lead to new investigations which are easy to

perform if a sufficient modularity has been implemented in

the system.

As a consequence of the very general guidelines of SEOAP,

the system is not restricted to experiments of a specific

technical or scientific area (e. g. mechanical engineering).

4

However, the system should be very suitable for the investi

gation of all experiments, which may be characterized by the

following attributes

the expected information from the experiment is con

tained (m~ybe hidden) in the evolution of a number of

measured si~nals over aperiod of time

the algorithms which are suitable to make the impor

tant experimental information evident, are not comple

tely known beforehand, but must rather be developed or

selected iteratively during the data analysis and inter
pretation process

the numberof signals should not exceed 64

the total number of sampled data should not exceed a

few millions.

1.3 The concept of »Experimental Recorda u

Once a technological experiment has been brought into a de

sired initial state the active part of the experiment can be

gin and a number of state variables are recorded by an appro

priate instrumentation over a certain period of time (from

milliseconds to hours). These sampled signals are assigned

to channels and contain the basic information related to the

experiment. Within the frameword of SEOAP, the digital re

presentation of such a signal is called an uexperimental

record". The experimental records are generally a seguence

of eguispaced numerical values sampled at-constant frequency

and which are the basic quantities of data considered for

the process.

The following parameters are associated with the definition

of an experimental record:

a) the~ is any combination of four valid alphanumeric

characters used to address the experimental record.

b) the length is the number of points covered by the experi

mental record. The length is not stored as a formal para

meter but can be calculated from the three following para-

5

meters.

c) the first pointer is the absolute address of the first

storage block in the storage file.

d) the last pointer is the absolute address of the last

storage block in the storage file.

e) the filling factor takes into account the fact that the

last block may be incompletely filled.
f) the freguency is the sampling frequency which determines

the time interval between two consecutive points.

g) the~ (day, month, year).

h) the time (seconds).

Since SEDAP was conceived as a processor of experimental

record~ the concept of experimental record is fundamental to

understand the organization of the system.

6

2. PROGRAM SYSTEM OESCRIPTION

2.1 Storage-management

The vast amount of data which can be processed by SEOAP has

required the use of a large storage capability and the storage

management is one of the most ~mportant features of the system

2.1.1 The warehouse

The main storage area is called the LAGER or the WAREHOUSE.
The warehouse is a direct access file created by a special

subroutinecall during the system initialization. The state

ment defining the fileis of the following type:

OEFINE FILE 40 (SOOO,512,U,IA)

which calls for the following remarks.

1) The index assigned to the file is 40 and requires a con

cording 80 card with the proper space allocation.

2) The number of blocks or physical records is 5000. Since

this argument cannot be represented by a variable integer

like ISIZE in the described system and since it is reason

able to allow the user to specify the dimension of his

storage file, different defining calls are provided with

in SEOAP. Ouring the initialization of SEOAP the smallest

of the seven options which can satisfy the storage needs

specified by the user is selected after some straightfor

ward computation.
3) The size of the physical records or blocks is 512 words.

This choice has been motivated by two considerations:

0.5 K is a good compromise for the medium-sized expe

rimental records and is compatible with the output of

the presently used da ta acquisition system which blocks

the recorded data into 1 K physical records (1024

points) on the magnetic tape.

A storage using records comprised of 2N is especially

suitable for the use of fast Fourier transforms algo

rithm.
4) U indicates that REAO and WRITE operations are performed

7

without format control. This mode achieves a fast er trans

fer speed and implies that the words will be moved or

copied back and forth without any transformation or inter

pretation.

5) IA is the integer variable also called associated variable

and points to the IA-th block when accessing the file.

6) The expression »experimental record» is derived from the

fact that we are concerned with data recorded in performing

an experiment and was greatly influenced by the concept of

"records" described by Hoare /1/. A possible confusion

exists when one refers to the physical records used in the

storage file. To avoid any confusion in the following

pages, the word record will be reserved for the experimen

tal records while the physical records will be exclusively

called blocks. The reader should be aware that this prac
tice is in contradiction with a current convention which

consists of grouping logical records into blocks.

2.1.2 The catalog

The management of the warehouse requires some elementary book

keeping which gives an exact account of its content. This is

achieved by a catalog located in the COMMON storage area and

divided to provide a two level information:

a) The warehouse level

The warehouse level is comprised of three parameters:

KDAT which indicates the number of records contained in the

warehouse

KEND which represents the value of the associated variable

pointing to the next unused block (i. e. the warehouse

contains (KEND - 1) blocks)

JRV carries the maximum number of blocks which can be stored

in the warehouse according to the specification given by

the user (limit = 5000)

b) The record level

All the records contained in the warehouse are tracked by the

following catalog parameters:

LEVEL 1

KDAT =
KEND=
J RV =

- B

NAME

{

REC 1 (A)
I..---+-. REC 2 (B)

REC 3 (C)

WAREHOUSE

L E V E L 2

BEG. END FREQ. DATE TIME

100 cIs 260472 20.00
200 cIs 260472 65.34
200 cIs 26 0472 65. 34

lAPRIL 26,1972

A

C

KPF

256

128

374

--__ •.. (FIRST OF THE UNUSED BLOCKS) 11
--------------------1

LAST BLOCK

PRINCIPlE OF THE CATAlOG

5000 CJ

BENAM(K):

NANF(K):

NEND(K):

WFREQ(K):

ADAT(K):

BZEIT(K) :

KPF(K):

9

contains the name of the record K (1 ~ K ~ KDAT)

points to the first block of the record K

points to the last block of the record K

stores the sampling frequency of the record K

store~ the coded expression of the date (260472 =
26 th day of April 1972) of the record K

stores the time corresponding to the first value

of the record K. The time is computed in seconds

and the time origin (0.0) corresponds to the first

value recorded on a tape.

is the filling factor of the last block of a re

cord where any value from 1 to 512 can be expec

ted.

2.1.3 The dumping file

The warehouse is a direct access file which can only exist

during the execution of a job and which is destroyedafter

the completion of the computer run. The user has the possi

bility to dump apart or the totality of the warehouse on
a magnetic tape and to restore the records in a subsequent

job. This feature will be described in the following chap

ters but should be mentioned here as an ext~nsion of the

storage.

2.2 The main program

The most important functions of the SEDAP process are per

formed by the main program which

initializes the system

receives the commands

checks the validity of the requests

formulates the resulting tasks

supervises their execution

acknowledges their completion

and orderly closes the system when the process is terminated

or when a severe error has been detected.

10

2.2.1 Initialization of SEDAP

The program initializes the service variables" sets the job

timer to zero, and reads the first card which contains the

system identification (Name "SEDAP") and a eight character

title stored in ZNAM. If the identifier is not correct, the

initialization is stopped and the job is terminated with an

error code IERR = 11. The two next cards are read and the

160 characters reserved for the user's comments are stored.

A full page is printed with the system heading and the

user's titlB by calling the special subroutine A8FDRM /2/.

The two lines of comments are added at the bottom of the page.

The initialization is almost terminated but the fourth card

which is handled by the normal command interpreter (see 2.2.2)

belongs to the initialization. This card must be a SEDA card

with the parameters which are required to specify the size

of the warehouse and the possible options. If the first

command card (it is the fourth of the deck) does not begin

with SEDA, the job will be terminated with an error code

IERR = 11.

The system sets the two options indicators KSTDP and KDUMP to

zero. KSTOP will be changed to +1 if the error test option

has been specified (this option is used by the system's pro

grammer for testing purposes when programmed errors justify

arestart of the system after the error interpretation). If

the user has specified the automatic dump option, KDUMP will

be stored as +1 and the dump file number passed by INT(3)
will be stored by the integer KFILE for later use.

The size of the warehouse can be selected between seven stan

dard sizes comprised between 100 and 5000 blocks. This re

quires seven similar subroutines where a corresponding DEFINE

FILE statement opens the file 40. The smallest size which

satisfies the number of blocks passed by INT(1) is called and
the real size of the warehouse is stored by IRV which is used

to detect a possible warehouse overflow (DPAUS). If the user

ERROR 'E----I

ERROR---I

SELECT
ERROR........... SIZE OF

WAREHOUSE

CLOSE
STEP

- 11

CATALOG
SEARCH

COMMAND
ZONE

(SEE NEXT
PAGE)

NORMAL
STOP

COMMAND-

ERROR
INTERPRETATION

CLOSE JOB
CLOSE PLOT
(OPTIONAL)

FINAL STOP

MAI N (GENERAL STRUCTURE)

12 -

(SEE PREVIOUS PAGE)

CATALOG
SEARCH

SPECIFIC
CHECK

SELEGT
OPTION

PRINT
THE TASK

(CLEAR TeXT)

SPECIFIC SUBROUTINE (EXAMPLE)

PREPARE
TRANSFER

GET THE
VALUES

COMPUTE

STORE

NO

OPEIN
OPAUS

ADDEIN
(ARITHM.

STAT EM ENTS)
ADDAUS

ERROR
CODES

VES

RETURN

(SEE PREVIOUS PAGE)

MAI N (COMMAND ZONE)

13

has requested more than 5000 blocks, the job is terminated

with an error code IERR = 17.

If a second SEDA command is received during any further phase

of the job, the card will be normally processed but a second

access to any of the OEFINE FILE subroutine will be protected

by an IF statement which verifies if the card index NZAE is

equal to one. This card will then only change the OUMP or

RESTART options and can allow an ON/OFF switching of the two

features during the execution of a job.

2.2.2 Command interpretation and execution

a) Preparation of the task

When the system has been initialized, the main program is

ready for the processing of the different tasks specified by

commands. This operation is organized according to a general

scheme. The command card is read and the task timer is reset

to zero. The validity of the command is checked by matching

the first word against the keywords of the commands list. An

invalid command causes an interruption and the whole proces

sing is stopped. A successful retrieval determines the index

of the command and the resulting KTYP parameter will be

later used to branch to the appropriate specific zone of the

main program. The card is then printed in his original punch

ing format with a differentiated underlining pattern which

provides a clear contrast in the case of a shift due to a

punching error.

The second operation consists of systematically searching the

catalog to see if the three experimental record names which

can be associated to a command name match with names contai

ned in the warehouse catalog. If a search has been unsuccess

ful, the K index remains equal to -1 but if the name is

known, the K index will be replaced by the value correspon

ding to the position of the name in the catalog. The search

is performed by the ENTRY CTLG for the first name with the

index K1, for the third name with K3 and for the second name

with K2. A special case is involved since the second name can

- 14 -

CHECK
FOR FOURTH t--~~

CARD (SEDA)
ERROR

I NITIALIZE
STEP

(T1MER ete....)

00
L00P

NO

ERROR
COMMAND
INVALID

STOP

YES

YES NO

RETRIEVE Kl=-l
FIRST OR
NAME
(CTLG) Kl=K

RETRIEVE K3:-1
THIRD OR
NAME
(CTLG) K3=K

(WAREI-iQUSE
IS EMPTY)

RETRIEVE K2=-1
SECOND -OR
NAME
(CTLG) K2 =K

NO

1----.,. (G0 T0)
PRINT

ORIGINAL
COMMAND
+ LABEL

YES00 L00P
K=l J KM0D

MAI N
(COMMAND CHECK AND
CATALOG RETRIEVAL)

1 5

be specified as a modifier and if K2 remains equal to -t the

matching of the second name will be extented to the modifiers

list with the resulting index K4 remaining -1 or being re

placed by the position of the name in the modifiers list.

This poin~s to one of the system limitations: the keywords

used as modifiers should never be used as experimentaIrecord

names. If the warehause is empty all these tests are bypassed

with the exception of the determination of the index K4 which

is not bound to the contents of the warehause.

b) Specific processing of a task

The value of KTYP which has been previously determined is

used to transfer the control to a region of the main program

which has been specifically designed to handle a given type

of command.

According to the type of commands, same preliminary checks

can be performed to select a given option or to insur~ that

the command has been formulated in a valid context. The

syste~ has now to print a clear text interpretation of the

command which must transform the coded parameters into an

easily understandable statement. Different elements of for

matted sentences can be concatenated in a modular way (with-

in the limits of FORTRAN IV) to provide astarage saving re
duction of the text.

The control is then passed to a specific subroutine which

will handle the task (The main program perfarms the execu

tion of same simple tasks without external support for the

simpler cases like renaming arecord or clearing the ware

hause). This subroutine can eventually complement the pre

vious task formulation and initiates the transfer operations.

The transfer i8 de8cribed in details in the following pages

(2.3) and it is sufficient to explain that the input/output

requests specified by the command will be checked to see if

they are compatible with the situation of the warehause.

This involves the examination of the parameters K1 to K4

and the test can be extended to the other arguments like the

sorting factar, the file numbers or other numerical values

16

which are described in relation with the specific subroutines.

If the request is valid# the task is performed and the control

is passed back to the main program. In the mean time the con

trol could have been transferred if any severe error has been

detected# the minor errors cause only the printing of a warn

ing.

c) End of the task

As it will be explained in the chapter concerning the error

handling# the error situation is immediately checked upon the

return into the main program. If an error has been detected#

the control is shifted to the error zone where a detailed in

terpretation of the error is provided. If no error code has

been issued# the end of the task is acknowledged by the main

program which prints the value stored in the task timer and

the system i8 ready to proce8s the next command.

2.2.3 End of the job

The normal termination of a SEOAP job is issued when proces

sing the final command which is called STOP and which causes

the total time needed for the job to be printed. The control

can also be passed to the so-called STOP zone if a severe

error has been detected. In that case the FEHLER subroutine

is called to provide an interpretation of the error (see

error handling). Before jumping to the final STOP statement.

the MAIN program checks if an automatic dump of the warehouse

contents has been specified. This will cause a ca11 to the

DUMP subroutine to secure the back-up copy of the warehouse.

The termination of the job due to an error will be de1ayed

if the user has given a special password with the initial

system's call. In that case the system's programmer has the

intention to test the error system and the next card will be

read after the error code IERR has been reset to zero. Due

to the peculiarity of the Plot package used by SEDAP a ca11

ENDPLT (end of the plot) is required before the execution of
the last STOP to order1y close the PLOT file.

17

CROSS REFERENCE LIST OF SUBROUTINE AND FUNCTION CALLS

ALIOO
AL250
AL500
AL150
ALIOOO
AL2500
AL5000
A8fORM
BEFA
CTLG
DAGEN
OAKA
DATUM
"'IFINT
-iUMP
ERAKON
EXTSED
FEHLER
FILTER
FOUR
GRAPH
GRAPHl
HOLE
LAGER
MEPODE
OPERA
PAPTAP
PLOTC
PRINT
SORTtK
STATUT
WERT
;EJT

OPEIN AJOEIN OPAUS AODAUS SQRT ATANZ

OPEIN AJOEIN OPAUS AODAUS SIN COS RANDU

OPEIN AJDEIN OPAUS AODAUS TRAP SlMP OfF]
OPEIN ADOEIN
OPAUS AO DAUS

OPEIN AUDEIN OPAUS AODAUS FILl3 FILl5 FIL35 FILVAR FILHAN
OPEIN AJOEIN OPAUS ADOAUS FOURI SQRT

CENf RY GRAPHU
OPEIN AJOEIN PLO~A AMINI AMAXI MINO ·MAXO MOO
OPAUS Al) OAUS ·CL.TG

CENfRY CTLGJ
OPEIN A.JDEIN OPAUS ADDAUS FOURI POTZ HAGL MIWESU MIWIBU HYPER
OPEIN AJOEIN OP AUS ADDAUS TNICR2 cova, CMPV,
OPAUS AuDAUS PCHCK RECO POUMP MOD

OPEIN Al> OE IN
OPEIN AJOEIN OPAUS ADOAUS CTLG MOD

OPEIN AODEIN OPAUS ADDAUS

---------.--------~~------------------------~-----~--~-----~---~----

18

2.3 Transfer-subsystem

The handling of the experimental records by the different

parts of the program requires a continua1 transfer of data

back and forth between the core and the warehouse. The 1arge

size of some types of experimental records and the modest

dimensions of the computing arrays make it necessary to

sp1it the experimental records into working segments (or

pages) which correspond to the computing arrays of the dif

ferent subroutines. This operation is contro1led by the

TRANSFER subsystem which can be divided into two zones ac

cording to the direction of the transfer.

2.3.1 Computing arrays

The transfer subsystem invo1ves different computing arrays

which are stored in the COMMON area. The computing arrays are

bas i ca 11 y t heX, Y an d Z f i e 1ds , re s pect i ve 1y dime ns i o,n ed

with 10240, 10240 and 5120 points. The transfer can also in

vo1ve the XYZ array which is an equivalent (using an EQUIVA

LENCE) form of the three previous fields. Since the use of

the XYZ fie1d is subordinated to the buffer ZZ 10cated at the

end of the Z array, the dimension of XYZ can be extended on1y

up to 25088 (25600 - 512). The three arrays X512, Y512 and

Z512 are used as buffers for the fast transfer mode and are

equiva1ent to the 512 first values of the X, Y and Z arrays.

2.3.2 Transfer from the warehouse to the computing arrays

2.3.2.1 Preparation of the transfer

Before the transfer operations are performed, some pre1imina

ry checks are necessary to insure that the transfer will be

possible. Since the operation presents some ana10gy with what

a cQmputing system does when it opens a file, the initia1iza

tion of the transfer has been ca11ed OPEIN (= Open-in).

The first step is to verify if the experimental record has

been found in the warehouse and this is materialized by a po
sitive value of KN after a successful retrieval in the cata

log. (See Oescription of the Main program). The validity of

(

COMMANOS:

None

19

I
!

OPEI N opens an experimenta 1 : NAME = OPEI N
record stored in the warehouse,:
chec ks i ts ex i stence and the : SYSTEM = TRANSFER
validity of the request. OPEIN :
returns the arguments needed l ENTRY = see ADDEIN
for further access. :

I
I
I
I
I
I
I
I

KENW

-- -------------------------~------

CALL OPEIN(KANW,KENW,RNAM,KN,KRAF,ZEYT,MAX,LKPT,FREQ,DAT)

LIST OF ARGUMENTS:

KANW is the first delimiter which carries the relative ad
dress of the first block to be read. KANW is returned
as the absolute address of the block in the storage
file.

carries the address of the last block to be read and
is also returned as an absolute address.

RNAM

KN

KRAF

ZEYT

MAX

LKPT

FREQ

DAT

is the name of the experimental record to be read.

is the index of the experimental record in the re
cord list. If KN < 1, the record does not exist.

is the sorting factor which will be applied to the
input. If KRAF = 0, the default value KRAF = 1 is
applied, if the value is negative, the sign is
changed, but if KRAF > 100, the request is rejected.

returns the time corresponding to the first trans
ferred value.

indicates the maximum of values which can be processed
by the task.

returns the total number of points which results from
the request expressed in blocks.

returns the resulting frequency after application of
the sorting factor (default value: 1.0 Hz).

returns the date of the record.

SUBROUTINES OR FUNCTIONS NEEOEO: None

ERRORS OIRECT:

INOIRECT:

4,5,6,8,16,20

(ENTRV)

(ADDEIN)
i
I
f
I
I
I
I

(SEE PAGE 30)

(RETURN)

TIME=O.O
FREQ-=-1.0

- 20 -

FLOWCHART SUBROUTINE
OPEIN

RECORD DOES NOT EXIST
VES IERR=8

INVALID DELIMITER
YES IERR =16

INVALID RANGE
VES IERR=5

COMPUTE
ABS.ADDRESS

KST} KTER

RECORD LIMIT EXCEEDED
VES IERR=9

INVALID SORTING FACTOR

VES IERR =20

NO

COMPUTE
FREQ &
TIME

TOO MANV VALUES
VES IERR= 6

ERROR ZONE

N.....

1BlOCK (512 POINTS)
p ~

10 2'0 10240 5120

ZZ BUFFER (512)
-......

(MAX. SIZE = 25088) --------~XYZ - ARRAY

U 0 U 0
F 5120 F F 5120 F

(OF =OVERFLOW) UF = UNDERFLOW)

XYZ - ARRAY WITH OVERLAPPING CONVENTIONS

X 512 - Y 512 - Z 512 ZZ

COMPUTING ARRAYS IN SEDAP
(SIZE AND EQUIVALENCE)

22

SUBROUTINE JPEINCKANW,KENW,RNAM,KN,KRAF,ZEYT,MAX,lKPT,FREQ,DAT»
c -----------------~-------------------------~---~---------~---
C

COMMON X (lv240),Y (l0240),Z (51l0),
1 BENAM(Sll!,NANF(S12),NENO(51l),WFREQ(SlZ',ADATCSIZ),BZEIT(51Z'.
2 KOAT,KEND,~C,NP,IA,JRV,Xl,X2,Vl,YZ,IERR,AERR,BERR,JERR,KERR

3 ,KPF (Sll)
DIMENSION XfZ«16384),ZZ(S12),XSllCS12),Y512(Sll),Z51lCSll)
EQUIVAlENCE (XYZ«I) ,X(1),X5Il(1»,(ZZCl),ZC4097»,

1 (Y51ZCl),tCl»,IZ51lCI),ZCl»
C VERIFY EXISTEN~E OF RECORO CERROR CODE = 8)

IF(KN.lT.IJ GO TO 91
C CHECK IF THE F(RST OE~IMITER 15 POSITIVVE CERROR CODE = 16)

IFCKANW.lT.l) GO TO 95
C CHECK THE POSIfIVE PROGRESSION OF OElIMITERS (ERROR CODE = 5)

IFCKENW.lT."ANW) GO TO 94
C FIND THE ABSOLJTE AOORESS OF THE DElIMITERS
C CHECK IF THE JPPER LIMIT OF THE RECORD IS EXCEEDEO(E.C. =: 4)

KST = NANF(~N) + KANW - 1
KTER =: NA.NF' KN) + KENW - 1
IF(KTER.GT.~ENO(KN» GO TO 99

C SET DEFAULT VA~UES FOR AN INVALID SORTING FACTOR
IFCKRAF.EQ.v) KRAF = 1
IF(KRAF.LT.O) KRAF =: -KRAF
IF(KRAF.GT.100) GO TO 93

C COMPUTE THE RE~UlTING NUMBER OF POINTS
KPT = 0
KBOlf =: KEN~ - KANW + 1
KPT = KBOIF * 512
IF (KTER.E~.NEND(KN» KPT = KPT-512+KPF(KN)
LKPT = KPT I KRAF

C DETERMINE THE OATE,TIME ANO THE FREQUENCY fOR THE SEGMENT
START = KANi6l - 1

C FLOAT KRAF
FARK = KRAF
DAT == AOAT"''' N)
IF(WFREQ(KN).EQ.O.) GO TO 13
FREQ = WFREJ(KN)/FARK
ZEYT = aZElfCKN) + (START * 512. / fREQ)
GO Ta 14

13 ZEVT = 0.0
FREQ == 1.0

C C~ECK IF THE M~X. TRANFERABlE VAlUE 15 NOT EXCEEOEO
14 IF (lKPT.GT.MAX) GO TO 98

KANW = K5T
KENW = KTER
RETURN

C
ENTRY AODEI~(KANW,LKPT,LOEF,KRAF,KSHIFT,IMElO,IMENGE,KXVZ,I5TAT,

1 IOFlOW, IUF ..'OW, KOFLOW, KUflOW)
C

ID = 8
KSTORE =: LKP T
IUFLOW = 0
IOFlOW = 0
GO TO (10,4J,40,40,40),KXYZ

C IF NOT THE FIR~T PART OF SEGMENT ANO IF U-FlOW REQUESTEO.SAVE IT
10 IF(KUflOW.EQ.O) GO TO Il

IF (ISTAT.E~.O) GO Ta 12

23

C

C

c

c

c
C

00 8 I:: l,KJFLOW
IU 1 :: KSHIFf - I + 1
IU2 :: KSHIFf + LOEF + 1 - I

8 XVZ11U1) ::)(YZl I U2)
IUFlOW :: KUF LOW

C TRANSFER THE V4LUE Of LOEF INTO JOEF FOR OECREMENTING
12 JOE F :: LOEF

IX :: KSHtFT + 1
I Z :: 1

15 IA == KANW
READ 140'14, ERR==96) ZZ
KANW :: KANrd + 1

20 CONTINUE
XVZ (IX) :: ,-Z (IZ)
lKPT :: lKPT - 1
JOEF :: JOEf - 1
Il :: 1Z + Ki. AF
IX :: IX + 1

ChECK IF AlL"TiE POINTS HAVE BEEN TRANFERREO
21 IFIlKPT.EQ.J) GO TO 22
Ct1eCK IF THE BJFFERING ARRAV IS FUll

t F1JOEF. EQ • .) GO TJ 24
c.. eCK IF TtiE I\lPUT BUFFER IS OEPLETEO

I FIt Z.lE. 51L) GO TO 20
tZ :: I Z - 51. 2
GO TO 15

221MENGE :: KsrORE
JSTAT :: 2
GO Ta 23

241MENGE:: KSTORE - LKPT
JSTAT :: 1
If(KOFLOW.E~.O) GO TO 23
IREST = lK?f I KRAF
IF(IREST.GT. KOFlOw) IREST :: KOFLOW
IA :: KANW
REAOl40'lA,ERR=96)ZZ
00 21 I :: 1,IREST
101 :: KSHIFT + lOEF + I
102 :: 1 + (\RAF * «I-I»

21 XV ZCl 0 1) = L Z(10 2)
IOFlOW :: IRt: ST

23 IF(lSTAT.GT.O) GO TO 34
IFl IMElO.EIooI. 0) GO TO 34

PR INT THE 8 Fli. ST VAlLJ ES FOR CONTR Ol PURPOSE
CHECK THE CASE OF A RECOROCONTAINING lESS THAN 8 VALUES

IF(IMENGE.LT.IO) 10 :: IMENGE
WRITE(NP,10,)(XVZlKSHIFT .1),1 = 1,10)

34 ISTAT:: JST4T
RETURN

FIND THE VAlUE OF KSHIFT FOR THE FIRST VAlUE OF X512,V512 AND Z512
40 KSHIFT:: lOL40 * CKXVl - 2)

KUFLOW :: 0
KOFLOW :: 0
IF (KRAF. EQ. U GO TJ 48

IF THE SORTIN~ FACTOR IS NOT 1 OOWNGRAOE KXYZ TO l(NORMAl CASE)
lOEF :: 512
KXVZ >: 1

48 IA :: KANW
GO TO (lO,50,60,70),KXYZ

c

c

24

50 REAO(40'IA,cRR=96)X512
GO TO 80

60 READ(40'IA'bRR=96)Y512
GO TO 80

70 READ(40'IA,~RR=96)l512

80 KANW :: KAN~ + 1
IF(LKPT.GT.~12) GO TO 26
LKPT :: 0
GO TO 22

26 LKPT :: LKPT - 512
GO TO 24

93 IERR:: 20
JERR =: KRAFF
JERR = KRAF

90 RETURN
94 IERR :: 5

AERR :: BENA~ (KN)
JERR :: KAt~~

KERR =: KEN~

GO TO 90
95 IERR :: 16

JERR ::: KANW
GO TO 90

96 I~RR :: 3
JERR :: 40
KERR :: KANW
GO TO 90

97 IERR :: 8
AERR :: RNMt
GO TO 90

98 tERR :: 6
JERR = LKPT
KERR :: MAX
GO TO 90

99 IERR =: 4
AERR = RNAM
KERR =: KENW
JERR = NENO (KN) - NANF (KN) + 1
GO TO 90

102 FORMAT «, KONTROLLWERTE INPUT = " 8(E12.6.1X»

END

KXVZ =1

- 25 -

(LAGER) A)B) CJ D ARE
EXPERIMENTAL

RECORDS

FOR KXVZ =2,3,4
A SHORT WORK
ING ARRAV (512
POl NTS) IS DI
RECTLV USED AS
INPUT BUFFER

CASE
KRAF=3

INPUT BUFFER (SEDAP)

~4
ZZ m--,--?512

+.
~XVZ-r J~..----I.---~-

KSHIFT~WORKING ARRAV=
LOEF

KXVZ =1F2........----...;.X.;..;5;..;.1;;;;..2..:.(5;;.,,;1.;;;.2,:...,)

TRANSFER SCH EME (ADDEIN)
WITH TWO MODES (4 KXV OPTlONS)

KXV=3

KXVZ=4

(X(1))
XVZ (1)

(
V (1))
XVZ (1021)

(z (1))
XVZ (20481)

V 512 (512)

Z 512 (512)

26

the two parameters KANW and KENW which delimit the selected

segment must undergo the following tests:

KANW must be positive

KENW cannot be smaller than KANW

KENW must not exceed the limit of the experimental record.

The values of KANW and KENW which were provided by the command

card and which were related to the experimental record are

then replaced by their absolute value as pointers of the

storage file.

Since the sorting factor KRAF must be comprised between 1 and

100 (both values included), the request is rejected for any

value larger than 100 and the default value KRAF = 1 is auto

matically selected when the value is negative or equal to zero.

The frequency of the experimental record is divided by the

sorting factor to become the new sampling frequency of the

selected segment. If the origin of this segment i6 not the

origin of the experimental record from which it has been

extracted, the new time origin is shifted accordingly. If the

frequency stored in the catalog is zero, this computation is

not possible and the segment will be transferred with a time

origin equal to zero associated with a sampling frequency of

1.0 Hz. The number of points involved in the transfer is com

puted and matched against a maximal limit set for MAX before

returning the control to the calling program.

2.3.2.2 Execution of the transfer
The basic transfer method consists of moving the stored

values into XYZ array by a successsion of elementary trans

fers until the input request has been satisfied. This opera

tion requires a succession of AODEIN (Add-in) calls. ADDEIN

is an ENTRY in OPEIN and starts by reading the block pointed

by KANW into the ZZ buffer. The LKPT values are transferred

one by one into the XYZ array starting at the address imme

diately following the index KSHIFT and during this operation

some values are dropped or skipped if a sorting factor has

been specified. When the total number of points has been

27

reached, LKPT is down to zero and the transfer is completed.

If in the mean time the working quantity (= LOEF and always

a multiple of 512) has been exhausted, the control is re

turned to the calling program to perform the specified com

putation and the process continues. Any of these operations

can be shortly interrupted as soon as the input buffer is

depleted and is resumed after the reloading with the next

512 values. The pointer KANW is incremented after every READ
and does not need .to be tracked by the calling subroutine,

this remark is also applicable to LKPT which indicates the

number of points transferred by an ADDEIN cal~ is always

equal to LOEF except for the last call (the first can be the

last if it is the only one) and is given by the parameter

IMENGE.

Furthermore, the parameter ISTAT carries an information

about the status of the transfer. ADDElN begins the transfer

with a value of ISTAT which should be set to zero by the

calling program before executing the first call. ADDElN

changes lSTAT to 1 if a continuation is expected or to 2 if

the termination is acknowledged. If ADDElN receives a mes

sage indicator lMEL = 1 from tha calling program, the first

available values (up to eight) of the transfer will be

printed to provide the SEDAP user with a control of the

operation. This feature requires the conjunotion of IMEL=

1 with lSTAT • 0,

The necessity of segmenting the records into working quanti

ties also called computing arrays can be a handicap when the

computation involves not only the instantaneaous value but

other adjacent values. The case is illustrated by the follow

ing widely used 5 point smoothing algorithm:

V(I) • 0.2 * (X(l-2) + X(I-1) + XCI) + X(I+1) + X(I+2))

This mathematical expression will handle all the values from

the third to the (n-2)th and a special treatment generally

performed by adegenerated fOFm of the previous algorithm

will be required for the two first values as weIl as for the

- 28 -

t------ 10 BLOCKS(5120)-'----.I

EXTRA READ+SORTING

X(513) = XVZ (513)
OR Y(513)=XYZ (10753)

B
--,

I
_..J

11. IOF ::::3
IUF =3

C

I. ISTAT =0
IOF =3
IUF =0

GET OVERFLOW

LAST
IOF =0
IUF :::: 3

NORMAL TRANSFER

ADD EIN TRANSFER WITH OVERlAPPING
(CASE SHOWN WITH KOF =3, KUF =3)

29

two last values. To avoid this corner effect at the junotion
of two segments. provision has been made in the SEDAP concept

to insure the uniform continuity of any computation which

does not exceed five adjacent values in both directions. The
limit is theoretically 512 values in both directions if a

sorting factor of 100 were not to be guarantesd. In the pre
vious example. an intermediary segment (for instance the se

co nd if there are at least three segments) should exhibit.
besides his own values. the thrse last values of the pre

vious segment and the three first values of the next one. to
satisfy the condition of continuity. By analogy with the dyna

mic behaviour of a register. ths five previous values are

considered as an underflow area. while the five anticipated
values will be stored in a so-called overflow area. From the

previous considerations. it is obvious that the first seg
ment can have only an overflow area. the last one only an
underflow while any intermediary segment will have both of

them. The over/underflow requirements of a segmented trans

,far ara functiomof tha selected algDvith~ and this is spe
cified by the two parameters KUFLOW and KOFLOW (alias KOF and.
KUF) which can take any value from 0 to 5. ADDEIN fullfills
the request whenever it can be carried out and stores the
number of values effectively present in the two parameters

IUFLOW and IOFLOW before returning the control to the calling
program. To make the computations easier in the subroutines

using the overlapping features of ADDEIN. the following non

imperative rules have been adopted in such cases:

The size of ths computing array is specified as 10 blocks

(LOEF • 5120)
The value of the array starting index (KSHIFT) is 512 or
10752 according to the choice between the X and the Y zone.

The transfer of values with this general mode is flexible be
cause it allows an overlapping of the segments. reduces the

number of values by a user specified sorting factor and stores
the values into the XYZ array with a variable starting address.
These advantages have to be paid by a larger amount of exe

cuted instructions especially in the case of a straightforward

- 30 -

=

KXYZ=4

KXYZ=3_...&..--- ,......................
READ READ
V512 Z512

NO

IMENGE =
KSTORE

JSTAT =2

FLOWCHART ENTRY
ADDEIN

NO

READ READ
ERROR..........- X 512

DOWNGRADE
KUF &KOF=O
lOEF =512
KXVZ =1 KXYZ =2

SAVE
UFLOW

YES

INCREMENT
AND
TRANSFER
ONEVALÜE

READ
______--~--.ERROR

NO

YES

SYSTEM = TRANSFER

ENTRY = ADDEIN is
an ENTRY
into OPEIN

"

I
I COMMANDS:

None

31

,
AOOEIN performs the successive:
transfers of numerical values :
from the warehouse into the '
working arrays

NAME = AOOEIN

CALL ADDEIN(KANW,LKPT,LOEF,KRAF,KSHIFT,IMELD,IMENGE,KXYZ,ISTAT,
IOFLOW,IUFLOW,KOFLOW,KUFLOW)

LIST OF ARGUMENTS:

KANW is the absolute address of the record to be read and
is updated to be ready for the next call.

LKPT is the number of points still to be read, the value
is updated and returned to be ready for the next call.

LOEF is the number of points to be returned by a call
(N * 512)

KRAF is the sorting factor

KSHIFT is the index of the word preceding the first address
of the XYZ Brray where the values will be stored.

IMELD =1 causes the first eight values to be printed for
control. (No action if IMELD = 0).

IMENGE is the number of points transferred by the call
(IMENGE < LOEF).

KXYZ must be equal to 1 for the transfer on the whole XYZ
array. The values 2,3,4 indicate a fast transfer of
512 values starting at X(1),Y(1), and Z(1).

ISTAT must be zero for the first call of a transfer, the
value is updated to 1 if a continuationis expected
and to 2 if the request is terminated (LKPT = 0).

IOFLOW,IUFLOW give the number of values ADDEIN has stored
in the overlapping zones.

KOFLOW,KUFLOW give the number of values requested for the
overlapping features (possible only if KXYZ = 1).

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT:

INDIRECT:

3

32

transfer. This is the reason why a secand mode of transfer was

introduced in ADDEIN. The method uses the 512 first values of

the X, Y or Z arrays as input buffer for the READ statement

and returns immediately to the calling program. The choice

between the three arrays i6 specified by setting KXYZ equal to

2, 3 or 4 (KXYZ = 1 refers to the first transfer mode). The

6econd type of transfer is obviously more effective and is

often used because in the case of a sorting factor greater

than one, it is automatically downgraded to the general case.

2.3.3 Transfer from the computing arrays to the warehouse

2.3.3.1 Preparation of the transfer

Like in the previous case, the execution of the transfer de

pends upon the successful completion of some validity tests.

These tests are performed by OPAUS (= OPEN-OUT). The first

step is to verify that the name proposed by the user for the

new record i6 not already known to the catalog (KN must be

equal to -1). OPAUS vsrifiss also that the addition of the

new name does not exceed the size of ths catalog (512 names).

Ths catalog is then updated but the warehouse endpointer KEND

as weIl as the number of records KDAT are modified only at the

end of the subroutine, once it has been verified that the end

pointer of ths new record will not exceed the limit of the

storage file. The sorting factor KRAF is not used during the

transfer from the computing arrays to the warehause (OPAUS),
because no sorting is done during this process.

2.3.3.2 Execution of the transfer

The transfer to the warehause is simplified by the fact that

there is neither sorting operation nor provision for an over

lapping of the segments like in the ADDEIN case. The basic

mode of ADDAUS (ADD-OUT) transfers the values of the XYZ array

starting at the location KSHIFT + 1 into the ZZ buffer. The

contents of the buffer are then moved into the warehouse
block indicated by ths pointer KPOINT. This value must be

initially supplied by the calling program and is easily ob

tainsd by storing the warehouse end pointer KEND before the

33

OPAUS call. The value of KPOlNT is then updated to be ready

for the next access to the following warehouse block. The

parameter lSTAT must be passed as Zero for the first call

and if the message indicator IMEL is equal to 1, the first

transferred valu~s (up to eight if available) are printed

for control purposes and the creation of the new experimen

tal record is acknowledged. ISTAT is then updated to 1. The

loading and unloading operations on the buffer are continued

until the LKPT points have been transferred. If the transfer

requires several ADDAUS calls, the value of LKPT must be a

multiple of 512 with the exception of the last call.

This general transfer mode is performed for the case KXYZ =

1. By setting KXYZ equal to 2,3 or 4 one obtains a faster

mode which can be used with the 512 first values of the X,

Y or Z arrays like in the ADDElN case.

2.3.4 Remarks ab out the use of the transfer subroutines

The transfer subroutines are one of the central features of

SEDAP and care must be taken to provide them with the proper

arguments. One must be aware that many parameters which were

initially passed by the calling program will be updated in

such a way that it does not need to track them or to cars

for their incrementation. For instance, KANW is given as

first integer in the command card and can be directly passed

to OPEIN which transforms its relative pointer address into

an absolute address ready for the ADOElN call. The same

ADDElN will update the value of the pointer for the next

call without any single action from the side of the calling

program. This comfortable situation can become a disadvantage
if one dm es not consider the evolution of the arguments when

several transfers are parallel or nested. Such a situation

arises when the following operation is performed:

A • B + C (A, B, and C are experimental records).

USE
DEFAULT
VALUES

ENTRY

(ADDAUS)
i
I
I

(SEE PAGE 38)

(RETURN)

YES

- 34 -

FLOWCHART SUBROUTINE

OPAUS

RECORD ALREADY EXISTS (15 NOT NEW)

YES IERR=7

TOO MANY· NAM ES
YES IERR=10

NO

UPDATE
THE

CATALOG

UPDATE
THE KPF

F ILLING
FACTORS

STORAGE EXCEEDED
YES IERR=9

NO

UPDATE
KDAT) KEND

ERROR

RETURN

COMMANDS:

None

35

I
I

OPAUS opens a new experimental:
record in the warehouse, checks:
the validity of the request !
and updates the catalog I

NAME = OPAUS

SYSTEM = TRANSFER

ENTRY = ADDAUS

CALL OPAUS(KPT,RNAM,KN,KRAF,FREQ,DAT,ZEYT)

LIST OF ARGUMENTS:

KPT Number of points to be stored

RNAM Name of the new experimental record to be stored

KN Is the search index of RNAM (must be -1)

KRAF Sor~ing factor used to obtain a new frequency(not used)
FREQ Sampling frequency
DAT Date of the record

ZEYT Time corresponding to the first value to be stored

SUBROUTINES OR FUNCTIONS NEEDED:

ERRORS D1RECT:

INDIRECT:

3,7,9,10

36

SUBROUTINE J?AUS (KPT,RNAM,KN,KRAF,FREQ,OAT,lEYT)
c -----------------~-------------------------------
C

COMMON X (lU240),Y (10240l,Z (5120),
1 BENAM(512),NANF(512),NEND(512),WFREQ(S12),AOAT(512),BZEIT(512),
2 KDAT,KEND.~C,NP,lA,JRV,X1,X2,Y1,Y2,IERR,AERR,BERR,JERR,KERR

3 ,K PF (512)
DIMENSION ~(Z(16384),ZZ(512),X512(512),VS12(512),Z512(512)

EQUIVALENCE (XYl(t) ,X(l),X512(1»,(ZZ(l),Z(4091»,
1 (Y512(1), tC 1»,cl S12(1) ,Z(U)

JNV :: 512
C
C
C C~ECK IF THE R~CORD 15 REALLY NEW

IF(KN.GT.O) GO TO 91
C CHECK THE NJ~BER OF NAMES LIMIT FOR THE CATALOG

IF(KOAT.GE.JNV) GO TO 90
CUPDATE THE PAi\.AMETERS

WFREQ(KDAT .1) :: FREQ
ßENAM(KDAT.. 1) :: RNAM
NANF (KDAT • U =: KE NO
AOAT(KOAT. 1) = DAT
BZE IT(KDAT. U :: l EVT
MALK= KPT/j 12

C COMPUTE THE FILLING FACTDRS
KGER :: MALK * 512
KREST :: KPI - KGER
KPROV = KEND + MALK - 1
NENO(KOAT+U = KPRuV
KPF (KDAT+U :: 512
IF(KREST.E~.O) GD TO 7
NENO(KOAT+l) ::KPROV + 1
KPF (KOAT+lJ = KREST

C CHECK IF THE LAST RECuRO aDES NOT EXCEeo THE LIMIT OF THE WAREHOUSE
7 IF(NENO(KDAf+l) .GT.JRV) GO Ta 89

KDAT :: KDAT + 1
KENO:: NENDLKDAT) + 1
RETURN

C
ENTRY AODAU~(KFUNC,ISTAT,KPDINT,RNA~,LKPT,KXYZ,KSHIFT,IMEL)

C
KSTORE = LKP T
10 = 8
If(KXYZ.NE.i) GO TO 45

10 IREC = 0
IMAX :: 512
IMIN '= 1
IF (KFUNC.~E.2) GO TO 14

C SPECIAL CASE IO AOO VAlUES IN THE SECONO HALF BLOCK
IMIN = 257
IA :: KPOINT
READ (40'IA.ERR::CJ8) ZZ

14 IF (ILKPT.GT.512) GO Ta 15
IMAX :: LKPT + IMIN - 1

15 J = 0
00 20 I=IMI~.IMAX

J :: J + 1
C FILL THE ZZ 6JFFER

20 ZZCl) :: XVI (KSHIFT + J + IREC * 512)

37

IA = KPOINT
WRITE (40'14) II

25 lKPT = lKPr - IMAX + IMIN - 1
KPOINT :: KPJINT + 1
IREC :: IREC + 1
IF (lKPTl 8~, 85,14

45 KSHIFT :: 10i.40 * (KXVl - 2)
IA == KPOINT
GO TO(10,50,6J,10),KXVl

C THIS IS THE (JA RECT TRANSFER (KXVl :: 2,3 OR 4)
50 WRITE(40'IAj X512

GO TO 80
60 WRITE(40fJAI Y512

GO Ta 80
10 WRITE(40'IA} l512

C IF ISTAT = 0 A~D IMEl == 1 PRINT THE 8 FIRST VAlUES (CONTROLt
80 LKPT :: 0

KPOINT:: KPJINT + 1
85 IF(ISTAT.NE.O) GO TO 39

IST AT == 1
IF(IMELoEQo~) GO TO 39

C CHANGE VALUE JF JD IF LESS THAN 8 POINTS
IF (IO.GT.~~TORE) 10:: KSTORE
15 :: KSHIFT + 1
JE :: KSHIFT + 10
WRITE(NP,lOl. HXYZ(I),I=IStlE)
WRITE(NP,lOl)RNAM

39 RETURN
89 IERR :: 9

AERR :: RNAI'1
. JERR == KEND
KERR :: JRV
RETURN

90 I ERR == 10
JERR :: KOAT
KERR = JNV
RETURN

91 IERR :: 7
AERR :: RNAM
RETURN

<; a I ERR :: 3
JERR == 40
KERR :: KPOl'~ T
RETURN

101 FORMAT(' KJ~TROLLWERTE OUTPUT:: ·,3(E12.6,lX»
102 FORMAT(/,')IE WERTE SIND UNTER DEN NAMEN ',A4,' AOORESSIERBAR')

END

- 38 ..

KSTORE =
LKPT

10=8

FLOWCHART ENTRY

ADDAUS

SET
IREC,IMAX

IMIN

NO VES

SET IA
COMPUTE
KSHIFT

CHECK
LIMITS

TRANSFER

XV Z-+Z Z

IMIN = 257
IA = KPOINT
READ (ZZ)

(
READ)
ERROR
I ERR :: 3

KXVZ =2

LKPT =0
KPOINT =
KPOINT + 1

NO

IA=KPOINT
WRTTE

ZZ

UPDATE
LKPT, KPOINT
AND IREC

VES

NO

RETURN

SYSTEM = TRANSFER

ENTRY = NAME in
AOOAUS

COMMANOS:
None

39

I
I

: AOOAUS stores the numerical
values into the warehause
after the record has been ini
tialized and opened by OPAUS

NAME = AOOAUS

--

CALL AOOAUS(KFUNC,ISTAT,~POINT,RNAM,LKPT,KXYZ,KSHIFT,IMEL)

LIST OF ARGUMENTS:

KFUNC is equal to 2 if 256 values have to be stored in the
second half-record, otherwise KFUNC = 1

ISTAT i~ given as zero for the first transfer and will be
returned as 1

KPOINT is the value of the pointer which indicates the block
where the values are stored. KPOINT is updated to be
ready for the next call.

RNAM is the name of the record (used for documentation of
errors)

LKPT is the number of points which have to be transferred

KXYZ = 1 transfer from the XYZ array (starting at KSHIFT + 1)
= 2,3,4 for a transfer of the first 512 values of the

X,Y and Z arrays.

IMEL • 1 if the first output values (up to 8) are to be
printed for control. In that case the storage is ack
nowledged. Otherwise IMEL = O.

SUBROUTINES OR FUNCTIONS NEEOEO: None

ERRORS OIRECT: 3

INOIRECT: None

40

The transfer scheme will bel

OPEIN (B)
OPEIN (C)
OPAUS (A)

ADDEIN fB)
ADDEIN (C)
•. Compute
ADDAUS (A)

(simplified writing form)

Iteration

and involve KANW, KENW, LKPT, ISTAT etc .••• in two separate
OPEIN lADDEIN structures. It is then advisable to initialize
a double llst of arguments like KAN1/KAN~, KEN1/KEN2, LKP11
LKP2, ISTA1/ISTA2 etc •••• which will be able to maintain
their own independant evolution.

Although a strong similarity exists between OPEIN/ADDEIN and
DPAUS/ADDAUS, their symmetrical structure could be mislea
ding if the following points are disregarded.

There is an implicit master-slave relationship between ADDEIN
and ADDAUS. ADDEIN is responsible for the input requests and
provides the information concerning the end of the transfer.
The ADDAUS call derives from ADDEIN or from the supervision
of the calling program. This does not preclude the fact that
in some situations there is an DPAUS without DPEIN and reci
procally. The difference should be noticed for two similar
arguments like ISTAT and LKPT. ISTAT has three status values
in ADDEIN but only two in ADDAUS. LKPT in ADDEIN refers to
the number of points still to be read while LKPT in ADDAUS
is the number of points which have to be transferred by the
call, it corresponds to the parameter IMENGE of ADDEIN.

It can be noted that the end of an input request can be de
tected after the ADDEIN call by testing for LKPT • 0 or for
ISTAT = 2, whichever is the most convenient.

2.4 Error Interpretation

Any error occuring during the execution of a program repre
sents a very uncomfortable situation. The situation is even
worse, if the error occurs in a large system of the size of

- 41

IMAI N I
IERR :: 0

CALL X L ..J----+----------.
...."

SUBROUTINE ®

~ NEXT STATEMENT

....--I---CALL Y (••.... _.l

ERROR ZONE

CALL FEHLER

(INTERPRETATION)

SUBROUTINE (j)

STATEMENT N
* * ERROR FOUND e--

(
BYPASSED J

ZONE

ERROR IERR = _
ZONE RE T U R N ICIIII_._E----'

NO~YES
ERROR

?

4 NEXT STAT EMENT

[
BYPASSED]

ZONE
~.-------I

.........---..lI"""-i

IRETURN I

ERROR HANDLING WITH R E T U R N SCHEME

42

--I

COMMANOS:

None

CALL FEHLER

FEHLER i s the error subrout i ne NAME = FEHLER
which is called at the end of a
task if IERR ;. O. FEHLER pro- SYSTEM =ERROR
cessss twenty different srror
typ esand ex pec t s t hat t hein - ENTRY = non 8

formation necessary to the error
interpretation hasbeen orderlyl
passed to thecommon l

I
I
I,

LIST OF ARGUMENTS: FEHLER has no argument but uses the five follo
wing parameters located in the common area accor
ding to the following conventions:

IERR is the error cade
IERR = 0 if no error has been detected
IERR = 1 to 21 refers to one of the 21 error types

JERR and KERR are two integers which are used to pass the
number of a unit, the address of a false block, the
va 1ue of a wrong deI imi ter etc. • ••

AERR and BERR are two decimal values used to pass an incorrect
frequency value or which carry arecord name corres
PQnding to a FORMAT A4.

Note: Before issuing any IERR code itis necessary, in order
to obtain a correct error interpretation, to update
some of the four listed parameters according to the
error table.

SUBROUTINES OR FUNCTIONS NEEOEO: None

ERRORS DIRECT: Ooes not apply

INDIRECT: 00e8 not apply

43

5EDAP which was designed to be a problem oriented process, .

where the user should not be concerned with all the elementary
steps of the computation. Most of the 5EDAP errors can be

classified according to the following types:

the primitive errors. They are mainly due to punching

errors. A user can punch 5032 instead 5032 or TEMD when

he means TEMP.

the logical errors. They are mainly due to a lack of pro

cessing scheme or to an insufficient knowledge of the

command specifieations.

a third elass of errors is more diffieult to detect and

involves a type of errors inherent to the nature of any

computing activity. Typical examples are the hardware

errors (machine error, liD parity error, the destruction

of a card, the absence of a tape reel which was not de

livered to the machine room etc •• J. These errors are

generally known to the supervising system or to the ope

rator but the related information is often extremely dif

ficult to obtain at the FORTRAN level.

During the implementation of 5EDAP it has been attempted to

detect the largest possible number of errors and to stop the

execution of the job before the consequences of an error be

eome unpredictable. This is materialized by numerous tests

loeated at eritical points of the program. lf the course of

the program is not endangered, a warning will be issued but

generally the error causes an immediate return to the error

zone of the main program which terminates the job onee the

error has been interpreted. lt has been our experience that

a elearly described error will be corrected in one run while

an exagerated indulgenee can lead to a chain of errors which

eannot be identified by the system's user. The error detee

tion was implemented almost to the limit of the FORTRAN pos

sibilities but the challenge eannot always be met and it is

not elaimed that all the errors will be detected.

A large number of errors of third class are out of reach and

will cause an interruption which will be doeumented only by

44

the OS, i. e. without reference to our problem oriented appli

cation. This is the case for the machine errors, break-down

etc ••••

When SEDAP addresses a new file (tape or direct access) the

user will be informed of the operation by a special message

like:

"the DUMP command must now use the file 21 for the execu
tion of the task, this requires the availability of a com

patible tape and the correct specification of a correspon

ding control card

/ /FT21 F001 •••••••••••••••• "

and may deduce that any interruption immediately following the

message has been caused by one of the above mentioned points.

Same errors like the register under/over-flow are not detected

by SEDAP because they are caused by tao many reasons and be

cause their detection at the FORTRAN level would have to be

paid by a tao large increase in memory size and execution

time. Most of critical divisions are protected against zero

divide.

The error status of SEDAP is represented by the integer IERR

which is set to zero during the initialization or after an

error interpretation in the case where arestart is allowed.

ADY detected error causes IERR to take a value greater than
\

zero. When an error code is issued, the value of IERR must

correspond to the type of error to be detected. Four other

parameters JERR, KERR, AERR and BERR contain the information

which must be supplied to the error interpreter according to

the conventions listed in the errortable. JERR and KERR

supply the information about integer values (file number,

block numer etc ••••) while AERR and BERR are used to pass

the record names or a decimal parameter. The fi~e parameters

of the error interpretation are located in the common area.

Once an error code has been issued in a subroutine, the con

trol must be immediately passed to the calling program

(RETURN). This implies that after calling any of the subrou

tines which can issue an error code, the zero value of IERR

ERROR CODE LIST

IERR oescription FORTRAN Reference Remarks AERR BERR JERR KERR

1

2

3

Tape reading error

End of file on tape

oirect accessreading
error

REAo(KTAPE,IERR= •••)

REAo(KTAPE,ENo= •••)

REAo(40'IA,ERR= •••)

00 card, parity error

Tao many blocks requested

00 card, damaged disk etc .•

/

/

/

/

/

/

UNIT

UNIT

FILE

BLOCK

BLOCK

POINTER

4

5

Ei

7

Exp. record overflow IA ~ NENo(KN)

First delimiter> se- INT(1) > INT(2)
co nd deI.

Tao many va lues LKPT > MAX

New record name is not K3 > 1
new

Logical error(see Handbook) NAME /

Reversed delimiters / /

A limit was set for the task / /

Logical error(see Handbook) NAME /

KoIF

KANW

LKPT

/

KENW

KENW

MAX

/

Logical error(see Handbook) NAME /

Logical error, punching err.

See Handbook

Check commands list

See command description

Use destroy or larger spec.

only 512 names permitted

False initialization

.t:>
LT1

/

BLOCK

/

/

/

JRV

JNV

/

/

/ /

/ /

KPT N

/ /

KANW /

INT(1) /

UNIT

/

/

CODE

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/ / KENo

/ / KoAT
HEAo 'SEDA' /

BEF

NAM2

/

FREQ

/

/

"
..

"
""

"

Recording error (hardware)

·logical error

Logical error

See Handbook

NENo(N) > JRV

KoAT > JNV
BEF(1).NE.'SEoA'

K1 < 1 or K2 < 1

BEF.NE.BE(1 ••• KBE)

K4 < 1

KPT < N

FREQ.LE.O.O

KANW < 0

INT(1) > 5000

(ERAKON)

KDAT-O

KRAF » 100

(Listed errors)

Old record name is un
known

Warehause is full

Catalog is full

1 of the 4 first
cards is false

Command is invalid

Modifier is invalid

Less than N values

Frequency is ~ 0.0
First delimiter is < 0

Warehause specifica
tion exceeded

Binary conversion err.

Warehause is empty

Sorting factor 100

Non standard error

8

9

10

11

12

13

14

15
16

17

18

19

20

21

46

must be checked. The operation provides a fast cascaded re

turn to the main program where an error zone calls the sub

routine FEHLER for the interpretation of the error. Twenty

types of standard errors are interpreted by the system. The
error code IERR u 21 is reserved for the non-standard errors

and gives a reference n~mber listed in the user's handbook.

47

2.5 Service subroutines

2.5.1 Command file transfer (Subroutine oAKA)

ouring the execution of a task, a copy of the original command

card is provided for documentation purposes before the inter

pretation of the task is formulated. Since the main program

already prints the complete list of the commands at the begin

ning of the job, a re-read operation must be provided. This

function is performed by the subroutine oAKA which reads and

prints all the input cards at the beginning of the job and

transfe~ them to a new input file. ouring this operation, the

comment cards which must begin with an arrow (symbol> i. e.

greater than) are printed but are not transferred. The file

15 (blocksize 1680, logical record length 80) is used for this

intermediary storage. Since the cards were read on the standard

input file (file 5), the subroutine oAKA changes the value of

the index NC from 5 to 15 to insure that all the subsequent

REAo will be made by addressing the new file.

2.5.2 Status of the warehouse and the command list

(Subroutine STATUT)

The subroutine STATUT maps the warehouse and gives the list

of all the commands (keywords) which are aCknowledged by the

system. The subroutine can perform three types of tasks which

can be classified according to the value of the variable

KFUNC:

for KFUNC = 1 the experimental records names are listed

with all the related parameters.

for KFUNC = 2 the previous case is extended to the block

level and the eight first values of every block are listed.

for KFUNC = 3 the keywords used as command names are listed

together with the eight character titles which are used to

report the initialization of a task.

The subroutine is straightforward and is mainly comprised of
three 00 loops, two of which are bypassed when the warehouse

is empty.

- 48 -

INITIALIZE
PAGE
TlllE

READ
A

CARD

FLOWCHART SUBROUTINE
DAKA

YES

PRINT
THE

CARD

NO

WRITE THE
CARD ON
THE NEW

FILE

YES

PUl EOF
ON

NEW FILE

CHANGE
NC FROM

5 Ta 15

RETURN

COMMANDS:

None

49

I
I

DAKA prints the list of all :
the command cards at the be- :
ginning of a job and provides :
a re-read possibility by transi
ferring the commands to a new
file. During this operation,
DAKA skips the comment cards.

NAME = DAKA

SYSTEM = Se rv i ce

ENTRY = None

-- ------------------~-------------

CALL DAKA(NC,NP,NN)

LIST OF ARGUMENTS:

NC is the index of the standard input file //G.SYSIN
a~d is equal to five in the des6ribed configuration.

NN is the index of the intermediary file. In the des
cribed configuration, NN is equal to 15 and refers
to the file allocated under //FT15F001 •••••••

NP is the index of the standard output file or SYSPRINT
file and is equal to 6 in the described configuration.

N.S. The value of NC to be returned by DAKA is the value
passed for NN

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: None

INDIRECT: None

50 -

YES

PRINT
HEAD

FLOWCHART SUBROUTINE

STATUT

YES

PRINT
"WAREHOUSE
IS EMPTY"

D0 PRINT
K=l J PARAMETERS
KDAT OF THE RECORD

PRINT
HEAD

NO

YES

D0 PRINT
I = 1) 8 FIRST

VALUES OF
KNED THE BLOCK

D0
J = 1,
KBE

PRINT
NAME AND
LABEL OF

THE' COMMAND

I
I
I COMMANDS:

BILO,ZUST

51

I
I

STATUT lists the records stored: NAME = STATUT
in the warehouse with their :
parameters and as option prints: SYSTEM = Service
the eight first values of all :
t heb 10 c ks co nt a i ne d i n t he : ENTRY = Non e

,warehouse. STATUT also gives a I
: 1ist 0 fall t he comman ds 0 f t hel
lsystem :
I I
I ,
, I
I I

CALL STATUT(KFUNC,KBE,BE,ME)

LIST OF ARGUMENTS:

KFUNC i~dicates the selected option with the following key:
KFUNC = 1 for the list of the records
KFUNC = 2 for the same list as KFUNC = 1 but with the

addition of the eight first values of every
block.

KFUNC = 3 for the system commands list with their
label.

KBE is the number of implemented commands

BE is the array which contains the commands (4 characters)

ME is the array which contains the labels (8 characters)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 3

INDIRECT: None

52

2.5.3 Destruction of records (Subroutine LAGER)

The subroutine LAGER destroys an experimental record from the

warehouse. Such an operation can be necessary if a large experi

mental record is no longer needed (for example a multiplexed

record is not uSed once it has been sortedl and if the warehouse
free space has become insufficient. A special case is involved

if the user intends to clear all the warehouse (ZERS ALLE for

destroy all). Such a situation is looked upon in the MAIN and

represents a simplified case directly handled by the MAIN by

setting KDAT equal to zero and KEND equal to one. The destruc

tion of a single record is performed by the subroutine LAGER

which first checks the Bxistence of the record and reorganizes

the warehouse to erase the specified record. Such an operation

is done by shifting all the parameters which follow the de

stroyed record to the preceding position and by shifting all

the blocks which follow the last block of the destroyed record

by an amount equalto the number of blocks occupied by this

record.

It should be noted that another special situation arises if

the record to be destroyed is the last record stored in the

warehouse. A simplified treatment is applied to update KDAT

and KEND without a shifting operation.

ENTRY CTLG

LAGER has a secondary function which is accessible by an ENTRY

called CTLG. The purpose of CTLG is to systematically search

the catalog to find whether a proposed name XNAM matches one

of the existing KDAT record names contained in the warehouse.

If the search has been successful, the search index KN will

carry the index K of the record in the KDAT list. If the name

is unknown to the catalog or if the warehouse is empty, KN is

set to -1. SEDAP subsequently uses the index KN to address the

record, to test his existence or to check the newness of new

record names.

- 53 -

FLOWCHART SUBROUTINE

LAGER

YES

KDAT =0
KEND = 1
PRINT
MESSAGE

TO END OF
TASK

----- ------0--- ------ - - ------

IERR =8

(

RECORD)
DOES
NOT
EXIST

YES

NO

SHIFT THE
PARAMETERS
OF THE CATA
LOG (D0 L00 P)

SHIFT THE
BLOCKS

(D0 L00P J

UPDATE
KDAT & KEND
PRINT
MESSAGE

RETURN

YES

I LAGER I

I
I
I COMMANOS:

ZERS=(destroy)

MOOIFIER=ALLE

54

I
I

LAGER destroys arecord in the :
warehouse. If all the warehousa
must be cleared, the MAIN does
the job in a simpler way by
setting KOAT = 0 and KENO = 1
CTLG is a LAGER-entry which

: 5earches a record-name in the
: catalog
I
I
I
I

NAME = LAGER

SYSTEM =SERVICE

ENTRY = CTLG

------------------------------~----------------------- --------------------------------

CALL LAGER(K1,RNAM)

LIST OF ARGUMENTS:

K1 is the catalog index of the record RNAM (if K1 = -1,
the name has not been found)

RNAM is the name of the record to be destroyed

CALL CTLG(KN,XNAM)

KN is the resulting index after th~ search (KN = -1 if
not found, KN = K if XNAM matches the Kth name)

XNAM is the name which will be searched in the catalog

SUBROUTINES OR FUNCTIONS NEEOEO: None

ERRORS DIRECT: 3 + 8

INOIREC.T: No ne

- 55-

ENTRY
CTLG

YES

00
K=1)
KOAT

NO

KN=K

KN=-l

ENTRY CT LG IN LAGER
(SYSTEMATIC CATALOG SEARCH)

56

2.5.4 Generation of simulated Data (Subroutine DAGEN)

SEDAP is a program system which Was mainly designed for the

treatment of experimental data but its range of application

is extended by the system capability to generate his own data.

This function is performed by the subroutine DAGEN.

Two main reasons justify the existence of the data generation:

- The experiment er generally likes to test the SEDAP package

in a "dry run" mode in order to gain some experience with

the techniques of data reduction. The subroutine DAGEN allows

the system's programmer and the system's user to produce data

which are extremely convenient to test the system or to learn

how it reacts.

- An advanced type of data reduction may call for some complex

form of compensation which can be achieved by DAGEN.

The DAGEN subroutine initializes the parameters and checks the

validity of the modifier (index K4) which is used to determine

the type of generated data. The status of the proposed record

name is then investigated. If the name is new (K3 = -1), a new

record is opened by OPAUS but if the name already exists, DAGEN

concludes that the user intends to add the generated data to

an old record to obtain a compensation or to perform some type

of complex waveform synthesis. In the last case OPEIN checks

if the request is compatible with the record stored in the

warehouse and uses the returned frequency as sampling frequen

cy for the data to be generated. ADDEIN transfers immediately

the first segment of 512 values to the Z array (KXYZ = 4).

rate f
P

b as parameters

and frequency f p
a and frequency f p
(+a, -al with arepetition

between 0 and +a.

In both cases the control is then passed to one of the six

computing zones which generate the following type of da ta in

the Y array:

1- constant of amplitude a

2- ramp (aX + b) with a and

3- sine wave of amplitude a

4- eosine wave of amplitude

5- square wave of amplitude

6- random numbers comprised

- 57 -

CALlOPEIN

YES

FLOWCHART SUBROUTINE

DAGEN

NO

CHECK SIGNAL IF PHEFR<O~ ERROR
FREQUENCY

NO

COMPUTE LKPT
STORE KEND
CALL OPAUS

CHt:,CK
FREQUENCY B----~~~(ERROR) ----..

3 4 56
SINE COSINE SQUAR RANDOn

SELECT ONE OF THE
SIX SPECIFIC 00 lOOPS

YESNO

1 2
CONST RAMP

STORE· KANW
CALL ADOEIN

K-I--....(ERROR)

YES

CAll
AODAUS

YES

58

CDMMANDS:

DAGE

I
I
IIDAGEN generates test data and
Istores the generated data in
:the warehouse. Six types of
Isignals are possible (constant,
I •• dIramp,slne,coslne,square an
IIrandom), DAGEN can add the ge- I

:nerated data on an existing re-l
Icord (AdditiveProcess) :
I I
I I
I I
I I

NAME::: DAGEN

SYSTEM::: SERVICE

ENTRY::: None

--

CALL DAGEN(K4,FNAM,GNAM,K3,KANW,KENW,KBDIF,FREQ,PHEFR,AMP)

LIST DF ARGUMENTS:

if the record is new, otherwise the out
added to the record pointed by K3

delimiters of the selected segment (in

is the modifier index which indicates the desired
type of signal

is the record name

is the modifier name

K4

is negative
put will be

KANW,KENW are the
blocks)

is the number of blocks to be generated

is the simulated sampling frequency (Hz)

is the frequency of the generated signal (sine,cosine,
square,wawe) or the amplitude of the increment (ramp).

is the amplitude of the generated signalAMP

FNAM

GNAM

K3

KBDIF

FREQ

PHEFR

SUBROUTINES DR FUNCTIDNS NEEDED: DPEIN, ADDEIN, DPAUS, AODAUS, SI N, CDS, RANDU

ERRDRS DIRECT: 13 15

INDIRECT: DPEIN, DPAUS, ADDEIN

59

All the signals are generated with a sampling frequency f s
specified by the user or provided by the OPEIN call.

If the additive process has been selected, the segment of

the existing record which has been stored in the Z array is

added to the newly generated data of the Y array. In both

cases the Y array is transferred to the warehouse with a poin

ter KSPUR which will direct the new data to the new record or

to the old one (replacement of the block) according to the

status of K3.

The data generation is terminated and the contral is returned

to the MAIN if the transfer request has been satisfied. Other

wise the process continues and the control will be passed to

the next ADDEIN call or directly to the computing zone if the

record i8 new.

Remark: The generation of uniformly distributed random real

numbers (Type 6) requires the availability of the subroutine

RANDU (IBM scientific subroutine package) which is specific

to the system 360/370 /3/.

2.5.5 Record delimiting by va lues or time units (Subroutine

WERT)

SEDAP handles the values by blocks, which means that the de

limiters carried by the commands cannot retail the recorded

values in quantities smaller than 512 (with the exception of

the last block of arecord which may natbe completely filled).

It has been initially planned to specify the delimiters in

blocks, values or time units. Only the block option was imple

mented but the service subroutine WERT allows to transfer a

part of record delimited in values or in time units into a

new record.

The &ubroutine WERT first initializes the service parameters

and verifies if the index K4 is not equal to 7, which would

indicate that the delimiters were given in time units (seconds).

This special oase is first investigated and the time delimi~ers

are converted toseconds in accordance with the time floating
factor (FAKl which can be 0.001 for instance if the user has

- 60 -

FIRST VALUE
OF THE RECORD

LR1 = REST

LAGER (WAREHOUSE)

(FIRST VALUE
TO BE
TRANSF.}

'infj:==~2 (LAST VALUE
TO BE
TRANSF.)

LAST VALUE OF THE
RECORD

1) USE KXVZ=2
FOR FIRST ADDEIN
ISTAT =0

2) CALL ADDEIN
KXVZ=l, KSHIFT =512
ISTAT=O, lDEF =512

3) CALL A DDAUS
KXVZ :1, LKPT =512
KSHIFT = LR1-1

4) CALL ADDEIN
KXVZ =1, LKPi =512
KSHIFT=512
KUF=512-LR1

5) ADDAUS

r-----l
L ..J
XVZ (1)

X (1) t . 1.~J3 1021"1_-_
I REST rn ..~

~ KSHIFT c=--=-~-~-=- J
,...--R-E-S-T-~ B BB B B B lee c I--~\

t : :
FLR1~BBB BSBI .\

KSHIFT LKPT:512

1 5~L:'-~;:~~W'
~LR1~BBBBJ:~FcLJ)

1== 512 I I~
~ L . __I

II""""R-EM-:-~NS-;T-:~ 0 0 D~ 0 0 D~~----rh
{UNCHANGED . ~

LKPT= 512
TRANSFER SCHEME FOR 'WERT'

(CALL SV VALUES)

- 61

FLOWCHART SUBROUTINE
WERT

VES

CONVERT THE
NO TIME UNITS

TO THE
NORMAL CASE

FIND THE BLOCK
AND POSITION
OF THE TWO
DElIMITERS

NO

YES

CALL OPEIN +

SPECIAL TEST

ERROR

LRS =
LRS.512

FIRST VALUE IS THE
>-Y-E-S--t FIRST OF A BLOCK

KXYZ =2
KXOUT :: 2

YES

62

---~ --------------

WERT creates a new record byCOMMANDS:

WERT

I
I
I
I

transferring arecord segment :
whose delimiters have been ~pe-:

cified, not in blocks as usual,
but in points or in time units.

NAME = WERT

SYSTEM = SERVICE

ENTRY = None

--

CALL WERT(ENAM,K1,GNAM,K3,I1,I2,K4,TA,TE,FAK)

LIST OF ARGUMENTS:

ENAM

K1

GNAM

K3

11,12

K4

TA,TE

FAK

is the name of the input record

is the search index o,f ENAM (not found if K1 = -1)

is the name of the new resulting record

is the search index of GNAM (valid if K3 = -1)

are the two values (both inclusive) which delimit the
selected segment

i8 the modifier index. If K4 = 7, the delimiters are
given in time units by TA and TE

are the two time delimiters normally given in saconds.

is a floating factor whi6h will be applied to TA and
TE before they are computed in seconds (FAK = 0.001
if the delimiters are given in msec).

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,OPAUS,ADDEIN,ADDAUS

ERRORS DIRECT:

INDIRECT:

4,5,6

see OPEIN,OPAUS,ADBEIN

63

used the option to specify the time units in milliseconds. An

OPEIN call is used to obtain the time and the frequency of the

record. A computation to transform the time delimiters into

points is then possible. thus reducing the time option to the

general case here after described.

The validity of the delimiters expressed in points is first

verified and the position of these two points is investigated

in order to obtain the address of the block where they are

located and their position within that block. OPEIN is called

to open the record and to verify the validity of the request.

Since OPEIN was designed to handle the blocks. two complemen

tary tests are necessary to insure a correct transfer under

all conditions:

- The time origin must be shifted if the first value is not

the first value of the block.

- The filling factor of the block which contains the last de-

limiter must not be exceeded by the position of this value.

OPAUS can then open the resulting new record in the warehause.

Since a special case is involved when the first delimiter

value is the first value of a block (LRS = 0) the existence

of this possible simplification is checked and causes the se

lection of a fast transfer mode for ADDEIN and ADDAUS with

no underflow and both transfers are performed on the first

512 values of the X array.

The general case must provide a preliminary underflow zone

(see chapter 2.3.2~2 and page 28) which cannot be ob-

tained from the first ADDEIN call. This is done by a prepara

tory ADDEIN call with KXYZ = 2 which brings the first block

into the first 512 storage locations of the XYZ array. If the

transfer involves only one block. the input transfer is com

pleted with the preliminary ADDEIN call and the control is

shifted to the ADDAUS call. In the general case. the second

ADDEIN call stores the next block into the 512 storage loca

tions adjacent to the previous 512 stored values. ADDAUS can

then transfer a complete block of 512 values by using the

normal transfer mode KXYZ • 1 with a displacement KSHIFT

64

which is equal to LRS, i. e. to the position of the first
value in the related block. All the subsequent ADDEIN calls

will renew the initial zone by using the underflow feature
which can cover the 511 possibilities.

It is important to note that in order to terminate the trans
fer operations two conditions must be met:

the input request (number of points) must be satisfied.
all the points must have been transferred by ADDAUS.

If the first condition is not met the process continues with

the next ADDEIN but if only the second condition is not met
the control must be passed to a last ADDAUS call which will

be executed with a new displacement equal to the former

KSHIFT incremented by 512.

Remark: Since the subroutine WERT takes advantage of almost

all the possible features of the TRANSFER subsystem, someof
them in tricky ways, the understanding of the individual

operations of the WERT subroutines requires a detailed know
ledge of the TRANSFER subsystem.

2.6 The input-output subsystem

SEDAP processes da ta which have been recorded on magnetic tape

or paper tape during an experiment and communicates the re

sults of the proceBs to the user by directing the records or
parts of the records to output files such as the printer file
or the plotter file. All these fil~s form an environment which
will be shortly described.
1) The command file

This is the standard card input file which contains the
commands to direct the process. A second file is needed to

transfer the list (file 15). These files are handled by the

main program and DAKA and are described in relation with
the specific parts of the system.

2) The magnetic tapes
- standard magnetic tapes (usually 9 track - 800 bpi) are

used to dump the records or to provide an interface to

other programs. Sequential da ta sets on direct access

65

devices may be used for the same purpose.

- 7 track tapes in a special format are used to obtain the

data from the data acquisition system (see ERAKON).

3) The printer file
This is the standard output file of the computing system.

4) The plot file

The plot file is installation dependent and is used by the

subroutine GRAPH to produce plot output via offline Cal

comp plotters.

The input-output subsystem must provide the necessary interface

between the warehouse and these files and this requires a

custom-designed adaptation between the da ta structure implemen

ted in the warehouse and the data structure of these files.

This adaptation is quite straightforward for an output file

like the printer file but may be rather complex for other

files which depend from the installation or from the implemen

tat ion of other subroutines (data acquisition system, plot sub

routine). Since SEDAP is modular and since the input-output

subsystem is apart of SEDAP which was built by assembli.ng

different submodules it is easy to substitute any other adap

tation to a special input-output file.

2.6.1 Conversion of experimental da ta recorded by the ERA

data acguisition system (SUBROUTINE ERAKON)

The subroutine ERAKON converts the data recorded by the data

acquisition system of the Institut für Reaktorentwicklung and

stores the resulting recordsin the warehouse. The structure of

ERAKON is determined by the specifications of the recording

system and they will be briefly described.

- All the input signals must be amplified in order to be com

patible with the ± 10 Volt range of the analog to digital

converter. It is expected that the user has correctly set

the variable low pass filter built around the amplifier loop

in order to avoid any aliasing. (Introduction of low fre

quency oscillations, which do not exist in the physical sig

nal, due to the digital sampling method) (see § 3.3.2).

- The number of channels is always of the 2N form which gives

- 66 -

FLOWCHART SUBROUTINE

ERAKON
INITIALIZE

CHECK FREQ.
&FIRSt DELIM. ERROR

READ
1BLOCK

(20'S HAlV.)
DUMMY
READ FIRST

CONVERSION
(RE-ASSEMBLE
THE 11 BITS)

00
L00P

ERROR
CHECK
LAST

DELIMITER~....

CONVERT
THE

LABEL

CALL
ADDAUS

CONVERT
INTO DECIMAL
WITH SIGN (I)

ERROR
ZONE

SYSTEM = Input

ENTRY = None

COMMANDS:

ERAK

67

I
I

ERAKON oonverts the data re- :
corded by the ERA data aoquisi-'
tion system and stores the re
sults into the warehouse.

NAME = ERAKON

CALL ERAKON(KBAND,KBANF,KBEND,KBDIF,GNAM,K3,FREQ,DAT.ZEYT)

LIST OF ARGUMENTS:

KBAND

KBANF

KBEND
KBDIF
GNAM
K3
FREQ
DAT

ZEYT

fi~e number for the magnetio tape

first block to be converted. (A block contains
1024 values and block 0 is the label block)
last block to be oonverted.
number of blocks to be converted
name of the resulting record
search index of FNAM in the catalog (must be -1)

is the sampling frequency
is the date (day, month, year)
example: 0306.72 for June 3rd, 1972
is the time (seconds)

SUBROUTINES OR FUNCTIONS NEEDED: OPAUS, AODAUS

ERRORS DIRECT: 1,2,4,5,15,16,18

INDIRECT: OPAUS

FLOWCHART SUBROUTINE
PAPTAP

- 68 -

FILl THE
BUFFER

ERROR

ERROR

ERROR

CALL
PDUMP

ERROR

RETUR N

ENTRY = None

SYSTEM = INPUT/OUTPUT

COMMANDS:
PTAP

69

PAPTAP converts experimental
data originally recorded on
paper tape and stores them
into the warehouse. Faulty
tapes are dumped into the
print file.

NAME = PAPTAP

--

CALL PAPTAP(KSTRIP,GNAM,FREQ,DAT,ZEYT,K3)

LIST OF ARGUMENTS:

KSTRIP is -the number of the file contairring the paper tape
data.

FNAM is the name of record to be converted
FREQ is the sampling frequency
DAT i8 the date of the record
ZEYT is the time of the record
K3 is the search ind'ex of FNAM (K3 must be -1)

SUBRDUTINES OR FUNCTIONS NEEDED: PCHCK, RECO, PDUMP, OPAUS, ADDAUS

ERRORS DIRECT: 15,21

INDIRECT: see OPAUS

- 70 -

PCHCK
FlOWCHART SUBROUTINE

PCHCK

r--_~!IIIIoINO

SEARCH IN
YES THE BUFFER ~~

FOR
STRIP END

NO

YES

SEARCH
FOR CYCLE-
STOP = CR

KDUMP =1

COMPUTE
SEARCH IN - ~---lÄ
CREM ENT

YES

YES

~----IA

COMPUTE
THE NEW

SEARCHINDEX

COMMANDS:

None

71

PCHCK examines the da ta of a
paper tape record. It computes
the number of channels and
cycles.

NAME = PCHCK

SYSTEM = INPUT-OUTPUT

ENTRY = None

CALL PCHCK(KSTRIP,KDUMP,KZAHL,NP,IERR,JERR)

LIST OF ARGUMENTS:

KSTRIP is the number of the file containing the paper tape
data.

KDUMP

KZAHL
NP
IERR
JERR

is an error indioator, KDUMP = 0 means no error,
otherwise the paper tape is not correct.
i5 the number of cycles reoorded on the tape file.
is the file number of the printer
i8 an argument of the error code
i8 an argument of the error code for a further comment.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 1

INDIRECT: None

- 72 -

RECO

CONVERTION
CCITT-.EBCDIC

CODE

SHIFT
AND FILL
BUFFER

SPECIFY
BUFFER

DIMENSION

SEARCH
FOR THE
STRIP END

FLOWCHART SUBROUTINE
RECO

YES

COMPUTE
DATA

VAlUES

SEl
>------tIl't KEND ::

JRUE.

COMMANDS:
None

73

I,
/RECO converts the data of a
lpaper tape from 00ITT-2 code
'to EBCDIC code and floating
point numbers

NAME = RECO

SYSTEM = INPUT-OUTPUT

ENTRY = None

CALL RECO(BEG,DATA,ZAZYK,KANAL,PUFFIN,KENDE,REZYK,KSTRIP)

LIST OF ARGUMENTS:

BEG

DATA

ZAZYK

KANAL

PUFF IN
KENDE

REZYK

KSTRIP

i5 a logical variable, initially set .true., after
the first call of RECO it i8 altared to .false.
is an array containing the converted data.

is the number of cycle8 of the da ta record
i8 the number of the recorded channels
is an index of buffer contents

i8 a logical variable, initially set .true., and
changed at the end of the data file

i8 the rest of the buffer contents during any data
cycle8 are returned to PAPTAP

i8 the number of the file containing the paper tape
data.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 1

INDIRECT: No ne

- 74 -

REWIND
KSTRIP

FLOWCHART SUBROUTINE,

PDUMP

CONVERT
DATA

SYSTEM = INPUT- OUTPUT

ENTRY = None

COMMANDS:

None

75 -

I
I

:PDUMP prints a dump of erro
:neous paper tape data.
I
I
I
I
I

NAME = PDUMP

CALL PDUMPCKSTRIP,NP)

LIST OF ARGUMENTS:

KSTRIP i5 the number of the file containing paper tape data
NP is the file number of the printer

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: None

INDIRECT : Non e

76

the following combinations: 1, 2, 4, 8, 16 or 64 channels.

The multiplexing of the channels and the analog to digital

conversion are performed by a single unit (Raytheon Mini

verter) with a maximum sampling rate of 40 KHz which has

to be divided by the number of channels to obtain the maxi

mum frequency of a channel. Different clock rates are avail

able to control the fast sampling rates and a software loop

which builds a variable time delay allows the use of very

low sampling rates by using the so-ca lIed random mode.

The voltages are converted into a 11 bit complementary binary

code and the first bit indicates the polarity. The converted

values are stored in the memory of the Raytheon 703 computer

and when 1024 values are stored, they are transferred as a

complete block on the 7 tracks magnetic tape.

ERAKON verifies the delimiters and checks if the frequency is

positive. The delimiters are incremented by one to take into

account the fact that the label block is considered as t'he

block No. O. The label block is always interpreted since it

provides useful information about the different parameters

used to perform the recording. The 11 bits of data having

been split into two six bit groups (5 + 6) on the tape are

recombined. The necessary bit shifting operations beeing not

available in FORTRAN are replaced by the appropriate integer

division (or multiplication). The results are matched with a

table which contains all the alphanumeric characters and the

label is printed.

Once the label block has been interpreted a number of blocks

may be skipped by a dummy READ if the first block to be con

verted is not the block No. 2. Since the label block contains

information on how many blocks were recorded, the task will

be rejected if the last delimiter exceeds this limit. The nu

merical conversion is easy since only two complementary ope

rations are needed: a test for the polarity and a constant

coefficient to convert the 4096 levels into the 10 Volt range.
The first numerical conversion initializes the transfer by

an OPAUS call and every block of 1024 values is transferred

77 .

to the warehouse to be stored as two 512 SEOAP blocks.

The first conversion program was written by P. Tack and made

use of an assembler subroutine. The help of Mr. J. Krieger

who made valuable suggestions to improve the speed and the

structure of ERAKON is gratefully acknowledged.

2.6.2 Processing of data on ~aper tape ~ubroutines PAPTAP,

PCHCK, RECO, PDUMP)

At the Institut für Reaktorentwicklung (Institute for reactor

development) of the Gesellschaft für Kernforschung a special

data acquisition equipment exists for recording of experimen

tal data on paper tape.

The specifications of the recording system will be briefly

described.

40 channels mRV be treated. The first channel records the
clock time, so up to 39 channels may be used for experimen

tal data acquisition.

A data cycle records the time plus any da ta channels. At

the end of a cycle a controlsign CR (farriage ~eturn) is
given.

The data are recorded in CCITT-2 code.

An experimental record is finished by a file limiter.

SEOAP does not read the paper tape directly. However, in a

special step this data is read by a papertape reader and

stored on a disk of the IBM 360/370 computer from which it is

read by SEOAP in a subsequent step. The further processing of

the experimental data by SEOAP is performed by the subroutine

PAPTAP.

To examine the data file, PAPTAP calls the subroutine PCHCK

because the results of the data acquisition are not always

correct. Following verifications are executed: The length of

the first cycle (i. e. the number of channels in this cycle)

is detected. This increment is used to search the whole file

for the correct position of the subsequent cycle-limiters (eR)

and for the file limiter. In the case of stated errors appropriate

messages are printed end a code is returned to the calling

- 78 -

CATALOG
SEARCH

FLOWCHART SUBROUTINE
HOLE

CONDITION ENDFILE

79

None

HOLE

ENTRY =

COMMANOS:

HOLE

-----------------I------~------------------------------1------------------------------

I I

: HOLE transfers data from per- : NAME =
I manent storage (disk or tape) :
to the warehouse. : SYSTEM = INPUT
This data must be stored
according to the SEOAP-format
(per default if generated from
OUMP)

CALL ~OLE(KFUNC,FNAM,KFILE,KN)

LIST OF ARGUMENTS:

KFUNC

FNAM

KFILE

KN

is an option indicator
KFUNC = 1 if only one record is to be restored
KFUNC = 2 if all records are transferred

is the name of the record to be fetched

is the number of the dump-file referenced on the
corresponding JOB-control-card

is the search index of FNAM

SUBROUTINES OR FUNCTIONS NEEOEO: CTLG, OPAUS, AOOAUS

ERRORS DIRECT:

INDIRECT:

1 ,2

see OPAUS,AOOAUS

80

routine to decide if all data will be dumped (printed in a

special format) by the subroutine POUMP or whether it might

be possible to correct the paper tape. If no error is found.

the data are converted with the routine RECO into the EBCDIC

code and floating point numbers.

Finally PAPTAP fits the data to the SEDAP conventions and

performs the transfer to the warehouse.

2.6.3 Restoring of data files (Subroutine HOLE)

Data files ~enerated by the DUMP-command of SEDAP or other

programs according to the SEDAP-format conventions can be

transferred back to the warehouse with the 3ubroutine HOLE

(the command has the same name).

Every call of HOLE causes aREWIND of the dump file that con

tains the various data files. Now the label of the first file

is read. In the case that onlyone data file should be re

stored. the label is searched for the name of the file. If it

is the wanted name, the following data are carried to the

warehouse using the TRANSFER routines of SEOAP. The describing

parameters of the data are stored in the common storage.

Otherwise. the data of the first file are skipped and the fol

lowing files are looked up and possibly transferred.

If all records on the dump file should be restored the trans

fer is performed as described above. but without search for

a name.

The user is warned not to use an uncontrolled series of

mixed DUMP and HOLE commands because every dump may uninten

tionally destroy data files at the end of the dump file. In

this case it is the users responsibility to program a logically

correct succession of his commands.

2.6.4 Printed data output (Subroutine PRINT)

The subroutine PRINT prints the blocks of arecord on the

standard output file. The subroutine checks the input request

by the standard OPEIN call and uses the fast transfer mode

with KXYZ = 2 to bring a block of 512 values every time in the

- 81

PRINT FLOWCHART SUBROUTINE
PRINT

PARAMETER

INITIAL IZATI
ON

NO

ERROR

FILL THE
REST WITH

ZEROES

KFUNC =2

PRINT
HORIZONTAL
F. FORMAT

YES

PRINT
HORIZONTAL
E.FORMAT

NO

PRINT
VERTICAL

F. FORMAT

PRINT
VERTICAL
E.FORMAT

COMMANOS:
PBVE,PBHE,
PBVF,PBHF

82

PRINT transfers the values
from the warehouse to the out
put file and writes one data
block per page. Four options
are available to select a ver
tical or a horizontal order
as weIl as an F or E-Format

NAME = PRINT

SYSTEM = OUTPUT

ENTRY = None

CALL PRINT(KFUNC,NFUNC,ENAM,KANW,KENW,K1)

LIST OF ARGUMENTS:

KFUNC indicates the selected printing scheme (vertical if
KFUNC = 1, horizontal for KFUNC = 2)

NFUNC indicates the selected printing format (E-Format if
NFUNC = 1, F-Format for NFUNC = 2)

ENAM is the name of the record to be printed

KANW,KENW delimit the selected segment of the record ENAM
K1 is the search index of ENAM (If K1 = -1, the record

has not been found in the warehouse)

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, ADOEIN

ERRORS OIRECT:

INOIRECT:

None

see OPEIN and AOOEIN

83

first 512 locations of theX array. The subroutine checks

if the block is the last block of arecord. If this is veri

fied,the filling factor is unvestigated and the rest of incom
pletely filled blocks is filled with zeroes. The two function

indicators are then decoded to select a vertical or a horizon

tal printing order and to use the F- or E-Format. The transfer
is terminated when the total number of points has been printed.

This condition is detected by a nonpositive value of LKPT.

2.6.5 Graphical output (Subroutine GRAPH with entry GRAPH1)

Records generated by SEDAP may be plotted with the help of the

subroutine GRAPH and its entry GRAPH1 as functions of time or

frequency. It was tried to satisfy the different demands of

the users with respect to comfort and flexibility.

The following possibilities exist to produced plot output:

The lengths and the scales of the coordinates may be pre

defined.
Together with the first curve of a plot, a comment may be

given to characterize it.

Various curves may be plotted into one diagram.

There also exist possibilities to choose the sort of ink

and paper.

At the first part of the subroutine GRAPH the informations

given with the commands DEFX, DEFY to specify the coordinates

are verified. The standard values are overwritten by the input

data for the coordinate definitions. If minimum values are de

fined greater than the maximum values, they are exchanged. The

second part of GRAPH beginning with the entry GRAPH1 performs

the plotting. First the parameters of the PLOT-command are

verified.

The values of the X-axis are computed by using of the frequen

cy and time parameters that are stored in the common storage

for every experimental record. If the ordinates of a plot are
not predefined, the record is searched for its minimum and

maximum values to scale the plot axis.

- 84 -

SET INDICA
TOR FOR A
NEW PLOT,

FLOWCHART SUBROUTINE
GRAPH

DEFX VES NO DEFY

NO

VES MODIFV THE
>--'"'--I STA NDAR0

LENGTH

MODIFV THE
STANDAR 0- VES

LENGTH

NO

VES INTER-r
CHANGE

THE VALUES

INTER
CHANGE

THE VALUES

VES

NO

PRINT THE
AXIS

DEFINITION

RETURN-

SYSTEM = OUTPUT

ENTRY = GRAPH1

COMMANDS:

DEFX
DEFY

85

I
I

GRAPH specifies the limits and:
the scales of a following plot;
by overwriting dafault specifi~
cations

NAME = GRAPH

CALL GRAP H (XL AN G•YLA NG• NSWI)

LIST OF ARGUMENTS:

XLANG

YLANG

NSWI

length of abscissa expressed in centimeters

length of the ordinate experessed in centimeters

is an option indicator
NSWI = 1 is caused by the command DEFX and
NSWI = 2 by the command DEFY

SUBROUTINES OR FUNCTIONS NEEOED: None

ERRORS DIRECT: None

INDIRECT: None

ENTRY OF GRAPH

CHECK ERROR
MODIFIER

ERROR

ERROR

COMPUTE
VALUES
OF X-AXIS

YES

- 86 -

USE DElIMI
TERS OF
EXISTING

PLOT

NO

FILL BUFFER
WITH 2000

VALUES

FLOWCHART ENTRY

GRAPH1

YES

YES SEPARATE

VALUE

SEARCH
FORYMIN
ANDYMAX

DEFINE
THE PLOT"
SCALES

DRAW
PLOT

FRAME

DEFINE TYPE
AND INTER
VAL OF POlNTS

A

RETURN

NO

COMMANDS:

PLOT

87

I

. t IGRPAH1 lS an en ry to the sub-:
routine GRAPH. GRPAH1 perform~

the plotting of an experimen
tal record as a function of
time or frequency

NAME =

SYSTEM =

ENTRY =

GRAPH1

OUTPUT

GRAPH1 is
an entry

KRAF

K1

CALL GRAPH1(NFUNC,KANW,KENW,KRAF,K1,NTX,FNAM,PLOTEN)

LIST OF ARGUMENTS:

NFUNC ia an option indicator
NFUNC = 1 a curve is plotted into a newly opened plot
NFUNC = 2 a curve is drawn into an existing diagram

KANW,KENW are the delimiters of the selected record segment
to be plotted

is a sorting factor

is the search index of FNAM (if K1 = -1, the record
has not been found in the warehouse)

NTX is an alphanumeric array which contains a comment to
characterize the plot

FNAM name of the record to be plotted

PLOTEN is a logical variable. It is set to .TRUE. if a stan
dard plot was opened.

/--

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,PLOTA

ERRORS DIRECT:

INDIRECT:

None

see OPEIN, PLOTA

88

The da ta to be plotted by the subroutine PLOTA are transferred

from the warehouse to the computing array by OPEIN and ADDEIN.

Different calls of the subroutine PLOTA /4/ may follow. The
first call of PLOTA will only cause the drawing of the plot

frame and the characterizing comment.

The other calls of PLOTA causes the plotting of the datavalues

into a newly drawn frame or into an existing plot.

PLOTA is a special Assembler routine for plotting at the com

puter center of the Gesellschaft für Kernforschung, Karlsruhe.

However, an interface routine named PLOTA is also available

which converts all calls to PLOTA to the appropriate calls of

standard Calcomp software /5/.

2.6.6 Dump of the warehouse (Subroutine DUMP)

The subroutine DUMP enables the user of SEDAP to save his data

stored in the warehouse beyond the end of the job on permanent

storage files. These may be on disk or tape.

It is possible to dump either one record at a time or all expe

rimental records contained in the warehouse.

To transfer the data from the warehouse to a permanent storage

the computing storage (via OPEIN, OPAUS) of SEDAP is used as

buffer.

The data can be restored later using the command HOLE. However,

they mayaIso be read by other programs.

2.7 Operators

2.7.1 Sorting the channels of a multiplexed record
(Subroutine SORTIK)

The subroutine SORTIK separates the different channels of a

multiplexed record obtained from the warehouse and stores the

resulting new records into the warehouse. SORTIK is written to

handle multiplexed records which contain always 2N channels

with the following possible options given by KSORT: 2, 4, 8,

16, 32, 64.

89

The Tirst part OT the subroutine is needed to generate the new
names Tor the resulting records. When a system's user has up to
64 channels to sort, it would be a tedious work to provide a
list OT 64 names. The solution which was adopted Tor naming the
new records was to derive the new names Trom the proposed record
name by substituting the numbers '01' to '64' to the two last
characters OT this only name.

The proposed record name DASS will be transTormed into OA01,
OA02, ••••••••• OA64. The two characters SS are not necessary
but they are recommended to the user to keep him aware OT the
Tact that they will be replaced. This substitution takes advan
tage OT the Tact that (the IBM-) FmRTRAN compilers allow an

equivalence of a REAL*4 with 2 INTEGER*2 or 4 LOGICAL*1. The n~m

bers 0 to 9 areinitially stored as characters in a data state
ment and are used by two nested 00 loops in a counter-like ge
nerator to provide the second half of the names.

An OPEIN call verifies the validity of the input request and
returns the necessary arguments. The frequency OT the input
record is divided by the floated sorting factor to become the
frequency of the sorted records. An exception is made if the
proposed record name is terminated by the two characters 'FT'.
This option together with KSORT • 2 is reserved to separate
the real and imaginary parts of a complex Fourier TransTorm
(FT) ans skips the frequency division.

Since the MAIN has not checked the newly generated names
SORTIK calls the ENTRY CTLG to search the catalog with the
resulting index to be used by OPAUS.

The output records are opened in the warehouse by a 00 loop
which calls OPAUS and computes the necessary parameters from
the arguments given by OPEIN. It is important to note that the
number of new records is defined by NFUNC and not by KSORT in
order to limit the number of created records at the user's
request. Such a situation arises for instance if 32 channels
were recorded but only 25 connected to the experiment. The
experimenter cannot be satisfied with the lower limit of 16
channels (2 N) and must select 32 channels. Ouring the sorting

- 90 -

KI1 -1
K12 =KDAT
(DUMP All)

00
I 'l:I Kl1,KI

DUMP

NO

CAlL
OPEIN

YES

YES

FLOWCHART SUBROUTINE
DUMP

ERROR

K 11 =1
K12 =1

(DUMP ONE REC.)

SET DELI
MITERS OF
RECORDS

ERROR

CALL
ADDEIN

ERROR

YES

NO

RE TU RN

COMMANOS:
DUMP

91

DUMP stores experimental
records of the warehause on
permanent da ta files that may
be on disk or on tape.
The OUMP command must be fol
lowed by a comment card

NAME = DUMP

SYSTEM = OUTPUT

ENTRY = None

,
-- --------------------------------

CALL DUMP(KFUNC,ENAM,KANW,KENW,KFILE,K1,LIST)

LIST OF ARGUMENTS:

KFUNC i~ an option indicator
KFUNC = 1 only one data file will be dumped
KFUNC = 2 the content of the warehause will be dumped

ENAM is the name of the record to be dumped

KANW,KENW are the delimiters of the selected record segment

KFILE is a file reference number given on the according
JOB-control card

K1 is the search index of ENAM

LIST is an alphanumeric array of a length of 80 bytes. It
contains the comment written on the card following the
DUMP command.

SUBROUT I NES OR FUNCT IONS NEEOEO: 0PEIN, A00EIN

ERRORS OIRECT:

INOIRECT:

- 92 -

GENERATE:
THE NEW

NAMES

CALL
OPEIN

FLOWCHART SUBROlfTl f\lE

SORTIK

ERROR

00
1<=1,

NFUNC

00
K=11

NFUNC

CALL
AOOEIN

S0RT
INT0
THE XVZ

ARRAY

CAll
AOOAUS

RETURN

YES

ERROR

... " ••.••.•.•.••• --,M

ERROR

., _~

ERROR

NO

KSORT

NFUNC

93

I
I

COMMANOS: :SORTIK sorts the values of an NAME = SORTIK
S002, S004, S00amu 1t i p lexed record. Th~ numbeI" SYSTEM = OPERATORS
S016 S032 S064 of channels must be 2

, , I (1 < N < 6). The sorted values
:are stored into 2N new records ENTRY = None
:of the warehouse.
I
I
I
I
I
I
I
I

CALL SORTIK(KSORT,NFUNC,ENAM,FNAM,K1,KANW,KENW,K3)

LIST OF ARGUMENTS:

i~ the number of channels to be sorted (2 n)

allows to limit the sorting operation to the NFUNC
first channels (1 < NFUNC < KSORT)

ENAM is the name of the record to be sorted

FNAM is the name of the resulting records (the last two
characters of FNAM are replaced by numbers from 01
to 64)

K1 is the search index of the record to be sorted
(K1 = -1 if the record was not found)

KANW,KENW are the delimiters of the selected portion (in
blocks)

K3 is the search index of FNAM (must be -1)

SUBROUTINES OR FUNCTIONS NEEOEO: OPEI N, OPAUS, AOOE IN, AOOAUS, MOD, CTLG

ERRORS DIRECT:

INDIRECT:

None

8ee OPEIN,OPAUS,ADDEIN,ADDAUS

94

operation, if he has specified a value of NfUNC m 25, he will

limit the number of records stored in the warehouse to 25

since the last 7 records would not have any meaning for his
data reduction.

The transfer of the values begins by an ADDEIN call which trans

fers the first 16384 values (if available) into the first part

of the XYZ array. The sorting algorithm will be repeated NFUNC

times with the location of the first transferred value being

shifted every time. The sorted values are stored into the XYZ
segment adjacent to the previous segment Ci. e. starting at the

location XYZ (16385) and are transferred immediately to the

warehouse by ADDAUS for every channel. SDRTIK cannot use the

updating features of the pointers by itself. This is done by

applying a formula closely related to the sorting algorithm.

The number of blocks transferred by an ADDAUS call whenever

ADOEIN has been called depends upon the sorting factor accor

ding to the following relation:

16384
NB m (16384 implies a filled segment)

512 x KSORT

NB • 16 for KSORT • 2 or NB • 1 for KSORT = 32 b4t NB is only
0.5 for the maximum case when KSORT = 64. Since the computing

arrays were limited because of the program size, the transfer

of the resulting values in the case of KSORT • 64 can be made

only with 256 values, i. e. an half block. Provision has been

made in ADDAUS to store the second half block by specifying

KFUNC • 2. This transfer mode requires a reading operation to

get the first half block to which the 256 last values will be

added. This is the only case where ADDAUS is followed by a

test for error since it is the only case where ADDAUS involves

a direct access READ.

The transfer operation continues until the total number computed

by OPEIN has been exhausted.

2.7.2 Standard operations (Subroutine OPERA)

The subroutine OPERA performs 11 standard operations which can

involve one to three records and which are characterizedby the

95

fact that the overlapping of the segments is not necessary.

The subroutine first initializes the service parameters. A

computed GO TO allows to print a specific message to complete

the general sentence printed by the MAIN program.

The following operations correspond to the 11 different options

selected according to the~ value of KFUNC
1) Linear translation (aX + b)

2) Conversion of a NiCr thermocouple voltage into 0 C.

3) Computation of the mean value

4) Subtraction of the mean value found by (3)

5) Addition of two records

6) Subtraction of two recnrds

7) Multiplication of two records

B) Division of two records

9) Multiplication of two complex records

10) Multiplication of arecord by the complex conjugate of an

other record

11) Complex division of two complex records

The first input record is always needed and is opened by OPEIN

according to the standard scheme. If the option index KFUNC is

greater than 4, the specified operation requires a second input

record and a second OPEIN is necessary. It will be explained

in § 3.3.1 that the two input records must normally be synchro

nous and this property is investigated. If this condition is

not met, a warning is printed to call the attention of the

user but no action is taken since the selected parameters are

derived from the first OPEIN and since the number of blocks

has been checked by OPEIN in both cases.

The transfer begins by the first AOOEIN (KXYZ = KX = 2) and is

followed by another AOOEIN (KXYZ = KY = 3) if KFUNC is greater

than 4. One of the 11 different 00 loops performs the speci

fied computation and the results are stored in the warehouse

by an AOOAUS call (KXYZ = KO • 3). The transfer process with

AOOEIN - AOOAUS continues until the total number of points has

been transferred, i. e. for LKPT < O.

- 96 -

TRANSF ER ERROR

FLOWCHART SUBROUTINE
OPERA

NO

.... (11 SPECIFIC D0 L00PS). .••

COMPUTE
MWE

• ~ • Q 11 DIFFERENT ZONES TO PRINT A SPECIFIC MESSAGE

RETURN

97

SYSTEM = Operators

OPERA

NoneENTRY =

---1------------------------------
: I

I COMMANDS: OPERA performs one of 11 diffe~ NAME =

AX+B,TNIC,MWEF rent standard operations on
one or two records stored in

MWES,ADDI,SUBT the warehouse. The resulting
MULT,DIVI,MUKO record is stored in the ware-
KOKO,DIKO house with the exception of

the MWEF case (no output re-
cord)

CALL OPERA(KFUNC,ENAM,FNAM,GNAM,K1,K2,K3,KANW,KENW,KRAF,A,B,WWE)

LIST OF ARGUMENTS:

KFUNC is.the option index which selects one of the 11 opera-
tions

ENAM is the name of the first input record

FNAM is the name of the second input record when needed
GNAM is the name of the output record

K1 is the search index of ENAM (must be positive)

K2 is the search index of FNAM (must be positive)

K3 is the search index of the record GNAM (must be -1)

KANW,KENW' are the delimiters of the selected record segment
and are expressed in blocks

KRAF is a sorting factor applied to the input records

A and Bare the two arguments needed for the linear trans
lation aX + b (for KFUNC = 1)

WWE mean value of arecord, determined by a
MWEF command and used in a subsequent
MWES command

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,ADDEIN,OPAUS,ADDAUS, TNICR2

(The standard complex features of FORTRAN IV are required)
ERRORS DIRECT: None (warnings are issued)

INDIRECT: see OPEIN, DPAUS, ADDEIN

98

This transfer scheme has only one exception wh an the maan

valua has to be found (KFUNC= 3). In that case the mean value

is set to zero by the first part of the subroutine and will be

stored by the value WWE after completion of the computation in

order to be used by a subsequent ca11 of type KFUNC = 4. (Sub"

tract the mean v~1ue). This has to be considered for the Over

lay version and imp1ies that the mean value to be subtracted

should be subtracted immediately after the task where it was

oompwted. OPAUS and AooAUS being unnecessary are bypassed. At

the end of the 00 loop the termination of the transfer is

eventually datected and the WWE va1ue which is the sum of all

the processed va lues is divided by tha total number of points

to become the mean value.

It is important to note that the 00 loop involving complex

values use a special index which is on1y half of the normal

index (three last options). The subroutine obvioosly requires

a complex equivalenced array and the implementation of the

standard complex arithmetic of FORTRAN IV.

OPERA avoids the critical situations like the on es caused by

a zero divide or by the argument of a function which is out

of rang~. The necessary IF conditions protect the critical

operations, provide a standard fix-up and cause the warning

index IWARN to be incremented by one. At the end of the task

the number of warnings will be printed if it is greater than

O. OPERA requires the availability of the function TNICR2

which is a SEoAP adaptation of the function TNICRO. TNICR2

converts a voltage record of values comprised between O. and
52.46 millivolts into 0 C (0 0 C to 1300 0 C) according to

the standard curve of a Nickel-Chromium thermocouple. If the

voltage range of the function is exceeded or not reached the
extreme values (0 0 C or 1300 0 C) are provided as default

va lues and the warning index is incremented.

2.7.3 Smoothing package (Subroutine FILTER)

The filter subroutine handles the six filter options provided

for the different smoothing operations. The transfer scheme

99

of the program is straightforward and begins by the standard

OPEIN and OPAUS calls. The succession of AooEIN - AooAUS calls
continues until the input request has been satisfiBd (LKPT=O).

FILTER uses the first transfer mode with overlapping capabili

ties which are specified by KOF and KUF. FILTER stores the

values of KOF and KUF in two arrays indexed according to the

value of the option parameter KFUNC. 8etween AooEIN and AooAUS,

KFUNC is also used to select the appropriate smoothing sub

routine.

2.7.3.1 Threepoint linear smoothing (Subroutine FIL13)

FIL13 (Filter option KFUNC = 1) computes a new record of

smoothed values starting at the location XYZ(10753) from the

input record starting at the location XYZ(513). FIL13 handles

vectors divided into segments of 5120 points according to the

following algorithm:

..................

......................

and requires an overlapping of one point in every direction

(KOF = 1, KUF = 1).

The subroutine first checks if the underflow index IUF is equal

to zero which means that the call is the ffrst one (initial

segment). This causes the first point to be computed according

to the first formula and the computing 00 loop to start with

the index IANF = 2. Since this loop is only possible if at

least three values are provided by the record, a smaller number

of points causes the termination and an error code is issued.

The upper limit of the 00 loop IENo includes the overflow index

IOF with the negative sign to allow the algorithm to be run up

to the last point of the segment if an overflow of one value
has been secured. If IOF = 0, the last point is treated accor

ding to the last line of the algorithm.

- 100 -

FILTER

INIT IALIZE

CALL
OPEIN

FLOWCHART SUBROUTINE
FILTER

ERROR -

CALL
OPAU 5

ICAL~DDEIN

G0 T0(...)KFUNC

ERROR -

~

1 2 3 4 5 6

FIL 13 FIL 15 FIL 35 FILVAR FllHAN KSWI=-l

ICAl'AOOAUS

1..--- --...;..N...;..O<~~V-ES--iI---r-........---...J

?

RETURN)

I
I
I COMMANDS:

FIL1,FIL2,FIL3
FIL4,HAFU

101

FILTER computes a resulting
smoothed record from an exis~

ting record according to one
of the six options provided
by five specific smoothing
subroutines.

NAME =

SYSTEM =

ENTRY =

FILTER

Operators

None

CALL FI LTER (KFUNC, ENAM, GNAM, K1 , K3, KANW, KENW, KRAF , PHEFR)

LIST OF ARGUMENTS:

KFUNC varies from 1 to 6 according to the selection of one
of the six options

ENAM is the name of the input record to be smoothed
GNAM is the name of the resulting smoothed record
K1 i.s the search index of ENAM (invalid if K1 = -1)

K3 is the search index of GNAM (must be K1 = -1)

KANW,KENW are the delimiters of the selected segment speci-
fied in blocks

KRAF
PHEFR

is the sorting factor to be applied to the input
is the cut-off frequency (Hz) which must be provided
for the option 4 (variable filter)

SUBROUTINES OR FUNCTIONS NEEDED: 0PEIN, 0PA US, AODE IN, A00AUS, FI L13,
FIL15,FIL35,FILVAR,FILHAN and standard complex operations

ERRORS DIRECT: Non e

INDIRECT: See OPEIN,OPAUS,ADDEIN,FIL13,FIL15,FIL35,
FILVAR,FILHAN

- 102 -

FLOWCHART SUBROUTINE
FIL 13

INIT IALiZE

COMPUTE
VALUE OF IENO

YESNO

NO

NO

YES

COMPUTE
FIRST V VALUE IANF:: 1
SET IANF:: 2

HitS IS
THE FIRST SEGMEN:

VES

IERR :: 14
JERR :: 3

THERE IS
ONLV ONE
SEGMENT
WITH LESS
THAN THREE
VALUES

00
I::IANF,

IENO

COMPUTE
XVZ (N):: ...

MORE
TO
COME

NO

VES LAST SEGMENT WITH

ONE VALUE (BYPASS OO-LOOP)

COMPUTE
LAST Y VALUE

RETURN

103

None

FIL13

ENTRY :::

COMMANOS:

Ses FILTER

-----------------,-------------------------------------,------------------------------
I I

: FIL 13 generates a new record : NAME:::
: by smoothing arecord already t

: stored in the warehouse accQr- SYSTEM::: Operators
: ding to the hereunder descri
: bed algorithm. FIL13 is writ
:ten to perform ths smoothing
:of a segmented array.
I
I
I
I
I
I

--

CALL FIL13(XYZ,KPT,IOF,IUF,IERR,JERR,KERR)

LIST OF ARGUMENTS:

XYZ is .the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in the segment

1 < KPT< 51 ZO·

IUF is the underflow index (0 for the first segment and
1 for all the further segments)

IOF is the overflow index (0 or 1)

IERR is equal to zero and will be returned as IERR ::: 14
(with JERR ::: KPT and KERR ::: 3) if the task involves
less than three points.

Algorithm

Y1
::: 0.5 (X 1 + XZ)

Y 1/3 (X n- 1 + X + Xn+1)n n
Yl

::: 0.5 (X l - 1 + Xl)

SUBROUTINES OR FUNCTIONS NEEOED: None

ERRORS DIRECT: 14

INDIRECT : Non e

- 104 -

INJlIALlZE

FLOWCHART SUBROUTINE
FIL 15

YES

IERR = 14
JERR = 5

(FIRST CALL)
YES

.
NO

COMPUTE
THE 2 FIRST

VA LUES

NO

KP1>2

KPT=2

KPT<2

i.e. (
KPT =1.
(KPT tO)

COMPUTE
IEND

00 L00P
(NORMAL CASE)

YES
IOF>l).>--------t(i.e.IOF=2
NO

COMPUTE
THE (KPT-t)
th VAlUE

YES

NO.....------.I

COMPUTE
THE KPT th

VALUE

I
I
I COMMANDS:

See FILTER

105

I
I

: FIL15 generates a new record NAME =

: by smoothing arecord already
: stored in the warehouse accor- SYSTEM =

: ding to the hereunder descri-
: bed algorithm. FIL15 is written ENTRY =
: to perform the smoothing of a :
I ' I
I segmented array. I
I I
I I
I I
I I
I I
I I

FIL15

Operators

None

--

CALL FIL15(XYZ,KPT,IOF,IUF,IERR,KERR)

LIST OF ARGUMENTS:

XYZ iß the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in the segment (it
is not the number of points to be processed by the
task)

IUF is the underflow index (0 for the first segment and
2 for all the further segments)

IOF is the overflow index (IOF = 0,1 or 2)

IERR is equal to zero as long as no error has been detected,
and will be set equal to 14 (JERR = KPT and KERR = 5)
if the task involves less than 5 points.

Algorithm

Y1 = 0.25 C2X 1 + X2 + X3)

Y2 = 0.1 (4X 1 + 3X 2 + 2X 3 + X4)

..............

..............
Yl - 1 = 0.1 (4X l + 3X l - 1 + 2X l - 2 + Xl - 3)

Yl = 0.25 (2X l + Xl - 1 + Xl - 2)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT:

INDIRECT:

14

,None

FLOWCHART SUBROUTINE
FIL 35

YES

IERR::14
KERR=S

COMPUTE
DELTA

and 2
FIRST VALUES

D0
I::IANF
IEND

- 106 -

NO

KPT>2

IANF:: 1

COMPUTE
IEND

with IOF

COMPUTE
DELTA

and
I th VALUE

KPT:: 2

KPT< 2

'.e.
KPT:: 1
(KPT*0)

IOF:: 2 IOF= Oor1

COMPUTE
THE (KPT-l)
th VALUE

YES

COMPUTE
THE KPTth

VALUE

RETURN

I
I
I COMMANOS:

See FILTER

107

FIL35 generates a new record
by smoothing arecord already
stored in the warehouse. FIL35
evaluates the least-squares
polynomial of degree 3 relevanü
to the five successive points :

Ifor a segmented array. I
I
I
I
I
I
I

NAME = FIL35

SYSTEM = Operators

ENTRY = None

--

CALL FIL35(XYZ,KPT,IOF,IUF,IERR,JERR,KERR)

LIST OF ARGUMENTS:

XYZ is ·the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in the segment (it
is not the number of points to be processed by a task)

IUF is the underflow index (= 0 for the first segment and
2 for all the furthar segments)

IOF is the overflow index (IOF = 0,1 or 2)

IERR is equal to zero as long as no error has been detected,
and will be set equal to 14 (JERR = KPT and KERR = 5)
if the task involves less than 5 points.

Algorithm

Y = X - 3/35 04 Xn n n...........
Yl - 1
Y '"1
with

4
'" Xl - 1 + 2/35 0 Xl - 2

4
Xl - 1/70 0 Xl - 2

4o X = X - 4Xn n-2 n-1 + 6X n

SUBROUTINES OR FUNCTIONS NEEOEO: None

ERRORS DIRECT: 14

INDIRECT: No ne

108

Any subsequent call begins with IANF • 1 since an underflow

necessarily exists and the segment has at least one point. How

ever if there is only one point. the 00 loop will be bypassed

and the point will be treated as the final one.

2.7.3.2 Fivepoint linear smoothing (Subroutine FIL15)

FIL15 (filter option KFUNC • 2) computes a new record of smoothed

values starting at the location XYZ(10753) from an input record

starting at the location XYZ(513). FIL15 handles vectors which

are divided into segments of 5210 points according to the fol

lowing algorithm:

Y1 • 0.25 (2X 1 + X2 + X3)

Y2 = 0.1 (4X 1 + 3X2 + 2X 3 + X4)

...................

...................
Yl - 1 = 0.1 (4X l + 3X I - 1 + 2X l - 2 + Xl +3)

Yl • 0.25 (2X l + Xl - 1 + Xl - 2)

and requires an overlapping of two points in both directions

(KOF = 2. KUF = 2).

The subroutine first checks if the underflow index IUF is

equal to zero which indicates that the call is the first one

(initial segment). Since a minimum of five points is required.

the number of points is checked and an error code will be issued

if this condition is not satisfied. The two first values are

computed and the 00 loop first index is set equal to three. The

second index of the 00 loop IENO is calculated by adding the
expression (IOF-2) to the number of points of the segment (KPT).

This expression allows the central part of the algorithm to be

run up to the last point of the segment (10752 + 5120) if an

overflow of two values has been secured by the transfer sub

system. If the underflow is not present or if the array is not

full. the 00 loop will be run only until the (KPT-2)th value

in order to allow the handling of the two last values by the

final form of the algorithm. The value of IOF is also used after

109

the 00 loop to select one of the three possible cases:

a) At least two values are left and the overflow contains two

values. The two last lines are skipped and the control is

passed back to FILTER for the next transfer.

b) There is only one value in the overflow area. The first of

the two last formulas 1s used and the last point will re

quire a subsequent call with only one point.

c) There is no overflow and the two last points are considered

as the two final points.

Any subseque~t ca1l will involve a test of the KPT value to

select one of the three possibilities:

a) KPT is larger than 2. The 00 loop is run with IANF=1 since

the underflow is always 2 after the first segment.

b) KPT = 2. The 00 loop is bypasssd and the two values are

treated by the two last linss of the algorithm.

c) KPT = 1 (this is dsducted from ths fact that if KPT is less

than 2 only the value 1 is possible). The last line of the

algorithm is used.

2.7.3.3 Fivepoint cubical smoothing (Subroutine FIL35)

FIL35 (filter option KFUNC = 3) computes a new record of

smoothed valuss starting at the location XYZ(10753) from an

input record starting at the location XYZ(513). FIL35 handles

vectors divided into segments of 5120 points by evaluating the

least-squares polynomial of degree 3 relevant to the five

successive points according to the following algorithm:

Y
1

.. X
1

- 1/70 04 X3

Y
2

.. X2 + 2/35 04 X3
"00".'.080'.000.80 •

•••• I!l ••••••••••••• 11

4
a XI - 1 + 2/35 0 XI - 2

4
Xl - 1/70 0 XI - 2

o4 Xn .. Xn- 2 - 4X n- 1 + 6X n - 4X n+1 + Xn+2

identical to FIL15
4delta value (0 Xn)

and inside the 00

110

The program structure of FIL35 is almost

(KOF=2, KUF=2) with the exception of the

which is computed for the ihitialization
loop.

2.7.3.4 Variable cut~off-freguency filter (Subroutine FILVAR)

The subroutine FILVAR (Filter option KFUNC • 4) computes a new
record of smoothed values starting at the location XYZ(10753}

from the input record starting at the location XYZ(513}.

FILVAR is written to handle segmented arrays according to the

following alg~rithm which simulates a first order low-pass

filter:

(2T - t)
(2T + t)

+

with t· dt = 1./freq

and T· Tau = time constant

FILVAR (variable filter) differs from the other smoothing sub

routine by the fact that the effect of the filter does not de

pend only from the sampling frequency of the record but also

from a cut-off frequency which can be adjusted and which must

be supplied by the user. This is analog to the time constant

setting of an RC network used as filter. Since the computation

of this relation involves a feedback effect, FILVAR checks if

the proposed cut-off frequency is compatible with the sampling

frequency of the input record. Any cut-off frequency which

exceeds this limit would cause numerical instability and will

cause an interruption of the task with an error code IERR = 15.

FILVAR handles the segmented arrays without using the overlap

ping features of the TRANSFER subsystem. The initialization is

detected when the switching index ISW has been found equal to

-1, this causae tha initial relation to be used and the 00

loop is started with I • 2. Otharwise the loop starts with

IANF = 1 since FILVAR always stores the last value of X and

the last value of Y before the RETURN to FILTER i6 executed.

111

2.7.3.5 Smoothing of spectra (Subroutine FILHAN)

The subroutine FILHAN (filter options KFUNC = 5 or 6) computes

arecord of smoothed complex values starting at the location

XYZ(5377) from a complex input record starting at the location
XYZ(257). FILHAN handles vectors which are divided into segments

of 5120 points (i. e. 2560 complex values) according to one of

the following algorithms which are known as Hanning's method of
smoothing:

Algorithm 1

Y1 = 0.5 (X 1 + X2)

.............

.............

Algorithm 2

. .

. .

The choice betw8en the two algorithms is made in the MAIN accor

ding to the sign of the first decimal value oEZ(1) and is passed

to FILTER by the option index KFUNC (5 or 6). KFUNC is used to

determine the sign of KSWI which selects one of the two algo

rithms in FILHAN.

The structure of the subroutine is almost similar to the struc

ture of FIL13 which was explained before but some differences

exist and are dus to the following reasons:

- Since FILHAN handles complex values l the displacements are

computed for the CXYZ array which is complex equivalent of

the XYZ array. The 00 loop indexes are also reduced accor
dingly.

- FILHAN rsquires an overlapping of one value in both direc

tions but sincs the values are complex and since the TRANSFER

subsystem handles a complex value as two adjacent REALx4 1 the

two overlapping parameters KoF and KUF are equal to 2.

The subroutine checks the value of the option index KSWI to

determine the sign of the parameter HALF needed to compute the

first value. The absence of underflow (IUF • 0) indicates that
the segment is the first segment and the first value will be-

- 112 -

YES

FLOWCHART SUBROUTINE
FILVAR

NO

COMPUTE
COEFFICIENlS

YES NO

IERR = 14
KERR = 3

COMPUTE
FIRST VALUE

IANF =2

IERR = 15
AERR=

PHEFR

IANF=l

COMPUTAT ION
(00 L00P)

STORE
LAST X and
LAST Y

RETURN

I
I
I COMMANDS:

See FILTER

113

--,----
I
I

FILVAR genarates a new record : NAME = FILVAR
by smoothing arecord already ~
stored in the warehouse. FILVARl SYSTEM = Operators
i6 written to handle segmented :
arrays and has the same prope- : ENTRY = None
rities as a 1st order filter :
(RC type) with variable cut- :
off frequency :

I
I
I
I

CALL FILVAR(XYZ,KPT,ISW,FREQ,PHEFR,IERR,JERR,AERR,KERR)

LIST OF ARGUMENTS:

XYZ is the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in a segment (it is
not the numberof points to be processed by the task)

ISW i6 equal to -1 for the first segment (initialization)
and is equal to 1 for the following segments

FREQ is the frequency of the input record and corresponds
to the sampling frequency

PHEFR is the cut-off frequency of the filter simulated by
FILVAR

IERR,JERR, AERR and KERR are the error parameters.

Algorithm

Y1 '" X1

Y '" C1 x X + C2 x (X + Xn- 1)n n-1 n
with 2T - t tC1 = and C2 '" + t2T + t 2T
T = TAU = Time constant of the filter
t = 1.0 / FREQ

SUBROUTINES OR FUNCTIONSNEEDED: None

ERRORS DIRECT: 14,15

INDIRECT: None

VES

IERR=14
KERR=6

COMPUTE
THE FIRST

VALUE

NO

- 114 -

FLOWCHART SUBROUTINE
FILHAN

NO

YES

IANF = 1

SUBTRACTIVE
ALGORITHM
(00 L00P) 2

RETURN

COMMANDS:

See FILTER

115

FILHAN generates a complex re
cord by smoothing a complex
record already stored in the
warehouse. FILHAN uses the
Hanning's method and handles
segmented arrays. The index
KSWI is used to select one of
the two possible algorithms.

NAME '" FI LHAN

SYSTEM", Operators

ENTRY '" None

--

CALL FILHAN(CXYZ,KPT,IOF,IUF,KSWI,IERR,JERR,KERR)

LIST DF ARGUMENTS:

CXYZ is ·the array equivalent to XYZ but used as complex
array. The cornplex input values start at CXYZ(257J and
the output values at CXYZ(5377)

KPT is the nurnber of values contained in the segment and
is equal to twice the number of complex values

IOF is the overflow index (IOF is equal to zero or to 2
if one complex value is stored in the overflow area,
IOF '" 1 is excluded)

IUF is the underflow index (IUF '" 0 or 2)

KSWI selects one of the two possible algorithms
KSWI '" 1 for the addition of the lateral values
KSWI c -1 for the subtraction of the lateral values

IERR is equal to zero as long as no error has been detected
and will be set equal to 14 (JERR c KPT and KERR c 6)
if the task involves less than 3 complex values
(6 REAL x 4)

Algorithm 1

•••• 11 ••••• 11 11

SUBROUTINES OR FUNCTIONS NEEDED: No ne

Algorithm 2

•••••• 11 • e II 11 II

ERRORS DIRECT: 14

INDIRECT : Non e

116

computed if at least three va1ues are provided (this means six

va1ues for the transfer) and the first index of the 00 loop is

taken as IANF = 2. The second index of the 00 loop is computed

with the half IOF value to allow the a1gorithm to reach the

end of the segment if a complex va1ue has been secured in the

overflowarea (IOF = 2). One of the two avai1able 00 loops is

se1ected according to the va1ue of KSWI and after completion

of the loop the last va1ue will be computed as the final value

if IOF i6 less than 2 (once again, IOF can be on1y 0 or 2 if

the value is camplex) . Any subsequent call will run the 00

loop with IANF = 1 but if there is on1y one camplex value

(LPT R 1) the loop will be bypa6sed and the last value will be

computed as the final point.

2.7.4 Differentiation and integration (Subroutine DIFINT)

The subroutine DIFINT differentiates or integrates arecord

and stores the resulting record into the warehouse. DIFINT

fo11ows the standard transfer scheme with the overlapping

features and that implies that the records are transferred by

segments of 5120 points with the input values beginning at

the location XYZ(513) and the output values at XYZ(10753).
DIFINT controls four possible options which are executed by

three special subroutines (TRAP, SIMP, DIF3).

1- Integration with reset of the integral to apreset level

whenever the contro1 record crosses over a specified

threshold. This operation is also called "Integration with
Switch".

2- Integration of arecord by the trapezoidal rule.

3- Integration of arecord by the Simpson's rule.

4- Differentiation of arecord.

For the first option, the transfer of a second record is neces

sary and requires a second OPEIN cal1. Since the two OPEIN calls

check only the validity of the delimiters given in blocks,

the synchronism of the two records is verified. If the two
sets of parameters brought back by the OPEIN calls are not
identical (number of points, sampling frequency, time origin)

117

the two records are not synchronous and a warning i5 printed

to report the fact. The values are transferred by AOOEIN and

stored by AOOAUS after the total number of points LKPT has

been processed. The intermediary computation depend5 upon the

selected command and is directly done by one of the specific

subroutinas excepted for the first option where the super

vision of OIFINT requires a detailed control of the second

input racord.

2.7.4.1 Integration with Switch

The integration with switch was implemented to allow an easier

integration of pressure pulses recorded during some experi

ments performed with a sodium testing station. The integration

can then be reset between two pulses. Such a situation is weIl

known and arises when one integrates a sine wave signal. The

results of the integration will be easier to follow if the

integration is reset every time the signal crosses the zero

line, i. e. if the half waves are integrated separately. This

features requires the storage of the switching record which

can be the same record as the integrated record or any other

record provided by the user.

2.7.4.2 Integration by the trapezoidal rule (Subroutine TRAP)

TRAP integrates arecord segment which is delimited by the two

parameters IL and IE. The subroutine TRAP was written to per

form the integration of arecord for the s~itching case as weIl

as for the normal case. The integration is performed according

to the following algorithm:

Y(1) = 0, Y(I) = Y(I-1) + 0.5 (X(I-1) + XCI))/FREQ

and the first value of a segment is selected according to the

value of the parameter ISWI.

If ISWI = -1, the call is the first one and the first value

will be set equal to zero.

If ISWI = 0, the call is a subsequent call which has not been

caused by the switch-interruption. In that case the over

lapping feature is applied and the integration restarts by

using XLAST and YLAST which are the two last values stored

118 -

INITIALIZE
SET
KOF, KUF

NO

NO

RETURN

FLOWCHART SUBROUTINE
DIFINT

CALL CALL
SIMP DIF 3

COMMANDS:

INSW,INTR,
INSI,DIFF

1 19

I
I

DIFINT generates a new record : NAME::: DIFINT
in the warehouse by integrating:
or different i at i ng arecord : SYSTEM::: Operators
a lready stored in the warehouse'
DIFINT uses three special sub- ENTRY::: None
routines to handle the segmen-
ted arrays.

----------------- --

CALL DIFINT(KFUNC,ENAM,FNAM,GNAM,K1,K2,K3.KANW.KENW,KRAF.SWITCH.
RESET)

LIST OF ARGUMENTS:

KFUNC is the option index with the following code:
KFUNC ::: 1 integration with Switch (trap. rule)
KFUNC ::: 2 integration by the trapezoidal rule
KFUNC ::: 3 integration by the Simpson's rule
KFUNC ::: 4 differentiation

ENAM is the name of the input record which must be inte
grated or differentiated

FNAM is the name of the second input record which provides
the switching record for KFUNC ::: 1

GNAM is the name of the resulting output record

K1.K2.K3 are the search indexes of ENAM.FNAM and GNAM.
K1 and K2 must be greater than 0 and K3 must be -1

KANW and KENW are the delimiters (in blocks) which delimit
the selected segment of the input records

KRAF is the sorting factor applied to the input

SWITCH is the value of the threshold which causes an inter
ruption of the integration whenevsr it has besn
crossed over by the switching function (KFUNC ::: 1)

RESET stores the value to which the integral must be reset
after a SWITCH interruption. (KFUNC '" 1)

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN.ADDEIN.OPAUS.ADDAUS, TRAP.SIMP
and DIF3

ERRORS DIRECT: None, but warning is printed if the two
input records are not synchronous

INDIRECT: See OPEIN.ADDEIN.OPAUS,SIMP.DIF3

- 120 -

FIRST SEGMENT
FIRST VALUE

=: O.

IS =2

TRAP

SUBSEQUENT
SEGMENT

GET X LAST
AND Y LAST

IS= IL

...

FLOWCHART SUBROUTINE

TRAP

5WITCH
INTERRUPTION
RESET
-INTEGRAL

IS =IL

DO INTEGRAlE
I = (TRAPEZOIDAL
IS IE RULE)

STORE
LAST X AND
LAST Y
VALUES

RETURN

I

ItöMMANDS:
See OIFINT

121

, I
; r I

:TRAP performs the integration : NAME = TRAP
lof an equidist~ntly tabulated I

"record by the trapezoidal rule.: SYSTEM = Operators
TRAP is written to perform the '
integration of a segmented ENTRY = None
array.

CALL TRAP(XYZ,IL,IE,ISWI,FREQ,RESET)

LIST OF ARGUMENTS:

XYZ

IL

IL and

ISWI

FREQ

RESET

is the computing array. The input values start at the
location XYZ(513) and the output values are XYZ(10753)

is the position of the first value to be integrated.
IL=1 when the first value is located at XYZ(513).

IE delimit the part of the array which must be inte
grated by TRAP. In the normal case and for a filled
array IL = 1 and IE = 5120 but with a switched inte
gration IL and IE can take any value within th~se two
limits.

is-1 for the first call
is O· for a subsequent call
is +1 for a call due to a switch interrupt and causes

the value to be reset

is the sampling frequency used to compute the interval h

stores the value to which the integral has to be reset
after a switch interruption.

Algorithm

Y1 = 0.0 or Yi = RESET

Y Y' +.!ln = n-1 2 (Xn- 1 + Xn)

h = 1/FREQ

. SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: None

- 122 -

FLOWCHART SUBROUTINE

SIMP

VES NO
~~--

VES NO

OMPUTE
ONSTANTS

COMPUTE
TWO FIRST

VALUES

IERR=14
KERR=3

00 INTEGRAT ION
I::IANf, (SIMPSON)
KPT STORE VLAST

RETURN

COMMANDS:
See OIFINT

123

SIMP generates a new record by
integrating arecord already
stored in the warehouse accor
ding to the Simpson's rule.
SIMP is written to handle the
segmented arrays of SEDAP.

NAME = SIMP

SYSTEM = Operators

ENTRY = None

--

CALL SIMP(XYZ,KPT,FREQ,IUF,IERR,JERR)

LIST DF ARGUMENTS:

XYZ

KPT

FREQ

IUF

IERR

is the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

is the number of points contained in the segment (it
is not the number of points to be processed by the
task)

is the sampling frequency used to calculate the time
interval h = 1/FREQ

is the underflow index (IUF is 0 for the first segment
and 1 for any of the following segments)

is equal to zero as long as no error has been detec
ted and will be set equal to 14 if the task involves
less than 3 values.

Algorithm

= h/3 (1.25 X1 + 2X2 - O.25X 3)

= Yn- 1 + h/6 (X n- 2 + 4X n- 1 + Xn)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: Non e

- 124 -

FLOVJCHART SUBROUTINE

DIF 3

YESNO

NO

NO

YES

YES

FIRST SEGMENT

IERR=14
KERR=3

COMPUTE
THE FIRST

VALUE

COMPUTE
IEND

THE
SEGMENT
CONTAINS
ONE POINT
(THE LAST)

00 I:::
IANF,
IEND

DIFFERENTIATE
THE CENTRAL

VALUE-S

YES NO

COMPUTE
THE FINAL

VALUE

RETURN

COMMANDS:

See DIFINT

125

I
I

\OIF3 generates a new record in
:the warehouse by differentia
Iting arecord already stored
in the warehouse. DIF3 was
written to handle segmented
arrays.

NAME = OIF3

SYSTEM = Operators

ENTRY = None

CALL OIF3(XYZ,KPT,FREQ,IOF,IUF,IERR,JERR)

LIST OF ARGUMENTS:

XYZ is the computing array. The input values start at the
location XYZ(513) and the output value8 at XYZ(10753)

KPT is the number of points contained in the segment.(It
is not the number of points to be processed by the
task)

FREQ is the sampling frequency of the input and is used to
compute the interval h = 1/FREQ

IUF is the underflow index (0 for the 1st segment and 1
after the following)

IOF is the overflow index (= 0 or 1)

IERR is equal to zero as long as no error has been detected
and will be set to 14 if the task involves less than
three points

JERR is an other argument for the error interpretation

Algorithm

Y1 = 1/h (X 2 - X1)

Yn = 1/2h (X n+1 - Xn- 1)

Yl = 1/h (Xl - Xl - 1)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: None

126

by the previous TRAP call. (TRAP does not use the over

lapping feature of the TRANSFER subsystem).

If ISWI m 1 the interruption has been caused by the switch

(or by Doth since SWITCH has the priority) and the first

value of the segment is equal to RESET (default value m

o.)

2.7.4.3 Integration by the Simpson rule (Subroutine SIMP)

SIMP performs the integration of arecord according to the

Simpson's rule and handles segmented arrays passed by DIFINT.

The followJng algorithm is used:

Y1 .. O.

Y2 m h/3 (1.25 X1 + 2X 2 - 0.25 X3)

Y m Y 1 + h/6 (X 2 + 4X 1 + X)n n- n- n- n

h m 1/FREQ is the sampling time interval.

The subroutine verifies the presence of an underflow (index

IUF) and if no underflow is present initializes the integration

with the two first lines of the algorithm. If the task does not

provide a minimum of three values the execution is not allowed.

The first SIMP call must begin the computation of the 00 loop

with the first index IANF ~ 3 and when the 00 loop is termina

ted the last Y value must be stored since the system does not

have an underflow feature for the output value. Any subsequent

call can start with IANF .. 1, since the transfer has secured

the two last X values.

2.7.4.4 Differentiation (Subroutine DIF3)

DIF3 performs the differentiation of arecord passed by DIFINT

and uses the same conventions for the values of the displace

ments along the XYZ array. DIF3 uses the standard overlapping

features provided by the TRANSFER subsystem and specified in

DIFINT with one extra value stored in both directions (KUF .. 1

and KOF .. 1). The differentiation is performed according to

the following algorithm:

..................

127

.......................

The first point is calculated according to the first line of

the algorithm if IUF = 0 (first call). The task must involve

at least three points otherwise the task is rejected with an

error code IERR • 14. The first call initializes the 00 loop

with a first index IANF = 2 and includes the value of IOF

(overflow index) in the computation of the second index IENO

in such a way that the last line of the algorithm will be

used for the last point of the segment if a value has not

been secured in the overflow area. Any subsequent call will

initialize the 00 loop with IANF = 1 but if the call involves

only one point the 00 loop will be bypassed and the value will

then be computed by the last line of the algorithm.

2.8 The FOURIER package

Many engineering and scientific problems require the treat-

ment of experimental records not only in the time domain but

also in the frequency domain. The standard method to pass from

one of these domains to the 'other involves a Fourier transform or

its reciprocal form which is called the Fourier antitransform.

Since a few years the Fourier methods are more widely used and

SEOAP presents the great advantage to offer a completely inte

grated Fourier package based upon the methods of the Fast

Fourier Transform (FFT). The SEOAP Fourier package can be di

vided into two parts. The first part contains almost all the

elements which are necessary to perform the different Fourier

operations in many modular combinations. All the intermediary

steps are separately programmed, but the Fourier transform is

limited to 16 blocks or to 8 K values. The second part is

centered around the subroutine MEPOOE and is oriented toward

a very effective evaluation of power density spectra. The

efficiency is due to the fact that the operations are not

slowed down by intermediary transfers to the warehouse and the

overlapping techniques allow to process the very long records

128

which are not uncommon in the experiments involving noise

analysis. It must be noted that the two parts can share some

of the facilities of the package and that the user can combine

the computations in order to perform all the standard tasks

like auto- and cross-correlation, convolution integrals, de

termination of the various power spectra etc ••••

2.8.1 The algorithm of the Fast Fourier Transform (FFT)

Recently Cooley and Tuckey /6 - 10/ have devised an algorithm,

which is called Fast Fourier Transform, whereby the sum of the

form

N-1
xk .. r Sj • exp(2~i.j.k/N) and its inverse

j .. O

N-1

a j .. r xk • exp(-2~i·j·k/N)

k.. O

can be computed considerably more rapidly than by previous

techniques provided N" 2M and M is an integer. Library sub

routine programs to evaluate the sum have been written and one,

available by IBM (FOUR1) /11/ was implemented in SEOAP. There

are at least two somewhat different algorithmic approaches to

implementing the Fast Fourier Transform, one due to Cooley and

Tuckey and another programmed by Stockham and Forman /8, 9/.

The Cooley-Tuckey slgorithm was chosen because it needs only

half of the storage places than that of Stockham-Forman, although

it needs about 30 % more computing time. The subroutine FOUR1

may be used to perform a Fourier Transform or a Fourier Anti

transform. It uses one-dimensional complex arrays OATA(J),

whose length N is apower of two. The discrete Fourier Trans

form defined by the summing equation above may be expressed

with the following FORTRAN like written relation.

N
TRANS(K) .. r OATA(J) • EXP(ISIGN • 2~i • (J-1) • (K-1)/NJ

J .. 1

for all K from 1 to N. OATA(J) is a complex array, where real

129

and imaginary parts are stored adjacently. ISIGN is an option

indicator and is equal to +1 for a Fourier Transform or to -1

for a Fourier Antitransform. If the input DATA(J) represents

time-intervals equal to (J-1)-T, then the transform-va1ues

TRANS(K) correspond to the comp1ex amp1itudes at frequencies

(K-1)-F with F = 2n/(N-T).

By periodicity, all frequencies above the "foldover frequency"

n/T may be identified by a negative frequency reduoed by an

amount equal to 2n/T.About the a1gorithm see 16/, a special

issue on the Fast Fourier Transform.

In comparing former non FFT-Methods 16 - 101 with the FFT the

time saving is expressed by the fraction 10g2N/N. As an example,

if there are 210 values to be transformed the FFT is about

100 times faster than primitive transformation methods.

Gentleman and Sande have shown 110/ that the FFT is the most

accurate Fourier transform method. Their upper bound of the

root mean square error is:

where b is the number of bits in the floatingpoint fraction.

Some preparations are needed to use FOUR1.

2.8.2 Implementation of the FFT in SEDAP (Subroutine FOUR)

The subroutine FOUR performs the Fourier transform or anti
transform of arecord whose 1ength must not exceed 16 blocks.

The coefficients are normalized according to the standard con

ventions in such a way that the resu1ting value of a pure sine

wave of amplitude A will be A/2. The transfer of the input re

cord is performed by the TRANSFER subsystem and uses the

standard subroutine8 OPEIN and ADDEIN. The subroutine verifies

if the number of points i8 of the 2N form and eventually fills

the last part of the array with zeroes to meet this condition.

The computations of FOUR vary slightly if the task specifie8

a Fourier transform or antitransform.

COMMANOS:

None

~ 130

I
I

FOUR1 performs the Fast Fourier
Transform (FFT) according to I

the algorithm of Cooley-Tuckey:

NAME =

SYSTEM =

ENTRY =

FOUR1

Fourier
Package

None

------------.---- --

CALL FOUR1(DATA,N,ISIGN)

LIST DF ARGUMENTS:

DA TA is a complex array, equivalent to the XYZ-array
(real and imaginary parts are adjacent in storage)

N is the number of points contained by the array time
of computation. The length must be N = 2**M(M > 0,
Integer)

ISIGN is an option indicator.
ISIGN = -1 for the Fourier transform

(time ~ frequency)
ISIGN = +1 for the Fourier antitransform

(frequency ~ time)

Algorithm: see 2.8.1

Remark:
This subroutine is written by N. Brenner of MIT Lincoln
Laboratory and submitted by IBM (Program Order Number
3600.13.4.002)

SUBROUTINES OR FUNCTIONS NEEOEO: SIN

ERRORS OIRECT: None

INOIRECT: None

131

2.8.2.1 Fourier Transform

Since in most frequency analysis tasks the mean value is only

of minor interest. SEDAP suppresses the amplitude at frequency

D. If. however. the user is interested in the mean value. he

may obtain this information from the appropriate SEDAP command.

If the time signal contains less than 2n sampie values (n is

integer) the signal is padded with zeroes up to the next higher

number of this form (these extended records are called hyper

arrays) 112/.

Finally. before entering the transform algorithm the time sig

nalrecord is converted from real to complex values (with zero

imaginary part).

Now FFT is performed by calling the subroutine FDUR1. The raw

spectrum is normalized by the factor 1/N (N = number of samples).

It is not necessary to store the whole result array in the ware

house. because advantage can be taken from the symmetry proper
ties of the FFT. Only the complex array represented by frequencies

within the region of Freq = FT/N and Freq = FT/2 (F T = sampling

frequency. FT/2 = Nyquist frequency) is stored into the ware

house. This action can be explained by the fact. that the comp

lex spectrum calculated with FFT has a conjugate complex symme

try mirrored at the Nyquist frequency and that the value of the

frequency zero contains no significant information. so the whole

spectrum will be restorable at later times.

In the warehouse catalog the initial frequency value (which is

FT/N) is entered. (This corresponds to the time of the first

sample value of time signal records). Also the reciprocal dis

tance between the frequency samples (which is N/F T) is entered

(corresponding to the sampling frequency of time records).

2.8.2.2 Fourier Antitransform

The inverse of the discrete Fourier Transform. the Fourier

Antitransform is in its form very similar to the Fourier Trans

form. So the FFT may be used to compute it. Before this trans

formation the whole complex frequency array must be restored.

because SEDAP. as mentioned above. stores onlv oart of the

TRANSFORM

NORMAlIZE AN
HAlVE THE
SPECTRUM

SCALE
FREQUENCY

AND TIME

- 132 -

FLOWCHART SUBROUTINE

FOUR

ANTITRANSFORM
~--....

RESTORE
SYMMETRICAL

SPECTRUM

~---ICOMMEN T

SCALE
FREQUENCY

AND TIME

RETURN

CDMMANDS:
FDUT
FANT

133

FDUR performs a Fourier Trans
form or. Antitransform with the
help of FDUR1

NAME = FDUR

SYSTEM = Fourier
Package

ENTRY = None

CALL FDUR(KFUNC,ENAM,GNAM,K1,K3,KANW,KENW)

LIST OF ARGUMENTS:

KFUNC is an option indicator
KFUNC = 1 for Fourier Transform (time to frequency)

= 2 for Fourier Antitransform (frequency to time)

ENAM is the name of the input record

GNAM is the name of the output record

K1 is the search index of the record ENAM

K3 is the search index of the record GNAM

KANW, KENW are the delimiters of the selected record segment

Remark:
If the number of points is not apower of two, hyperarrays
are generated and the mean value is subtracted from the
time series before transforming.
The maximum resulting frequency is equal to the half of the
Sampling frequency.

SU8ROUTINES OR FUNCTIONS NEEDED: FDUR1, DPEIN, DPAUS, SQRT

ERRDRS DIRECT: None

INDIRECT: DPEIN,DPAUS

- 134 -

FLOWCHART SUBROUTINE
BEFA

COMPUTE
AMPLITUDE

AND
PHASE

NO

BEFA

VES

GENERAlE
COEFFIC.

OF REAL
FOUR.SERIES

CALL ADDAUS

RETURN

CDMMANOS:

BEFA
FA NA

135

I
I

:BEFA transforms a complax fra
:quancy racord ganaratad by tha
:FFT into tha amplituda and
lphasa or into tha normalized
lcoafficiants of tha raal
lFouriar sarias.
I
I
I
I
I
I
I
I

NAME ::

SYSTEM ::

ENTRY ::

BEFA

Fouriar
Packaga

Nona

CALL BEFA(KFUNC,ENAM,GNAM,K1,K3,KANW,KENW)

LIST DF ARGUMENTS:

KFUNC i~ an option indicator
KFUNC 0 for tha computation of amplitudas and phass8
KFUNC :: 1 if tha coafficisnts of tha raal Fouriar

analysis ars to bs computad from tha complax
Fourisr Transform coafficiants

ENAM is tha nama of tha racord to ba transformad

GNAM is tha nama of·tha rasulting racord
K1 is the saarch indax of tha racord ENAM

K3 is tha saarch indax of tha racord GNAM
KANW,KENW ara tha dalimitars of ths salactad racord segmant

SUBROUTINES DR FUNCTIDNS NEEDED: DPEIN, DPAUS, SQRT, ATAN2

ERRDRS DIRECT:

INDIRECT:

Nona

DPEIN, DPAUS

136

spectrum in the warehouse.

If necessary there are zero values added to the frequency array
to produce hyperarrays with a length equal to 2N (N integer).

It is necessary to perform the antitransform by beginning with the

lowest frequency value stored in the warehause (i. e. from block

number 1), otherwise the result will not be correct. On the

other hand, high frequency values may be disregarded, thus
effectively using the FFT as a low-pass-filter. But it is not

intended to be used as a standard possibility in SEOAP. (se8
description ~f the command FANT in chapter 3.2).

The Antitransform with FOUR1 should yield an array of real

values in the time domain. Ta verify this, the imaginary part

of the record is examined and if the maximum error(IMAG/REAL)

is greater than 0.001 a comment is written.

Finally the real part of the computed record is transferred to

the warehause.

2.8.3 Real valued Fourier series and the computation of

amplitude and phase (Subroutine BEFA)

Subroutine BEFA may be used for further reduction of spectra, cal
Julated by thel FFT. A BEFA axecution may be caused by two commands:

8EFA generates amplitude and phase from real and imaginary data,
while

FANA generates the normalized cDefficients of the real Fourier

series.

After the transfer of the data into the computing storage one

or the other command is executed:

2.8.3.1 Amplitude and phase are calculated by

ampl D 2 Irea1 2 + imag 2

phase D arctg(-imay)rea

Ta compute the phase the FORTRAN-library-function ATAN2

(-IMAG, REAL) is used.

137

2.8.3.2 Fourier analysis

Since the FFT is a relatively new algorithm to perform

spectral analysis, many users are still used to work with

the coefficients of the real Fourier series. Therefore FANA

transforms complex spectra, generated with the FFT into the

normalized coefficients of the real Fourier series with the

understanding that the time series had been real, according to

the following relations:

If CR and CI are the coefficients of the complex FFT and

COS and SIN are the coefficients of the real Fourier analysis

then

COS(F) = 2 • CR(F),

SIN(F) = -2 • CI(F) for F = 1, •.. , N.

(Remark: Spectra generated by SEOAP do not contain coefficients

for the frequency 0). The transformed spectra are transferred

to the warehouse with Amplitude-Phase or else_with SIN~COS ad

jacent in the storage. They may be sorted with the command S002.

(See chapter 2.7.1 for special treatment of the frequency in

the sorting algorithm).

2.8.4 Evaluation of power spectra (Subroutine MEPOOE)

Subroutine MEPOOE (Mean power density) uses a method /13/ for

the application of the FFT algorithm to the evaluation of power

spectra, which involves sectioning the record, taking modified

spectra of these sections and averaging these modified spectra. In

many instances this method involves fewer computations than

other conventional methods /15/. Moreover, it involves the

transformation of sequences which are shorter than the whole

record and this is an advantage in SEOAP where the FFT is limi

ted to sequences of 8192 points. Finally, it directly yields to

a potential resolution in the time domain which is useful for

testing and measuring nonstationarity.

MEPOOE can beused to estimate cross- or auto correlated spectra.

Furthermore correlation functions can be generated by using

FANT for an antitransformation of correlated spectra.

- 138 -

CALL OPEIN
l.RECORD

FLOWCHART SUBROUTINE
MEPODE

OVERLAP ERROR

ERROR

B

V/ES

ERROR

ERROR

RETURN

CALl MIWIBU

A

- 139 -

MEI'ODE
(CONTINUED)

A

COMPUTE
HALVE AND
NORMALIZE
QUADSPEC

ADD DX-DZ
COMPUTE

MEAN VALUE

SCALE
FREQUENCY
AND TIME

--..........--ERROR

RETURN

COMMANDS:
lEDI
(leistungs-
- dichte)

140

MEPODE uses the FFT for the
estimation of Auto- or Cross
Power Spectral Density by
sectioning the experimental
records and averaging modified
periodograms of the sections

NAME = MEPODE

SYSTEM = Fourier
Package

ENTRY = None

CAll MEPODE(ENAM,FNAM,GNAM,K1,K2,K3,KANW,KENW,KSEG,UElAP,HANF,
APCO,KOlT)

lIST OF ARGUMENTS:

ENAM is the name of the first input record

FNAM is the name of the sepond input record

GNAM is the name of the resulting record

K1,K2,K3 are search indexes of the three records

KANW,KENW are delimiters of the selected experimental record
segment

KSEG is the length of a segment of the sectioned input re
cord. It is also the length of the resulting record
if no zeroes are added to the segments of the time
s·eri es

UElAP

HANF

APCO

KOlT

is the length of the overlap of the segments

is arepetition factor for Hanning smoothing

is an option indicator
APCO = 1 a fully aperiodic correlated spectrum is ge

nerated. Otherwise it contains as many aperio
dic spectral values as added zeroes.

is the whole length of the selected time series record
to be transformed

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, OPAUS, FOUR1, POT2, MIWESU,
HYPER, MIWIBU, HAGl

ERRORS DIRECT: 21

INDIRECT: OPEI N, OPAUS

COMMANDS:
None

141

POT2 computes the number of
zeroes which must be added to
an array to obtain a length
equal to apower of two, or
to get aperiodically correla
ted spectra.

NAME ::

SYSTEM ::

ENTRY ::

POT2

Fourier
Package

None

CALL POT2 (KPT , N2, NZ, KAPCO)

LIST OF ARGUMENTS:

KPT is the number of values of a data series
N2 is the length of the hyperarray
NZ is the number of zeroes that must be added
KAPCO is an option indicator

if KAPCO :: 1 J N2 is doubled (aperiodic correlationJ
otherwise KAPCO :: o.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS

None

DIRECT:

INDIRECT:

CDMMANDS:

None

142

HYPER completes an array up to
a specified length by filling
the missing values with zeroes.

NAME ::

SYSTEM ::

ENTRY ::

HYPER

Fourier
Package

None

CALL HYPER(DATA,NKPT,NZ)

LIST DF ARGUMENTS:

DA TA is an array of data

NKPT is the number of values of the data series

N2 is the length of the hyperarray which is completed
by adding zero values to the end of the DATA-array.

SUBROUTINES DR FUNCTIDNS NEEDED: None

ERRDRS

None

DIRECT:

INDIRECT:

143

2.8.4.1 Description of program f10w

Mepode first checks the arguments and prepares the transfer of

data from the warehause to the computing arrays (OPEIN).

Two problems must be now considered, the first one invo1ves
the 1ags which are parformed circu1ar1y (this means: the

time record i8 assumed to be periodic in time) and the second

must take into account the fact that the proposed number N

of values is not a1ways convenient for the use of the FFT

algorithm. The aperiodic corre1ation (which assumes that the

time record is extended with zeroes both to the 1eft and to

the right) can be performed for as many points as there are

zeroes added to tha time series /7, 14/. One obtains a ful1

aperiodic corre1ation if the third decimal argument DEZ(3)

in the LEDI-command has been set to one.

If N is not apower of two, zeroes must be added to extend

the arrays into the form suitab1e for FFT. These hyperarrays

are generated by the subroutine HYPER, according to the fo110w

ing relations:

X(k) • X(k)

X(k) = 0

for k· 1 to N

for k = N+1 to M

where M is the smallest power of two greater than or equal to·

N, or, in the case of a full aperiodic correlation, it is two

times this value. The number of zeroes, that must be added is

calculated by subroutine POT2. The calculation of mean power

spectra is then performed (see below). The initial frequency and

the reciprocal of the frequency interval between the frequency

sampIes are calculated and stored in the warehouse catalog.

Fina1ly the transfer of data to the warehause i8 initialized

by OPAUS and executed by ADDAUS.

144

2.8.4.2 Method of sectioning time series

1

Xt(j) KSEG
I

x (j) N

KSEG-UELA. 1
I

2@KSEG-UELA
I

'------_._- ---
N-KSEG+1

I
N

ILLUSTRATION OF RECORD SEGMENTATION

We consider an experimental record of length N from which

segments of length KSEG are to be selected by taking into

account a possible overlapping factor UELA. The starting

points of the segments will be computed in the following man-
ner:

Let X(j), j = 1, ••• , KSEG be the first segment. Then

X1 (j) = X(j) for j = 1, •.• , KSEG

Similarly

X2 (j) = X(j+KSEG-UELA)

XK(j) = X(j+(K-1)·(KSEG-UELA»

At the end of the experimental record an appropriate overlap

ping of the time segments is produced according to the tech
nique proposed by Welch /13/.

145

We suppose that there are K+1 such segments, X1 (j), ••• ,

XK+1 (j) and that they cover the entire record. The starting

point of the last segment will be

XK+1 (j) .. X(N-KSEG+j) for j .. 1, ••• , KSEG

This segmentation is done for one experimental record in the

case of an autocorrelated mean power density and for two ex

perimental records when a cross power density is computed.

2.8.4.3 Handling of data in the computing arrays

The modest dimensions of the computing array require the use

of economical methods. The computing array i8 segmented in

three parts DX, DY, DZ, each of length 8192.

Data is transferred from warehouse into the first array OX.

by ADDElN. After the computation of hyperarrays by HYPER and of

the residual time series by MlWESU (Mittelwert~btraktion ..

compute and subtract the mean value) the segment of the first

experimental recerd is transferred to DY in the case of cross

correlation and the equivalent segment of the second experimen

tal record is loaded. Mixing algorithms are then applied to per

form the storage allocation which is necessary for the FFT

computation. Because both time series have only real parts, ad

vantage is taken of the fact, that the two time series can be

transformed at one time. One series is taken as the real part

and the ether series as the imaginary parts with

and

Z(k) .. X(k) + iY(k)

N

zen) .. r Z(k)· 8xp(-2~i·n·k/N)

k-1

lt should be noted that Z has no physical meaning, but 1s in

troduced only for the sake of effectiveness of the algorithm.

Using the Hermitian symmetry and its definition the spectra of
X(k) and Y(k) are

X(n) Zen) + Z (N-n)..
2

yen) zen) - I (N-n)..
2j

(Z is the complex conjugate of Z)

146

----------------- --
I

COMMANDS:

None
MIWESU (Mittelwertsubtr.)
computes-rhe mean value of an
array and subtract it from the
array.

NAME =

SYSTEM =

ENTRY =

MIWES'U ,

Fourier
Package

None

CALL MIWESU(OATA,NKPT,SUM)

LIST OF ARGUMENTS:

OATA iso an array and is equivalent to the XYZ-array
NKPT is the number of values of the OATA array
SUM is the meanvalue of the OATA array.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS

None

DIRECT:

INDIRECT:

147

Three methods are available to mix X and V into Z:

1. Mixing of arrays which are smaller or equal to 4096 points

by using the free space in the computing storage.

2. Mixing of arrays of length 8192 points with the subroutine

MIWIBJ (Mix without E.uffer). This mixing algorithm uses only

one storage allocation.
3. Autocorrelation-mix. Real and imaginary parts are equal:

Z(k) • X(k) + j X(k).

After mixing, the array DX + DV can be used for the FFT to

allow the storage of 8192 complex values or 16384 real values.

From the result of the FFT the raw correlated spectrum

(X is the conjugate of X)

• Vi with i .. 1, ••• , M

is calculated normalized by the factor 1/2N so that an auto

correlated sinewave with amplitude A is transformed into the

value A2/2 /16/. Because of the symmetry of the spectrum,only
frequancies up to the Nyquist frequency (F T/2) are calcula-

ted (this economical method is also applied in FOUT and FANT).

The spectrum is stabilized by the Hänning method which smoothes
the spectrum by applying a frequency window (Subroutine HAGL).

It is possible to specify between 0 and 10 successive smoothing

passes by choosing the value of DEZ(2).

To calculate the mean power density of the whole experimental

record all spectra (the auto- or cross-correlated mean power

density of one segment of the time series) are added into the

DZ array. Once the spectrum of the last segment has been added,

the mean value of the spectra is calculated and the mean power

density is expressed as

M
1 \' 1

MPD • M l 2N • Xi
i .. 1

for an ensemble of M sampIes.

2.8.4.4 Subroutine MIWIBU

If both input time series have a length of 8192 there is no

free space in the computing array. To perform mixing of the

COMMANDS:
None

148

I "IMIWIBU (Mix without bufferl
I - - -IThe second half of an array is
:mixed with its first half to
lperform a quasi complex array
lout of two real series
I
I
I
I
I
I
I
I
I
I
I

NAME = MIWI BU

SYSTEM = Fourier
Package

ENTRY = None

CALL MIWIBU(DATAl

LIST OF ARGUMENTS:

OATA i~ an array with a length of 16384 points. It contains
two time series of 8192 points. DATA is equivalent to
the XVZ array.

Method of mixing:
Only one free storage place is used to perform the
mixing. This method is applied if no free storage is
available in the computing arrays.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS

None

DIRECT:

INDIRECT:

COMMANDS:

None

149

HAGL performs the smoothing
complex spectra with the
Hanning function

I,
of :

I
I,
I
I
I

NAME =

SYSTEM =

ENTRY =

HAGL

Fourier
Package

None

CALL HAGLCCX,N,KMAL)

LIST OF ARGUMENTS:

CX ·is an array of complex values
N is the number of the complex values
KMAL is the repetition factor for the application of

smoothing. It may be chosen between 0 and 10.

SUBROUTINES OR FUNCTIONS NEEDED:

ERRORS DIRECT:

INDIRECT:

150

time series at once, free space of at least half of the length

of a time series should be available. The mixing is therefore
done in 13 steps (10g2 (8192)).

The method may be shown in the following example where the
length of time series is 8. In the first step, the first half

of the second time series is exchenged with the second half of
the first time aBrieB, as illustrated in the following dia
gramii1

ILLUSTRATION OF THE MIXINGALGORITHM

Now all those values are in the first half of the whole array

(16), which must be there at the end of the mixing. In the next
step similar mixing is done as before, but for two arrays of

half length. In every step the length of the arrays is divided
by two, the number of arrays is doubled. The final result

shows the right order after the execution of the third step.

151

2.9 User defined SEDAP commands (extending of SEDAP)

SEDAP helps the experimenter to conduct his own data reduction

by the flexibility provided by its set of commands which oan

be used in many different oombinations.

Furthermore ths list of commands with fixed specifioations can

be extended by a special command: XTSD, the function of which

may be specified by a user written subroutine. This subroutine

must be written in FORTRAN with the name EXTSED and must be

submitted to the linkage editor together with the object code

of SEDAP in order to be available in a speoific execution of

SEDAP. To provide for this possibility SEDAP is not stored as

a load module in the program library but rather as an object

module. If no user supplied subroutine EXTSED is supplied, the

system will provide a dummy subroutine with the same name and

the command XTSD will have no effect.

The argument list of the subroutine EXTSED contains 13 argu-

ments. Nine arguments correspond to the specifications of the
nins parameter fields on the XTSD command oard. The three first
arguments oorrespond to the three first parameter fields of the

command, also the six last arguments to the six last parameters

of the command. Arguments four to seven are the results of checks

in the main program and are used for further checks by the transfer
routines (see ohapter 2.2.2 and 2.3). Before using the para-

meters of the oommand,the desoription of the oommand XTSD

should be studied wfth care. Some additional remarks may be use

ful:
If a modifier is used (argument 2) it should be named with

one of the existing modifier names.

Only the three last parameters of the oommand may be delibe

rately used by the programmer.

If the user needs more than these three parameters to con

trol the exeoution of his subroutine, he may read additional

information within EXTSED from any file which is not used by
SEDAP itself (he should not use files 1, 5, 6, 7, 15, 40)

Arguments of the transfer routines OPEIN, DPAUS, ADDEIN,

ADDAUS may be defined as in example one, if the whole expe-

COMMANDS:
XTSD

152

EXTSED is a user defined sub
routine to extend the possibi
lities of SEDAP

NAME = EXTSED

SYSTEM =

ENTRY =

CALL EXTSED(ENAM,FNAM,GNAM,K1,K2,K3,K4,KANW,KENW,IX,DEZ1,
DEZ2,DEZ3)

LIST OF ARGUMENTS:

ENAM 1S the name of the first input record

FNAM is the name of the second input record or a modifier
name

GNAM is the name of the resulting record

K1 is the search index of ENAM (must be positive)

K2 is the search index of FNAM (must be positive)
K3 is the search index of GNAM (must be -1)

K4 1s the number of a modifier item in the modifier list

KANW,KENW are the delimiters of the selected record segment
and are expressed in blocks

IX may be used as a sorting factor applied in ADDEIN or
as any integer variable to control the subroutine
algorithm, for example a input/output unit number

DEZ1,DEZ2,DEZ3 are user specified.

SUBROUTINES DR FUNCTIONS NEEDED: Defined by the user

ERRORS DIRECT:

INDIRECT:
Defined by the user

153

rimental record can be stored in the computing storage

(the 25088 first places in COMMON). If another transfer

mode is used,a good knowledge of the possibilities of-

fered by the transfer routines (chapter 2.3) is necessary.

If a transfer from and to the warehouse is executed the pro

gram commonly will have the following structure:

a) Specification of the common and other arrays
b) Specification of transfer arguments

c) Preparation of the transfer by OPEIN and OPAUS

d) Transfer from the warehouse to the computing arrays

e) Application of special data reduction algorithms to the
experimental records

f) Transfer from the computing arrays to the warehouse

As an illustration of programming with EXTSEO two examples will
folIow.

Example 1

Let us assume that the data of an experimental record are dis

turbed by noise in the frequency range of 50 Hertz which should

be eliminated. The converted and sorted signal shall be trans

formed by the Fast Fourier Transform (FOUT). Within the resul

tin~' frequency record the data-values in the frequency range

50 Hz ± 2 Hz shall be set to zero by XTSO. After the Antitrans

form of the resulting frequency record by FANT, the time signal

will not contain any frequencies in this range.

Program flow of EXTSEO

The whole common area of SEOAP is specified, a complex array

CX is equivalent to the X-array.

The preparation of the da ta transfer follows. KRAF must be one

if frequency records are transferred. The arguments of the

transfer are chosen to execute the general transfer mode 1

(KXYZI = 1 , KXYZO = 1).

The preparation of the transfer is done by OPEIN, OPAUS.

The ~requency interval of the spectral samples = 1/Freq is re

turned Tram OPEIN by the argument FREQ.

Now the delimiting numbers of the points corresponding to the

frequeney range to be deleted are computed and verified.

154

PROGRAM LIST OF E~TEND EXAMPLE NO 1

SUBROUTINE ~XTSEDCENAM,DUA,GNAM,Kl,OUB,K3,DUC,KANW,KENW,OUO,FREOE,

A FRECA)
C
C USERDEFINED SJBROUTINE TO DELETE SOME VAlUES OF A FREQUENCY RECORD
C ---------------------------------~---------------------------~---
C

COMMON X (lU240),Y (10240),l (5120),
1 BENAM(S12).NANFCS12',NENO(SI2),WFREQCS12),AOATCS12),BZEIT(S12),
2 KOAT,KEND.~C,NP,IA,JRV,Xl,X2,Yl,Y2,IERR,AERR,BERR,JERR,KERR

3 ,KPF (512)
COMPLEX CX(4096)
EQU I VAL ENGE (X (1) ,C X(1))
KRAF :: 1
IMESS :: 1
ISTAT:: 0
ISTAK :: O.
MAX :: 8192
KUF==O
KOF==O
KXYll :: 1
KXYZO :: 1
KPOINT :; KEi~O

KFUNC == 1
KSHIFT == 0
LOEF = 8192
KNULL :: 0
CALL OPEIN 'KANW,KENW,ENAM,Kl,KRAf,TIME,MAX,lKPT,fREQ,OATE)
IF (IERR.GT.O) GO TO 99
CALl OPAUS (LKPT,G~AM,K3,KRAF,fREQ,DATE,TIME)

IF (IERR.GT.O) GO TO 99
C RANGE ANC AODRESSES OF FREQUENCIES
C OELETED FREQ :: FREDE,MINFREQ == FREMI,MAXFREQ :: FREMA

FN :: FREJE * FREQ
FND==FREuA*FREQ
NF == FN
NDF==FNO
NMI :: NF - NDF
NMA :: NF + NDF
FREDE :: ~F I FREQ
FREMI :; i\lMI I FREQ
FREMA :: NMA I fREQ
WRITE (NP,lOO) NMI,NF,NMA,FREMI,FREOE,FREMA
I f (NMI.I.. T. 1) GO TO 98
IF (NMA.~T.lKPT) GO TO 98

CALl ADDEIN (KANW,LKPT,LOEF,KRAF,KNUlL,IMESS,IM,KXVZI,ISTAT,IOF,
1 IlJF,KOF,KuF)

IF (IERR.GT. 0) GO TO 99
C OElETE

DA 10 1:'\4 MI ,NMA
10 CXCI):: (0.,0.)

CALL AODAUS (KFUNC, ISTAK,KPOINT,GNAM,IM,KXYZO,KSHIFT,IMESS)
GO Ta 99

98 WRliE (NP,lu 1)
t;9 REiURN

101 FORMAT(1H ,'FREQUENCIES 00 NOT CORRESPONDENT TO THE',I

155

AIH ,'FREQUE~CV RANGE OF THE RECORO")
100 FORMAT (!H .3(IIO,2X).3(flO.4,ZX))

END

00
J =1,

NVALUE

NO

- 156 -

EXTSED

INITIAlIZATION
OF OPAUS
AND ADDAUS
ARGUMENTS

INlTlAlIZATJON
OF PROGRAM

EXTSED

ADO REAOCOUN
TER. SET INDICA
TOR OF DATA
TRANSFER=FAlS

FLOWCHART SU8ROUTINE

EXTSED EXAMPLE 2

END OF FILE

YES SEO INDICATOR
>-~ OF DATATRANS

FER = TRUE

TRANSFER A
VAlUE FROM
AREA A TO FIEL

TRANSFER
~;........~ ONE RECORD

TO WAREHOUSE

NO WRITE
WARNING

YES TRANSFER
I----~- THE REST TO

WAREHOUSE

RET URN

157

--
I

SYSTEM = INPUT

ENTRY = None

COMMANDS:
XTSD

Example 2 shows the use of
EXTSED to transfer data pun
ched on card deck into the
warehouse

NAME = EXTSED

CALL EXTSED(S1,S2,GNAM,K1,K2,K3,K4,I1,NVALUE,IUNIT,FREQ,DATE,
TIME)

LIST OF ARGUMENTS:

S1

82

GNAM

K1

K2

K3
K4

I1

NVALUE

IUNIT

FREQ

DATE

TIME

dummy argument in this example

dummy argument in this example

is the name of the resulting record

dummy argument for this example

dummy argument for this example

is the search index of GNAM (must be -1)

dummy argument for this example

dummy argument for this example

is the number of values to be read

is the unit number of the input file

is the frequency of the record
is the recording date of the data

is the recording time of the data

Remark:
81, 82,
K2, K3,
16, I1,
pond to
166.

GNAM correspond to NAM1, NAM2, NAM3 (page 166), K1,
K4 are the search indexes defind on page 13 through
NVALUE, IUNIT as well as FREQ, DATE and TIME corres
I1, I2, I3 and X1, X2, X3 in the list given on page

8UBROUTINE8 OR FUNCTIONS NEEDED: DPAUS, ADDAU8

ERROR8 DIRECT: 1

INDIRECT: see OPAU8, ADDAU8

158

PROGRAM LIST OF EXTENO EXAMPLE NO 2

SUBROUTINE ~XTSED (SI,S2,GNAM,Kl,K2,K3,K4,Il,NVAlUE,IUNIT,FREQ,
1 OATE,TIME~

C
C ACQUISITION JF DATA PUNCHEO ON CARD DECKS
C --
C

COMMON X (lJ240),Y (10240),Z (5120),
1 BENAM C512) • NANF (51 2) , NEN Dt 512) , WFREQ« 512) ,ACAT «512) ,B lE IT (512) ,
2 KDAT,KEND,~C,NP,IA,JRV,Xl,X2,Yl,Y2,IERR,AERR,BERR,JERR,KERR

3 ,KPF {SI2J
DIMENSION FiELD (S12l,A (8)
EQUIVALENCc (Xtl),FIELD{l»
LOG ICAL AEM? TY

C
C INITALISATION J= OPAUS ~ND AODAUS ARGUMENTS
C

WRI T E (NP, 1J 2» NVAL UE , I UN I T
ISTAT:: 0
IM! == 512
KXYZ :: 2
IMESS :: 1
KSHIFT :::: 0
KFUNC :: 1
KSORT :: 1
KPOINT :: Kb~D

CALL OPAU$ (NVALUE,GNA~,K1,KSORT,FREQ,OATE,TIME)

C
C INITIALISATION JF PROGRAM EXTSEo
C

MUCH :: 0
INOA :: 0
INDF :: 0
IREAD :: 0
AEMPTY :: .T.{UE.
IQUANT :: NV*, LUE

c
00 10 J::l,N~ALUE

IFC.NOT.AEM?TV) GO TO 5
READ CIUNIT, lOO,END=20,ERR=98) A
IREAD = IRE~D ... 1
AEMPTY :: .FALSE.
INDA :: 0

5 I NOA = INDA ... 1
IF CINDA.EQ.8) AEMPTY:: .TRUE.
INDF :: INDF ... 1
FlELD (lNDF) = A (I NDA)
IF (INOF .NE. 512) GO Ta 10
CAlL ADDAUS CKFUNC,ISTAT,KPOINT,GNAM,I~I,KXYl,KSHIFT,IMESS)

IQUANT:: I-JJANT - 512
MUCH :: MUCH + 1
INDF :: 0

10 CONTINUE
IF tINDF.E~.O) GO TO 99
IMl :: IQUANT

15 CALL AOOAUS (KFUNC,ISTAT,KPOINT,GNAM,IMl,KXYl,KSHIFT,IMESSl

159

GO "Ta 99
20 IMl = IREAD * 8 - ~UCH * 512

NR = IREAO * 8
WRI"TE (NP,lJl) NVALUE,NR
GO "Ta 15

98 IERR = 1
JERR = IUNIT
KERR = NR

99 RE"TURN
100 FORMA"T (8F1J.4)
101 FORMA"T (lH • 'THE E~D OF THE CARD OECK FILE WAS FOUNO BEFORE All '.

1 14,' COULD BE READ.THERE ARE QNLY ',14,' VAlUES STOREO IN THE "
2 'WAREHOUSE' / J

102 FORMAT (lH .14,' VAlUES ARE "TO BE REAO WITH FORMA"T (8FI0.4l',
l' WI1H THE FILE NU~BER FTO',Il,'F001'/l

END

[aMMANn llST OF EXTEND EXAMPlE NO 2

SEOAP EX"T SEn
EXAMPlE NO. 2

CCNVERSION OF DAT~ STORED ON Ct\RDOECK INTO SEDAP BLOCKS
SEOA 100
XTSD RECA 1002 1 1. 1006.12 0.0
PBVF RECA 1 2

•
•
•
•

160

The da ta are transferred to the CX-array, the values corres

ponding to the frequency range 50 Hz ± 2 Hz are zeroed and the

resulting record is transferred back to the warehouse.

Example 2

SEOAP provides possibilities to reduce data recorded on magnetic

or paper tape. This examplB shows how experimental data recorded

on a card deck can be transformed into experimental records of

the SEDAP format.

We assume thB data to be punched on cards. Every card contains
eight values with FORTRAN-format F 10.4.

The data i8 read by EXTSED (see flowchart) into an array FIELD

of length 512*(4 bytes). Every time the array FIELD contain8

512 values the data i8 transferred into the warehouse by

ADDAUS.

If the last block to be transferred does not contain 512 values

a speoial call of ADDAUS is executed.

If there are less data cards than specified by IX on the

command card, a warning message will be written.

The following short command list gives an example how 1002 data

values are rBad by XTSD and stored into the warehouse of SEDAP

as an experimental record with the name RECA specified by the

parameters: sampling frequency, recording date and time.

161

3. USING SEDAP

The basic idea behind the SEDAP concept was to relieve the

experimenter from all standard programming work and to pro

vide a detailed report of the processing activities. The ex

perimenter must however direct the process and this is

achieved by an experiment oriented language known as the

SEDAP language.

As a long range target it was planned to implement a rather

sophistica~ed command interpreter. In the present version,

however, the structure of the command was restricted to the

normal Fortran IV conventions with the advantages and the

limitations such a choice necessarily implies.

3.1 Running a SEDAP job

The system's user is mainly concerned with the three following

steps which are necessary to run a SEDAP job.

3.1.1 Description of the files

SEDAP requires the availability of different files which must

be defined by the corresponding job control cards. The defini

tion of the files is a task of a very specific nature and

depends not only upon a given machine configuration but also

upon the release or the type of software available. The job

control cards which were used in November 1972 to run SEDAP on

an IBM 360/65 - 370/165 computer are listed in appendix A to

show the typical file environment of SEDAP. SEDAP users have

access to a German handbook which informs them from any change
in the procedure.

3.1.2 System initi~lization

A SEDAP job must always begin with the four following cards:

Card 1 - Title card
Card 2 - First comment oard

Card 3 - Seoond comment card

Card 4 - Warehouse card.

162

The first card begins with the word SEDAP (column 1 to 5) and

carries the title word which will be printed in big characters

on the first page. The title can be made of any valid 8 charac

ters combination starting in the column 11.

The sedond and third card will be printed at the bottom of the

first page and allow the user to give a short description of

the job he intends to process. The 160 characters (2 x 80) are

completely free and will be printed in the same format. These

two cards belong to the formal initialization and must always

be present, they can be replaced by two blank cards but they

should never contain the arrow (» in the first column. The

fourth card is a command card of the SEDA type which specifies

the size of the warehouse and the use of the standard options.

The description of the SEDA card is given in the list of the

commands.

3.1.3 The SEDAP commands

The SEDAP commands were specified according to a general

scheme. A SEDAP command card is generally formulated by one

card and occasionally the card must be followed by a descrip

tion card. This card is expected for instance after a new plot

or a dump command and has nothing to do with the normal comment

card which begins with an arrow (» and which is skipped after

the listing operation. The general structure of a SEDAP command

is organized according to the list given on page 166.

3.1.4 Programming of the tasks

The modular principle of SEDAP allows to select different

schemes as long as the basic requirements of the commands are

respected. The user must generally begin by converting the da ta

or by generating the test data. Verious operations are then

possible but the user must take care when specifying names,

that new names are really new and old names are already known

to the catalog of the warehouse. One common source of errors

involves the segmenting of records which must be always compa

tible with the number of points really stored in the record.

The use of an input sorting factor reduces the output by the

163

same factor and a new task must take t~e reduction into account

when the new limits of a resulting segment are used. It is re

commended to insert a few "BILD" commands to document the stora

ge organization.

3.2 Description of the commands

The list of the commands uses a simplified syntax for the repre

sentation of the command language. This scheme shows the three

groups of three command parameters included in parentheses with

two commas as delimiters. Parameters, which are omitted, will

be ignored by the command interpreter. As an example

ADDI (RECA, RECB, RECC) (IB1, IB2, IB3)

indicates that this command requires three record names and

three integers as parameters, while no real da ta are necessary.

164

TABLE OF VAL! D CO~~MAND$

ADDl - AOO TWO RE~ORDS

AX+B - L~NEAR TRA~SFORMATION

BEFA - CONVERSIO~ FROM CARTESIAN TO POLARKOORDINATES
BILD - CONTENT OF WAREHOUSE
DAGE - CATAGENERAflON
DEFX - DEFINE THE X - AXIS
DEfY - DEFINE THE Y - AXIS
01FF - DIFFERENTIATION OF ARECORDS
OIKO - COMPLEX DIvISION
DIVI - DIVIDE TWO RECORDS
DUMP - DUMP RECORJS ON A DATASET
ERAK - CONVERSION OF OATA RECORDED ON MAGNETIC TAPE
FANA - FOURIER A~ALVSIS

FANT - FOURIER ANfITRANSFORM
FOUT - FOURIER TR~NSFORM

FIll - LINEAR THR~E POINTS SM001HING
fIL2 - LINEAR 'FIVc POINT5 SMOOTHING
FIL3 - CUBICAL F1JE POINTS SM001HING
FIL4 - SMOOTHING ~ITH VARIABLE CUT-OFF FREQUENCY
HAFU - SMOOTHING JF SPECTRA WITH HANNING FUNCTION
HOLE - RESTORING JF DUMPED RECORDS
INSI - INTEGRATIO~ WITH SIMPSON METHOD
INSW - INTEGRATIJ~ WITH SWITCH
INTR - INTEGRATIJ~ BY lHE TRAPEZOIDAL METHOD
KOKO - CDMPLEX CD~JUGATE MULTIPLICATICN
LEDI - ESTIMATION OF POWER $PEC1RA
MUKO - COMPLEX f4ui.. TIPL ICA TIO:~

MULI = MULTIPLICATION OF TWO RECORDS
MWEF - COMPUTATIJ~ OF THE MEAN VALUE
MWES - SUBTRACTlu~ OF THE MEAN VALUE FOUND 8V MWEF
PBHE - PRINT RECJtDS IN rlORIlONTAL ORDER WITH E-FORMAT
PBHF - PRINT RECJ{DS IN HORIZONTAL ORDER WITH F-FORMAT
PBVE - PRINT RECü{DS IN IIERTICAL ORDER WITH E-FCRMAT
PBVF - PRINT RECO~DS IN VERTICAL ORDER WIIH F-FORMAT
PLOT - PLOT WITH ~UTOMATIC SCALING
PTAP - CONVERSION OF DATA RECORDED ON PAPERTßP
RENA - RENAME ARcCORD
SEDA - SPECIFY THc SIZE JF THE WAREHOUSE
S002 - SORT 2
S004 - SORT 4
S008 - SORT 8
S016 - SORT 16
S032 - SORT 32
S064 - SORT 64
SUBT - SUBTRACT r~o RECORDS
STOP - STOP THE CJMMANDS INPUT STREAM
I NI 1 - CONVERT THL;; RMOCOU? LE VOl TAG E TO TE MPE RATUR
WERT - CREATION J= RECORi.>S OELIMITED BY VALUE- OR TIMEIJNITS
XTSO - POSIBILITY Ta DEFINE COMMANOS BY THE USER
ZERS - DESTROY ON2 OR ALL RECORDS
lUST - LISTS THE cXISTING COMMANDS

LIST OF JALID MJDIFIERS

165

KONS - USEO WI TH ~ O'MMANO DAGE
AX+B - USED WITH ; JMMANO OAGE
SINF - USED WITH ..; OMMANO OAGE
COSF - USEO WITH ~OMMAND OAGE
VIER - USEO WITH ~OMMANO OAGE
RAND - USeD WITH ;: OMMANO OAGE

ZEIT - tJSED W11H ~ OMMA NO WERT

TEXT - USEO WITH ;OMMANO PLOT
ALT* - USEO WITH ~OMMANO PLOT

ALLE - USEO WITH ~OMMANOS OUMP HOLE BILD

MODl - USED WITH ;OMMANO XTSO
MODZ - USED WITH ~OMMAND XTSD
MOD3 - USEO WITH ~1MMAND XTSO
MOD4 - USED WITH ~OMMANO XTSD

166

FORMAT OF THE SEOAP CO~MANO LANGUAGE

COMM NAMl NAM2 NAM3 11 12 13 Xl X2 X3
----J----l----l-----.---1-----.---I-----.---1

EXPLANATION: COMM : COMMAND NAME
THE COMMAND MUST BE SPECIFIEO 8Y UNE üF THE 51
KEYWOROS.ONLY THE FOUR FIRST CHARACTERS ARE
CHECKED AND THE USER CAN EXTENO THE FOUR CHARAC
TERS TO ANY COft\BINAT ION WICH OOES NOT EXCEEO THE
10 CHARACTERS' SPACE lMULTIPLY 15 A VALID EXTENSION
OF MUL T) •

NAMl : FIRST RECORO NAME
IS GENERALLY THE NAME OF ARECORD WHICH 15 TO BE
FOUND IN THE WAREHGUSE.

NAM2 : SECOND RECORO ~A~E eR THE MOOIFIER
IS THE NAME OF A SECONO RECORO OR THE NAME OF A
MODIFIER WHICH IS SPECIFIEO SV THE COMMAND. (

NAM3 : THIRO RECORO NAME
IS THE NAME OF A NEW RECORD

11 : FIRST INTEGER
IS THE FIRST BLOCK OF A SELECTEO SEGMENT

12 : SECOND INTEGER
IS THE LAST BLOCK OF A SELECTED RECORO SEGMENT

13 : THIRD INTEGER
IS IN MOST CASES A SeRTING FACTOR APPLIED TO THE
INPUT (1 OF N VALUES).FOR SOME COMMANDS,WHICH 00
NOT PERMIT SCRTI~G,TH!S NUMBER HAS A DIfFERENT
MEANING.

Xl X2 X3 : THE THREE LAST PARAMETERS ARE DECIMAL NUMBERS
AND THEIR MEANING IS EXPLAINED IN THE DESCRIPTION
OF THE eOMMANOS.

DATASTUCTURE :

STRUCTURE 1 COLUMNS fORMAT COMMENT
1--------------+--------------+--------------+-----------------1
I COMMAND 1 1 - 4 'J A4 1 LEFT JUSTIFIEO 1
I---~----------+--------------·+--------------+-----------------1
J NAMl J 11 - 14 1 A4 1 LEFT JUSTIFIEO I
1--------------+--------------+--------------+-----------------I1 NAM2 I 16 - 19 I A4 I LEFT JUSTIFIED 1
1--------------+--------------+--------------+-----------------1
1 NAM3 1 21 - 24 1 A4 I LEFT JUSTIFIED 1
1--------------+--------------+--------------+-----------------1
I 11 I 26 - 30 1 15 1 RIGHT JUSTIFIED I
1--------------+--------------+--------------+-----------------J1 12 I 31 - 35 1 15 I RIGHT JUSTIFIED 1
f--------------+--------------+--------------+-----------------I1 13 1 36 - 40 1 15 1 RIGHT JUSTIFIED I
1--------------+--------------+--------------+-----------------11 Xl 1 41 - 50 I F10.4 I 1
1--------------+--------------+--------------+-----------------1
I X2 1 51 - 60 1 flO.4 I I
1--------------+--------------+--------------+-----------------I
I X3 1 61 - 70 I f 10.4 1 1
--------------~-----------------~------------------------------

167

AoaI
adds two records and stores the resulting record in the

warehouse.

AOOI (RECA, REC8, RECC) (181 , 182, IS)

RECA is the name of the first record to be added

REC8 is the name of the second record to be added

RECC is the name of the record resulting from the addition

(C = A + 8)

181 is the first block of the selected record segment

182 is the last block of the selected record segment

18 is the sorting factor to be applied at the inpu:t

Example

AOOl (CH22, CH23, TEMP) (1, 6, 2)

Add the six blocks (1 to 6) of the channel 22 to the

six blocks of the channel 23 and store the r~sulting record

(three blocks since lS = 2) under the name TEMP

Remarks

Maximum number of blocks = 2500 blocks

Sorting factor from 2 to 100

See note on synchronous records

AOOl can be used to add complex values

168

AX+8
performs the linear- translation of arecord according

to the relation y = ax + band stores the results in the

warehouse

AX+8 (RECX"RECY) (I81,I82,IS) (A,8,)

RECX is the name of the input record (x in the formula)

RECY is the name of the resulting record (y in the formula)

181 is the first block of the selected record segment

182 is tne last block of the selected record segment

IS is the sorting factor to beapplied at the input

A,B are the two coefficients a and b of the fOI'mula

Example

AX+8 (CH11"NC11) (1,10,5) (10.0,3.0,)

Multiply every 5th value of the 10 first blocks of the re
cord CH11 by 10.0, add +3.0 to the product and store the 2 re

sulting blocks under the name NC11

Remarks

Maximum humber of blocks a 2500 blocks

Sorting factor from 2 to 100

If A = 0.0, AX+8 transforms the record in a ~onstant 8

If 8 • 0.0, AX+8 multiplies arecord by a constant A

If A • 1.0, AX+8 adds a constant to the record

If A • 1.0 and 8 • 0.0, AX 8 becomes a "DO NOTHING" operator

and transfers the input to the output. Since SEDAP recognizes

this case and speeds the transfer accordingly without executing

the operation, AX+8 should be used to sort one of 1S values of

arecord segment.

169

BEFA

transfarms a complex ~ecord by computing amplitude and

phase analog to the conversion of cartesian coordinates

to polar coordinates

BE FA (COSP •• AMPH) (IB1 • 1B2;)

COSP is the name of the input record (complex spectrum)

AMPH is the name of the resulting record (amplitude, phase)

1B1 is the first block of the selected record ~egment

1B2·. is the last block of the selected record segment

Example

BEFA (KART"POLA) (1,8,)

Transform the 8 first blocks of the record KART and

store the result under the namePOLA

Remarks

Maximum number of blocks c 2500

A sorting faotor oannot be applied

Amplitude and phase values of any frequency are stored in two

adjacent memory locations

They are normalized as if they had been generated by real

Fourier analysis

For separating amplitude and phase see command SOnn

170

BILD

(means Snapshot or picture) maps the contents of the

warehouse

Two forms are possible:

BILD (no argument)

or

BILD (,ALLE,)

BILD gives the names of all the records stored in ware

house and fists the parameters of the catalog for each recordJ

if the modifierALLE (-all) is specified~the task is extended

to a list of the first eight values of each block contained

in the warehouse.

Remark

BILD is especially useful to understand the way the system

stores the records and should be called a few times by the new

users of the system to check the properties of the records

stored in the warehouse.

171

DA GE

Data generation

DAGE (,TYPE,REC1) (181,182,) (X1,X2,X3)

TYPE specifies the type of generated signa~ and is a generic

name which must be replaced by one of the following modi

fier names:

KONS generates a constant signal with a sampling frequen

cy Xi and an amplitude X3 (X2 is not used)

AX+8. generates a ramp with a sampling frequency Xi. The

first point of the signal has the value X3, the

second X3 + X2 and the n-th point X3 + X2 (n-1).

X2 and X3 can be positive or negative.

SINF generates a sine wave with a sampling frequency X1~

a sine frequency X2 (Hz) and an amplitude X3.

Xi and X2 must be always correctly defined (no de

fault) and it is recommended to satisfy ths condition
Xi ~ 2.0·X2.X3 is generally positive and the user

can use a negative value for X3 if he intends to

cause a 180 0 shift.

COSF generates a cosine wave and uses the same convention

as SINF

VIER (viereck a square) generates an alternated (+/-)

squarewave with a sampling frequency Xi, arepetition

rate X2 (Hz) and an amplitude X3. (The first half

wave is equal to X3 and the second to -X3). Xi and

X2 must be correctly defined and a negative X3 value

causes a shift of 180 0 (inversion)

RAND generates a random signal with a sampling frequency

Xi and an amplitude comprised between 0.0 and X3.

X3 can be negative and X2 is disregarded.

REC? is the name of the generated record and the question mark

indicates the status duality of the record:

The record name can be new and a new record will be gßne

rated in the warehouse. In that case 181 is expected to

be 1 and 182 is the last block to be generated.

The record name can also be already known and the genera-

172

ted da ta will be added to the existing record. In that

ca se the sampling frequency X1 has no meaning since the

sampling frequency will be given by the catalog. IB1 and

IB2 delimit the segment of the record and must satisfy

to the requiremen~of a normal input request.

Examples

oAGE (,AX+B,RAMP) (1,10,) (512 .0, 1 .0,2 .0)

A new record of 10 blocks will be generated under the

name RAMP. The signal is a ramp with a sampling frequency of

512. Hz. The first value will be equal to 2.0, the second to

3.0 and the last value to 5121.

oAGE (,SINF,SINE) (1,1,) (100.0,10.0,5.0)

A new record of 1 block will be generated under the

name SINE. The signal is a sinewave with a sampling freqosncy

of 100.0 Hz and a frequency of 10 Hz (there are ten full sine

cycles in an interval of 100 points) and an amplitude of 5.0.
oAGE (,KONS,MIXo) (1,5,) (400.,,10.0)

oAGE (,VIER,MIXo) (2,2,) (400.,8.5, 1.)

oAGE (,RANo,MIXo) (4,4,) (400.,,1.0)

The three previous commands will generate a constant

signal of 5 blocks with an amplitude of 10.0 volt. The second

block of the record will be "disturbed" by the superposition

of a squarewave of 1.0 volt and the fourth block by a random

signal of also 1.0 volt.

Remarks

Maximum of blocks • 1000

Sorting factor has no meaning and will be disregarded.

173

DEFX

defines the X axis of a plot frame

DEFX (, ,) (, ,) (XMIN,XMAX,XLENGTH)

XMIN is the minimum value specified for the X axis (the X

axis is related to the time and is expressed in seconds)

XMAX is the maximum value specified for the X axis.
If the relation XMIN >/XMAX is not respected the system

will interchange the two values.

XLENGTH specifies the physical length of the plot length (in

centimeters). If XLENGTH has been omitted, the default

value X = 35.0 cm will besubstituted.

Example

DEFX (, ,) (, ,) (11 • 5, 11 .7,20.0)

A length of 20.0 cm is reserved to plot the X values

which will be comprised between 11.5 and 11.7 seconds.

Remark

Since PLOT handles only 20 blocks in a task it is possible

to extend the limit to several times 20 blocks if all the plot

tasks are directed to the same frame which has been specified

for all the values of different tasks. (See PLOT)

174

OEFY

defines the Y axis of a plot frame

OEFY (,,) (, ,) (YMIN,YMAX,YHEIGHT)

YMIN is the minimum value specified for the Y axis

YMAX is the maximum value specified for the Y axis

If the relation YMIN < YMAX is not respected, the system

will interchange the two values

YHEIGHT specifies the height of Y on the physical plot frame

(uni~s = cm). If YHEIGHT has been omitted, the default

value OY = 26. cm will be substituted. In the present

configuration the limit is 101.0 cm and any height ex

ceeding 25.4 cm will cause the plot to be drawn on the

large size plotter.

Example

OEFY L,) (, ,) (5.0,105.,50.0)

A height of 50 cm is reserved to plot the Y va lues which

are expected to be comprised between 5. and 105. arbitrary
units.

Remarks

See OEFX and PLOT

175

DIFF

differentiates arecord and stores the resulting record

in the warehouse

DIFF (RECA"REC8) (I81,I82,I8)

RECA is the name of the record to be differentiated
REC8 is the name of the resulting record

181 is the first block of the selected segment

182 1s the last block of the selected segment

18 is the sorting factor to be applied to the input

Example

DIFF (8PID"ACCE) (1,9,3)

the 9 first blocks of the record 8PID are differentiated

and the three resulting blocks are stored under the name ACCE.

(Obtain the value of an acceleration by differentiating a

velocity)

Remarks

- Maximum number of blocks • 2500 blocks

- 80rting factor from 2 to 100

- Minimum number of points .. 3

176

DIKO

performs the complex division of two complex records

and stores the resulting complex racord in the warehouse

DIKO (RCXA,RCX8,RCXC) (I81,I82,)

RCXA is the name of the complex record to ba divided by RCX8
RCX8 is the name of the second complex ·record
RCXC is the name of the resulting cOmplex record C .. A/8

I81 is the first block of the select~d racord segment
I82 is the last block of the selected record segment

Example

DIKO (SPK1,WEIG,QUOT) (2,3,)

the blocks 2 arid 3 of the record SPK1 are divided by the

blocks 2 and 3 of the record WEIG and the two resulting' blocks

are stored under the name QUOT

Remarks

- Maximum number of blocks • 2500
- Tha input sorting factor is not al16wed for a comple~ opera-

tion

- see note on synchronous records

- a SEDAP block contains 512 values which must be considered as

256 complex values when the record is complex.

177

OIVI

divides two records and stores the resulting record in
the warehouse

OIVI (RECA,RECB,RECC) (IB1,IB2,IS)

RECA is the name of the record to be divided by RECB

RECB is the name of the second record

RECC is the name of the resulting record (C .. AlB)

IB1 is the first block of the selected record segment
IB2 is the last block of the selected record segment
IS is the sorting factor applied during the input transfer

(the three last parameters cancern bath RECA and RECB)

Example

OIVI (CH15,CH16,RATE) (2,21,10)

Oivide CH15 by CH16 (20 blocks) and store the resulting
2 blocks (IS CI 10) under the name RATE

Remarks

Maximum number of blocks CI 2500 blocks

Sorting factor from 2 to 100 (included)

See note on synchronous records

OIVI should not be used to divide complex values (see OIKO).

If the record RECB contains values equal to zero, the division

is impossible and the zero will be replaced by 1.0 as fix-up.

This will be reported by one or several warnings at the end
of the task.

178

oUMP

dum~a record or the complete warehouse on a user

supplied sequential data set (usually tape). Two

options are possible.

oUMP (RECA, ,)

or

ol1MP (,ALLE,)

(1B1,1B2,1F1LE)

("IFILE)

RECA is the name of the record to be dumped (option1)

1B1 is the first record block to be dumped (option1)

1B2 is the last record block to be dumped (option 1)

1F1LE is the file number for the user supplied 9 track tape

ALLE is the modifier name which selects the second option

and causes the complete warehouse to be dumped

Example

oUMP (TEMP,,) (2,4,22)

oump three blocks (2 to 4) of the record TEMP on the

file 22.

oUMP (, ALLE) (,,23)

oump the complete warehouse on the file 23

Remarks

oUMP must always be followed by a comment card. (80 characters

are free, the first one should not be the > sign).

Since oUMP may be used to interface SEDA with other programs

the user should be informed of the method to access the dumped

values. Every dumped experimental record is preceded by a

label. To read the label (SEoAP label, i. e. not the tape

label), the following unformatted statement may be used.

REAo (KF1LE) (1W0Ro(1),1=1,24), (FWORo(1),1=1,8)

1W0Ro(1) length of the label (124 bytes)

1W0Ro(2) record number

1W0Ro(3) number of points

1W0Ro(4) Filling factor (last block)

179

IW0RD(5 to 24) Text

FW0RD(1) Name of the record
FW0RD(2) Frequency

FW0RD(3) Date

FW0RD(4) Time

FW0RD(5 to 8) Unused.

The corresponding JOB-control card which must be supplied by

the user for the SEDAP JOB STEP, might be the following:

//G.FTnnF001 00 UNIT=TAPE9,DSN=D1,DISP=(NEW,KEEP),
// DCB=(BLKSIZE=33D3,RECFM=VBS) .

nn is the file number specified in the third integer-parameter

of the DUMP-command.

180

ERAK

converts the experimental data recorded on a magnetic

tape by the ERA da ta acquisition system and stores the

resulting record in the warehouse

ERAK ("NREC) (ITB1,ITB2,ITAPE) (FREQ,DATE,TIME)

NREC is the name of the record which results from the con-

version

ITB1 is the first converted block

ITB2 is the last converted block

The following conventions are due to the special features

of the ERA data acquisition system and must always be ap

plied to ITB1 and ITB2 (Tape blocks):

a) The tape blooks contain 1024 values (and not 512).

That means that 10 tape blocks will be converted into

20 SEDAP blooks.

b) The "label block" which contains a short information

about the nature of the recording is always printed

and is referred as the block No. o. The blocks 1 and 2
are test blocks which are used to record the off-

set values of the amplifiers before the experiment is

run for good. This standard practice implies that the

"real" experimental values begin with the block No. 3.

c) If ITB1 = ITB2 = 0, the system will conclude that the

user intends to convert only the label block. Since

this operation is performed without storing arecord,

the name NREC can be omitted.

ITAPE is the file number used to specify the data set and thm

related type reel. This number should correspond to thm

definition given to the system for the tape and should be

comprised between 20 and 29 to avoid any confusion with

the standard units.

FREQ is the sampling frequency used to perform the recording

and must be given in Hz. FREQ is the total frequency of

the multiplexer or the sum of the frequencies used by eIl

the recorded channels. If the experimenter records four

181

channels at the 5 kHz sampling rate, FREQ must be spe

cified as 20000 Hz. Since many further operations (in

tegration, differentiation, plot etc .••) depend upon

the value of the frequency, it is especially important

that the user specifies correctly the value of FREQ. A

frequency of 0.0 Hz will cause the task to be rejected.

DATE is the date of the experiments in the following order:

day, month. year which must be coded as

2604.72 for the 26th day of April 1972.

TIME is always the time origin of the first value of the

third block and must be given in seconds. If no time is

given, the first value of the third block will have

assigned the default origin 0.0 sec. This solution is re

commended as long as the data reduction of the experimen

tal phase does not involve a cross-reference of several
files or tapes.

Example

ERAK ("TA33) (3,22,29) (16000.,2604.72,0.0)

Twenty blocks of the file 29 (//FT29F001 .••.••)

recorded with a sampling frequency of 16 ~z will be converted

into the record TA33 (40 SEDAP blocks).

Remarks

The maximum number of blocks to be converted is limited only

by the size of the warehouse.

It is possible during a job to convert more than one file or

more than a tape. The user should be aware that the computing

installation cannot simultaneously handle too many tapes and

that even with a few tapes the job can seriously impede the

smooth flow of a Job stream by blocking several units. The

user should clearly indicate that he intends to call the dif

ferent tapes in a sequential order and not in the parallel

mode. This can be achieved by requesting a deferred mounting

or by specifying the affinity of different volumes for the

same unit. This detailed information can be obtained from the

specificatians of the job control language.

182

FANA

transforms a complex record C(k) generated by the FFT

into the usual coefficients A(k), 8(k) of the Fourier

analysis according to the relation:

C(k) + 0.5(A(k) - j8(k» k = 1, ••• ,N/2

FANA (COMP"COSI) (I81,I82)

COMP is the name of the complex input record

COSI is the name of the resulting sin-cos series

I81 is the first block of the selected record segment

I82 is the last block of the selected record segment

Example

FANA (COMP"COSI) (1,4,)

The 4 first blocks of the complex record COMP generated

by the FFT are transformed. The resulting coefficients of the

cos-ein series are stored in pairs into the warehause under

the name COSI.

Remarks

Maximum number of blocks = 2500

A sorting factor cannot be applied

8efore separating the cos-sin series see description of

command SOnn.

183

FANT

is used to antitransform a complex spectrum into the

time domain with the Fast Fourier Transform (FFT) algo

rithm.

FANT (SPEC"TIME) (IB1,IB2,)

SPEC is the name of the record to be antitransformed
TIME is the r.esulting record

IB1 is the first block of the record
IB2 is the last block of the selected record segment

Example

FANT (SPEC"TISE) (1,3,)

The first blocks of the record SPEC are antitransformed.

The resulting time series has a length of 4 blocks and is

stored und er the name TISE.

Remarks

Maximum number of blocks • 16
A sorting factor cannot be applied

FANT expects that the complex spectrum originally was genera

ted by the FFT (commands FOUT,LEDI) I

FANT may be used as a low pass filter by cutting of the higher

frequencies (see example). The cutting of the lower frequencies
will lead to erroneous results.

For instance the command

FANT (SPEC"TISE) (2,4,)

will produoe incorrect time series.

184

FIL1
FIL2
FIL3

smoothes arecord and stores the resulting record in

the warehouse

FIL3 (RECA"REC8) (I81,I82,IS)

RECA is the name of the record to be f,i I tered

REC8 is the name of the resulting record
181 is the first block of the recordto be filtered
182 iei -Ehe last block of the record to be filtered
IS is the sorting factor applied at the input

FIL3 uses the third of three different algorithms which are

given in the part 11 of the report (see FILTER).

Example

FIL3 (RAW1"SM01) (1,2,2)

Smooth the two first blocks of the record RAW1 and store

the resulting block (IS = 2) under the name SM01.

Remarks

Maximum number of blocks ~ 2500

Sorting factor from 2 to 100 (included)

See note on the use of sampling frequency.

The use of the filter subroutines requires a minimum number
of values:

FIL1 3 values

FIL2 5 values

FIL3 5 values

185

F1L4
filters arecord with an user specified cut-off frequen

cy and stores the resulting record in the warehouse.

F1L4 (RECA"RECB) (IB1,1B2,18) (FREQ,,)

RECA is the name of the input record

RECB is the name of the resulting record

1B1 is the first block of the selected record segment

1B2 is the last block of the selected record segment

18 is the sorting factor to be applied at the input

FREQ is the cut-off frequency of the filter (in Hz)

Example

F1L4 (CH21"DA21) (1,10,2) (10.0")

Filter the 10 first blocks of the record CH21 by remo

ving the frequencies above 10.0 Hz and store the five resulting

blocks under the name DA21.

Remarks

F1L4 simulates a first order low-pass filter analog to the

wellknown RC filter. FIL1, FIL2 and FIL3 provide a smoothing

effect which is always adapted to the sampling frequency of the

record, whereas FIL4 is a very effective variable filter which
must be used with some care.

- The effect of this filter depends upon the setting of FREQ.

FREQ has been normalized as the reciprocal value of the time

constant (RC=TAU) of the filter, which means that a value of

FREQ .. 0.1 corresponds to a time constant of 10 sec.

- The cut-off frequency must be smaller than the sampling fre

quency (otherwise an error code will terminate the job) and

the user must keep in mi nd that the effective sampling fre

quency is the sampling frequency divided by the sorting fac

tor.
- The user is warned against the use of two large time-constan~

i.e. tao small cut-off frequencies. The effect of a cut-off

frequency f .. 0.01 (100. sec time constant) on arecord samp-

186

led at 50 Hz will be disastrous and will "dilute" or "smear"

10000 points since the filter is still effective after a

time lag of two time constants.

Sorting factor from 2 to 100

Maximum number of blocks = 2500

187

FOUT

performs the Fast Four.ier Transform (FFT) of a time

series into a complex spectrum.

FOUT (TIME"SPEC) (I81,I82,)

TIME
SPEC

I81

I82

is the name of the record to be transformed

is the name of the resulting record (complex spectrum)

is the first block of the selected record segment

is the last block of the selected record segment

Example

FOUT (TIME"SPEC) (1,,5)

The 5 first blocks are transformed. The time series

array is completed to a hyperarray by adding 3 blocks filled

with zero values. The resulting 8 blocks of the complex spec

trum are stored under the name SPEC.

Remarks

Maximum number of blocks • 16
A sorting factor cannot be applied

The FFT expects the number of points to be apower of two.

In the other case the array of the time series is extendet

adding extra points with zero valUBS.

The mean value of the time series is calculated and subtracted

before transformation.
Only part of the complex spectrum is stored in the warehouse

according to the frequency domain from F = FT/N up to F = FT/2

(F T = sampling frequency).

If hyperarrays be transformed the results may be corrected by a

factor NPZ/NP (NP = is the number of data values, NPZ = NP plus

the number of added zero values). Use command AX+8

8efore separating the real and imaginary parts, see descrip-

tion of command SOnn.
Detailed descriptions of the FFT can be found in /6 - 12/.

188 -

HAFU

smoothes complex spectra according to ths Hanning's

method.

HAFU (DATA"DATB) (IB1 ,IB2,) (DS1GN,,)

DATA is the name of ths record to be smoothed

DATB is the nams of the modified spectral rscord

1B1 is the first block of the sslsctsd record segment
1B2 is the last block of ths sslectsd rscord ssgment
DS1GN is. 1 • or -1. (sse the remarks)

Exampls

HAFU (RADA, , MOSP) (1,4,) (1.,,)

The 4 first blocks of the rscord RADA containing the

raw da ta are smoothed with the positive Hanning function. Ths

resulting modifisd spsctrum is stored undsr ths name MOSP.

Rsmarks

Maximum number of blocks .. 2500

A sorting factor cannot bs applisd

Algorithms of ths Hanning smoothing msthod:

DS1GN = 1. Smoothing of quadratic spsctra

MDSP(1) = 0.5 • (RADA(1) + RADA(2))

MOSP(K) = 0.25 • (2.·RADA(K) + RADA(K-1) + RADA(K+1))

MOSP(N) = 0.5 • (RADA(N-1) + RADA(N))

DS1GN = -1. Smoothing of linsar spectra

MOSP(1) = 0.5 • (RADA(1) - RADA(2))

MOSP(K) .. 0.25 • (2.·RADA(K) - RADA(K-1) - RADA(K+1))

MOSP(N) = 0.5 • (RADA(N) - RADA(N-1))
K .. 2,3, ••• ,N-1

For dstailed description ses /6 - 8/.

HOLE

189

(means GET)

restores a dumped record or several dumped records into

the warehouse.

Two options are possible

HOLE
or

HOLE

(RECA,,)

(,ALLE,)

("IFILE)

("IFILE)

RECA

IFILE

ALLE

Example

is the name of the record to be transferred (option1)

is the file number of a user supplied 9 track tape which

was produced by a OUMP or by a special interface.

is the modifier name which causes all the records of the

records of the file to be transferred into the warehouse.

HOLE (TEMP,,) (,,22)

The record TEMP is to be found on the file 22 and will
be transferred to the warehouse.

HOLE (,ALLE) (,,23)

Restore the records of the file 23 in the warehouse.

Remarks

It is possible to transfer only one record if the transfer has

been performed by DUMP ALL~ and HOLE ALLE will be accepted if

only one record has been dumped.

190

INTR

integrates arecord according to the trapezoidal rule

(see definition of the algorithm in DIFINT) and stores

the resulting record in the warehouse.

INTR (RECA"RECB) (IB1,IB2,I8)

RECA is the name of the record to be integrated

RECB is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

I8 is the sorting factor applied at the input

Example

INTR (CH15"IN15) (1,4,4)

The four first blocks of the record CH15 will be integra

ted and the resulting block will be stored under the name IN15.

Remarks

- Maximum number of blocks = 2500

- 80rting factor from 2 to 100

- The task should involve at least two points

191

INSI
integrates arecord according to the Simpson'~ rule

(see definition of the algorithm in DIFINT) and stores

the resulting record in the warehouse.

INSI (RECA"REC8) (I81,182,1S)

RECA is the name of the record to be integrated

RECH is the name of the resulting record
181 is the first block of the selected record segment
182 is the last block of the selected record segment,
IS is the sorting factor applied at the input

Example

INS1 (CH21"PR21) (1,1,4)

The first block of the record CH21 will be integrated

and the resulting block (128 values) is stored under the name
PR21.

Remarks

- Maximum number of blocks • 2500 blocks
- Sorting factorfrom 2,to 100

- The task must involve at least three points (required mini-

mum)

192

1NSW
(integration with switch) integrates arecord by the

trapezoidal rule and resets the integration to apreset

level every time thB "switchin~ record" crossesa user

specified threshold. The resulting record is stored in

the warehouse. Typical application is the integration
of periodic signals (sine) er pseudo-periodic waveforms

(pulse shaped shockwaves) which is easier to interprete.

if the integration is reset periodically.

1NSW (RECA,SW1T,RESL) (181,182,1S) (TR1G,RESET,)

RECA is the name of the record to be integrated

SW1T is the name of the record which causes the integration of

RECA to be reset to a value RESET every time it crosses

over the value of TR1G. SW1T can be the same record as

RECA

RESL is the name of the resulting record

181 is the first block of the selected record segrn.ent

182 i8 the last block of the selected record segment

1S is the sort ing factor to be applied at the input

TR1G is the threshold value of the "switching record"

RESET is the value to which the integration must be reset

(usually O.)

Example

1NSW (SINE,S1NE,HALF) (1,2,4) (")

the two first blocks of the record SINE are integrated

and the resulting block (256 values) i6 stored under the name

HALF. Since the two va lues TR1G and RESET are taken as 0.0 per

default and since SINE itself provides the switch function,

the integration will be restarted at the end of every half

cycle.

193

Remarks

- Maximum number of blocks • 2500 blocks

- Input sorting factor between 2 and 100

- At least two values should be provided

- See note on synchronous records

- Records which cross the threshold between every two points.
should be avoided as control records (SWIT)

194

KOKO

performs the multiplication of a complex record bythe

conjugate of another complex record.

KOKO (RCXA,RCXB,RCXC) (IB1,IB2)

RCXA is the name of the complex record whose conjugate is to

be multiplied by RCXB

RCXB is the name of the second complex record

RCXC is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

Example

KOKO (SPC1,SPC2,XREC) (1 ,4)

The 4 first blocks of the complex record SPC2 are multi

plied by the complex conjugate of the 4 first blocks of the re

cord SPC1 and the resulting complex record (i.e. apower spectrum)

is stored under the name XREC.

Remarks

Maximum number of blocks • 2500
A sorting factor cannot be applied

See note on synchronous records
A SEOAP block contains 512 values which must be considered as

256 complBx values if the record is complex. The conjugate com

plex multiplication is used to generate auto- or cross-power

spectra.

195

LEDI

uses the FFT for the evaluation of auto- or cross-power

spectral density by sectioning the experimental records

and averaging modified periodograms of the sections.

LEDI (TIMA,TIMB,SPEC) (IB1,IB2,ISEG) tXLAP,XSMO,XAPER)

TIMA is the name of the
TIMB is the name of the

SPEC is the name of the

IB1 is ~he first block

IB2

ISEG

XLAP
XSMO

XAPER

first input record (time series)

second input record (time series)

resulting record (complex spectrum)

of the selected experimental record

segment to be transformed

is the last block of this selected record segment

is the length of the partial record segments into which

the total selected record segment is sectioned, and also

the length of the resulting record if no zeroes be added

to the segments of the time series.

is the length of the overlap of the segments

is arepetition factor for the application of the

Hanning smoothing algorithm

is an option indicator. XAPER = 1. leads to a fully
aperiodic correlation, otherwise the spectrum contains as
many aperiodic spectral values as zero values were ge
nerated to extend the time series record (hyperarrays).

Example 1

LEDI (SIGA,SIGA,APSD) (1,100,4)

The 100 first blocks of record SIGA (signal A) are used

to estimate an ~uto-correlated Eower ~pectral ~ensity (APSD).
The FFT is performed in sections of 4 blocks, that is, first

the blocks 1 to 4 are transformed, next the following blocks 5

to 8, and so on, until the whole signal record has been procassed.
The choosed segments do not overlap, the spectra are not smoothed,

the correlation is cyclically performed. The resulting spectral

estimation has a length of 4 blocks and is stored under the

name APSD.

196

LEDI (continued)

Example 2

LEDI (TIMA,TIMB,CPSD) (1,16,3) (1.,3.,1.)

The cross-power spectral density is evaluated for the

16 first blocks of the times series records TIMA and TIMB. The

transformation is performed with sections of length 3 blocks one

block overlapping (section 1 = block 1 to 3, section 2 = block

3 to 5, and so on). To power spectrum the Hanning smoothing is

applied three times.

Hyperarrays are generated of the time series sections. One

block of zero values is added according to the requirement of thJ

FFT for array length of apower of two, other 4 blocks of zero

values are added to perform a fully aperiodic correlation.

The linear meanvalue of the B computed spectra is stored under

the name CPSD with arecord length ofB blocks.

Remarks

Maximum number of blocks • 2500
A sorting factor cannot be applied

See note on synchronous records and on complex values

Linear mean values are computed and subtracted for every Bection

of the time series.

The length of the segments must be apower bf two, otherwise

hyperarrays are performed. Their maximal length is 16 blocks.

In case of aperiodic correlation the length of the segments is

doubled by adding zero values, the maximal length of the segments

is then B blocks.

The length of the resulting record is in blocks:

(512 • ISEG + Number of added zero values) /512

197

LEDI (continued)

The adding of zero values causes a tao small amplitude. It

may be corrected with the help of the command AX+B by multi

plication by a factar:

FA = ((512 • ISEG + number of added zero values)/(512 e ISEG))2

(see 2.8.2.2). The resulting spectrum is the linear meanvalue

of the computed quadratic spectra.

It is stored according to the spectral range from F = F 1 INsamp e
to F = F 1 12 (Nyquist frequency).samp e

For separating real and imaginary parts see command SOnn.

Special remarks

The evaluation of power spectra without the use of LEDI:

The command LEDI has been defined to offer the user further

programming comfort. All the operations executed by the example

2 could have been performed with the existing more special

commands. However, this requires a langer command list, more

records in the warehause and because of the many transfer

operations much more computing time. Ta demonstrate the diffe

rence between the application of LEDI and the programming of

commands without LEDI a schematic list to compute a cross-power

density as in example 2 follows on the next page.

198

LIST OF COMMANDS JO ESTIMA1E THE CROSSPOWER OENSITY
AS IN EXAMPlE 2 tU THOUT LEDI

AX+B TIMA ZERO 1 8 o. o.
AX+B TIMA TSAl 1 3
AOOI ZERO TSI\ 1 HRAI 1 8
FOUT HRAI RSAI 1 8
AX+B TIMB TSBI 1 3
AODI ZERO TSd 1 HRBI 1 8
FOUT HRBI RSBI 1 8
KOKO RSAI RS~ 1 QSPl 1 8
HAFU QSPI MSll 1 8
HAFU MS 11 MS21 1 a
HAFU MS21 MSPI 1 8

1
AX+B TIMA TSA2 3 5
AOO! ZERO T~t4 2 HRA2 1 a

• •
• •
• •
• 2
• •
• •
• •
• •

1
AX+B TlMA TSA8 14 16

• •
• •
• •

8
AOOI MSP 1 M.)P 2 AOOI 1 8
AOOI MSP3 AD; 1 AD02 1 a
AOOI MSP4 ADlJ2 AOO3 1 8
AOOI MSP5 ADlJ 3 ADD4 1 8
AODI MSP6 ADJ4 A005 1 8
AOOI MSP1 AC)) 5 AD06 1 8
AOOI MSP8 AD) 6 SUMS 1 8
AX+B SUMS CPSD 1 8 1.77 o.

199

LEOI (continued)

The first command AX+B produces arecord filled with zero

values, but with the same parameter as those of the time series

records. To get the hyperarrays the sections of the time series

are added to the zero record (see note on synchronous records).

Following are the FFT of the hyperarrays, the correlation by

complex conjugate multiplication and threetimes the Hanning

smoothing. This must be done 8 times. Finally the mean value

is computed by adding and normalizing the spectra.

Ouring normalizing two corrections are applied:

1) The result must be multiplied by a factor 7.1 to correct the

deflection of the amplitude caused by the adding of zero

values (s8e the remarks above).

2) The computation of the power density via the complex conju

gate multiplication KOKO yields only to the half value of

the expected amplitudes.

So the normalizing factor is 7.1-2/8 (8 is the number of sampIes).

This detailed program of commands produces indeed many interme

diate informations, but additional 78 commands are needed and

624 more blocks stored in the warehause.

200

MUKO
performs the complex multiplication of two complex re

cords and stores the resulting complex record in the

warehouse

MUKO (RCXA,RCX8,RCXC) (181,182,)

RCXA is the name of the complex record to be multiplied by

RCX8

RCX8 is the name of the secondcomplex record

RCXC is the name of the resulting record

181 is the first block of the selected segment

182 is the last block of the selected record segment

Example

MUKO (SPC1,SPC2,XREC) (5 , 6,)

The blocks 5 and 6 of the complex record SPC1 are multi

plied by the blocks 5 and 6 of the complex record SPC2 and the

two resulting complex blocks are stored under the name XREC.

Remarks

- Maximum number of blocks • 2500
- Input sorting factor is not allowed and will be disregarded

- S8e note about synchronous records

- A SEDAP block contains 512 values which must be considered

as 256 complex values if the record is complex.

201

MULT

multiplies two records by each other and stores the

resulting record in the warehause.

MULT (RECA,RECB,RECC) (1B1,1B2,1S)

RECA is the name of the first input record to be multiplied

by RECB

RECB is the name of the second input record

RECC is the name of the resulting record

1B1 is the first block of the selected record segment

1B2 is the last block of the selected record segment

1S is the sorting factor applied during the input transfer

Example

MULT (DATA,DATB,PROD) (2,3,4)

Multiply DATA by DATB (2 blocks) and store the resulting

half filled block (IS = 4) under the name PROD.

Remarks

Maximum number of blocks = 2500

Sorting factor from 2 to 100

See note on synchronaus records

MULT should not be used to multiply complex values (see MUKO,

KOKO) •

202

MWEF

computes the meanvalue of a data series and saves it

for a subsequent command to substract the meanvalue

(MWES). Also it is listed.

MWEF (RECA,,) (IB1,IB2,IS)

RECA is the name of the input record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

IS is the sorting factor

Example

MWEF (TISE,,) (1,3,)

Of the 3 first blocks of rISE the meanvalue is computed

and saved.

Remarks

Maximum number of blocks = 2500

Sorting factor from 2 to 100

If the command MWES succeeds, it should be immediately, in case

of the overlay version.
By the command MWEF a formerly computed meanvalue is destroyed.

203

MWES

may be used to subtract from an experimental record its

meanvalue. This must be computed by a preceding MWEF

command.

MWES (RECA"RECB) (IB1,IB2,IS)

RECA is the name of the input record

RECB is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment.
IS is the sorting factor applied to the input

Example

MWEF

MWES

(TISE,,) (1,3,)

(TISE"RESI) (1,3,)

Both commands are put together in order tosuggest to

use them always in this sequence immediately following each

other. By the command MWES the values of the 3 first blocks

of TISE are transformed. After the meanvalue computed by

MWEF has been subtracted, the result is stored under the

name RESI.

Remarks

Maximum number of blocks • 2500
Sorting factor from 2 to 100

The parameters of the corresponding MWEF and MWES commands

(RECA,IB1,IB2,IS) must be identicalJ otherwise the resulting

record RECB will be incorrect.

204

PBxy

prints the blocks of arecord on the standard printing
file. PBxy is a generic name where x and y must be re

placed by the following characters to select one of the

four options:

x • H for a horizontal list
• V for a vertical list

y a F for a FORTRAN F-format

• E for a FORTRAN E-format.
The four valid combinations define the four following
commands: PBHF, PBHE, PBVF and PBVE

PBxy (RECA, ,) (IB1 , 1B2)

RECA i8 the name of the record whose blocks will be printed

1B1 is the first block to be printed
1B2 is the last block tobe printed

Example

PBVF (TF.MP , ,) (1,5,)

The five first blocks of the record TEMP will be printed
in vertical order and the values will be written with a F-format.

Remarks

- Maximum number of blocks = 2500 blocks
- An input sorting factor is not possible

- There is always one block by page

205

PL~T

plots arecord on the plotter.

PL~T (RECA,M~01,) (181,182,15)

RECA is the name of the record to be plotted

M~01 stands for the three possible modifiers and must be re-
placed by either "ALT*" or "TEXT" or blank

181 is the first block to be plotted

182 is the last block to be plotted

15 is fhe sorting factor applied at the input

Two cases are possible:

1) The modifier is blank or "TEXT".

PLOT uses the coordin~tes which were given by OEFX and OEFY

and cuts the values which are not compatible with the frame.

Otherwise the subroutine determines a frame. 1f the modifier

has been specified as "TEXT" a comment card must follow imme

diately the PL~T card, otherwise adefault text will be gene-
2) The modifier 1s "ALT*". rated.

The PLOT is drawn on the former frame and the values which

are not compatible with the frame are cut off. A new frame

will be used if no former frame was available.

Example

PLOT (TEMP,,) (1, 8,)

The first 8 blocks of the record TEMP are to be plotted
with the default text.

Remarks

- Maximum number of blocks = 20 blocks

206

PTAP

converts a paper tape and stores the converted values

into the warehause.

PT AP (, , RECA) (, , IFILE) (FREQ,DATE,TIME)

RECA is the name of the new record which results from the
conversion

IFILE

FREQ

DATE

TIME

is the file number of the corresponding file declaration
(paper tape reader)

is ~he sampling frequency in Hz which corresponds to the

cycle frequency multiplied by the number of channels

effectively recorded
(see ERAK)

(see ERAK). The default value is 0.0 sec

Example

PT AP (, , Lll1l21P) (, , 17) (0.03,2604.72,0.0)

Convert the paper tape referenced under the file 17 and

store the resulting record which will be known as "LIl1Il1P".

Remarks

If an error is detected during the conversion, an auxiliary

subroutine will be automatically called and the error will be

identified. Furthermore the values will be printed.

Maximum number of blocks = 40 blocks

207

RENA
renames arecord stored in the warehouse

RENA (OLDN~~NEWN)

OLDN is the old name of the record. The name must be known

NEWN is the new name of the record. The name must be new

Example

RENA (CH3~~~TEMP)

The record CH34 will be renamed TEMP and must be there

after called by the name TEMP.

Remarks

RENA can be used to change the names provided by a ~orting

operation.

208

SEDAP

is a special command whith specifies the size of the

warehouse and the options of the system.

SEDA (DmMP"PASS) (ISIZE"IFILE)

"DUMP" is the keyword which~causes the contents ofthe ware

house to be automatically dumped on a magnetic volume

if an error has been detected before the end of the job.

PASS is a password for system testing and shou~d be left

blank.

ISIZE specifies the size of the warehouse in blocks. The mini

mum size is 100 blocks. The maximum size of 5000 blocks

should not be exceeded.

IFILE is the file number of a user supplied 9 track tape where

the records will be dumped.

Example

SEDA (") (500")

defines a 500 blocks warehouse without the DUMP option.

SEDA (DUMP,,) (5000,,29)

specifies a 5000 blocks warehouse and requires that the

contents of the warehouse be dumped on the file 29 if an

interruption occurs.

Remarks

The SEDAP command must be the fourth card of the deck, i.e.

the first command. If a second SEDAP card is read thereafter,

the option status may be changed but the size of the warehouse
remains unchanged.

209

50nn
sorts a multiplexed channel into nn channels. 50nn is a

generic command name which must be replaced by one of the

six possible mptions to obtain the six following commands:

5002, 5004, 5008, 5016, 5032, and 5064

50nn (RECA"REZZ) (IB1,IB2,ILIMIT)

RECA is the name of the record whieh will be Borted.

REZZ is th~ name which has been selected for the nn resulting

(REFT) records. The new names are given automatically by 5EOAP
during the execution of the task by replacing the two last

characters of REZZ by the serial number of the channels.

The new names will be RE01, RE02, ••••••• RE64 for nn = 64

and the ZZ ending is not a requirement but is recommended

to the user to keep him aware of the fact that they will

be replaced. If the user uses the command 5002 to separate

the real and imaginary parts of a complex record like in

the case of a complex Fourier spectrum (Fourier Transform),

he must indicate his intention by specifying a new name

ending by the two characters 'FT'. In that case the record

REFT will produce two record names RE01 and RE02 but their

sampling frequency will be equal to the sampling frequency

of RECA (i.e., not divided by 2).

IB1 is the first block to be sorted

IB2 is the last block to be sorted
ILIMIT is a user specified limit which must be comprised between

1 and nn and which causes only the first ILIMIT records to

be stored in the warehouse. This option is especially use

ful when 64 record channels were recorded with only ILIMIT

connected to the experiment.

Example

5016 (DAX1"CHZZ) (1,32,11)

the 32 first blocks of DAX1 will be sorted into 16

channels. The resulting 11 new records are CH01, CH02

CH11 and are cmmprised of two blocks.

... and

210

Remarks

Maximum number of blocks • 2500 blocks

No input sorting factor

See AX+B if only one of n values has to be sorted for a non

multiplexed record.

211

srop
is the last command of a job

srop (no arguments)

Remark

srop provides the system with a command which orderly termi

nates a job and should not be forgotten.

Any commands following the srop command will be listed at

the beginning of the job but they will not be processed.

212

SUBT

subtracts arecord from another record and stores the

resulting record in the warehause

SUBT (RECA,RECB,RECC) (1B1,1B2,1S)

RECA is the name of the first input record

RECB is the name of the record to be subtracted from RECA

RECC is the name of the record resulting from the subtraction
(C '" A - B)

1B1 is tl1e first block of the selected record segment

IB2 is the last block of the selected record segment

1S is the sort ing factor to be applied at the input

Example

SUBT (DA15,OA16,RDIF) (1,6,2)

Subtract the six first blocks of OA16 from the six first

blocks of OA15 and store the three resulting blocks (1S=2)

under the name ROIF.

Remarks

Maximum number of blocks = 2500 blocks

Sorting factor from 2 to 100

See note on synchronaus records

SUBT can be used to subtract complex records

213

TN11

converts a millivolt record originated from a Ni-Cr-Ni

thermocouple into 0 C and stores the resulting record

in the warehause

TN11 (M1LV"OEGR) (181,182,18)

M1LV is the name of the input record to be converted

OEGR is the name of the resulting record (see remarks)

181 is the first block to be converted

182 is tha last block to be converted

18 is the sorting factor applied at the input

Example

TN11 (CH15"TE15) (1,3,3)

Convert the two first blocks of the record CH15 and store

the resulting block (18=2) under the name TE15.

Remarks

Maximum number of blocks: 2500

80rting factor from 2 to 100 (included)

8ince the voltage produced by a thermocouple is physically limi

ted and since the range of the function is comprised between

o 0 C and 1300 0 C, the input record M1LV must contain positive

values comprised between 0.0 and 52.46 mV. Any value not com

prised within this range will be converted to the minimum or

to the maximum (Dar 1300 0 C) and a warning will be printed at

the end of the task to indicate the number of times the function

has been found exceeded.

The user should be aware that the thermocouples signals are

often amplified and that the function is defined for a reference
temperature equal to 0 0 C. The operator AX+8 allows this

double correction in one step.

The user can also use AX+8 in a following step if he wants to

obtain a temperature in 0 F or in 0 K.

214

WERT

creates a new record by transferring a segment of an old

record with the peculiarity that the segment is delimited

by time units or by the position of the limiting points.

Two forms are possible:

WERT (RECA •• RECB) (IP1.IP2.)

WERT (RECA.ZEIT.RECB) (..) (T1. T2. TFLOAT)

RECA is the name of the old record which must be stored in

the warehouse

RECB is the name of the resulting record

For option 1

IP1 is the IP1th point of the record RECA and will become the

first point of the record RECB

IP2 is the IP2th point of the record RECA end will be the

last point of the new record RECB

conditions IP1 < IP2 < 99999 (I5 Format)

IP1 > 0

For option 2

ZEIT (=Time) is the modifiel' name which causes the selection

of the second option and the interpretation of the para

meters T1 and T2 instead of IP1 and IP2

T1 is the time coordinate of the value of RECA which will

become the first value of RECB

T2 is the time coordinate of the value of RECA which will

become the last value of RECB (T1 < T2)

TFLOAT is a floating factor which is applied to T1 and T2

(multiplication) if the user wishes to use another unit.

If T1 = 10. and T2 = 20., the system will transfer all

the values comprised between 10.0 and 20.0 sec. for a

value of TFLOAT equal to 1.0 CI' 0.0 (blank and 0.0 are

replaced by the default option 1.). If the user has

used a TFLOAT factor equal to 0.001 the two values will

be interpreted as milliseconds.

215

Examples

WERT ITEMP"T200) (1,200,)

Transfer the 200 first va lues of the record TEMP to

build the record T200
WERT (TEMP,ZEIT,TCUT) (,,) (15.0,25.0,0.001)

Transfer the values of TEMP which are comprised between

15. and 25. ms to build the record TCUT

Remarks

- WERT requires a detailed knowledge of the parameters of the

record RECA (number of points, sampling frequency) and it

is recommended to the new users to use BILO as preceding

command to facilitate the interpretation of any possible

error.
- The output control values printed by WERT are the new values

but the input values are the first values of one or two

blocks of the record RECA.

- A WERT task can be terminated with an error code of type 4

if the number of blocks is not exceeded but if the filling

factor of the last block is too small to allow the execution

of the task.

216

XTSD

is a user specified command and the conventions must be

given by the user which has programmed the EXTSED sub

routine.

Followi~g conventions are only indicative:

XTSD (RECA.WORD.RECD) (IBLIB2.IX) (X1.X2,X3)

RECA

WORD

is the name of the first input record

is the name of the second input record or the name of a

modifieI1'

RECD is the name of the resulting record

IB1 is the first block to be processed

IB2 is the last block to be processed

IX is a sorting factor or a input/output unit number

X1.X2.X3 are user specified.

Two examples are given in the description of the subroutine

EXTSED (chapter 2.9).

217

ZERS

(zerstören = destroy) destroys arecord stored in the

warehouse or clears the warehouse

Two forms are possible:

ZERS (RECA,,)

or

ZERS (,ALLE,)

RECA is the name of the record to be destroyed (the record

must be stored in the warehouse to be destroyed)

ALLE (=all) is the modifier name which causes the second

option to be selected. In that ease all the records

contained in the warehouse are destroyed, i.e. the

warehouse is cleared.

Example

ZERS (CH22,,)

destroy the reeord CH22

ZERS (,AllE,)

destroy all the records of the warehouse

Remarks

The user needs to destroy only if there is a risk to exceed

the eapacity of the warehouse. Prior to such situations he

should investigate the possibility to select a larger ware

house size. He should be aware that the destruction of a re

cord implies a reorganization of the warehouse and that it is

more effieient to destroy a reeord as soon as it has served

his purpose in order to avoid the shifting of many following

records. When several records have to be destroyed it is

always more efficient to begin by the last record.

218

lUST
lists all the command names (keywords) which are ack

nowledged by the system and lists the corresponding 8

character labels which are printed as heading of a task.

Example

lUST

Remarks

lUST

lUST

is comprised of only a keyword and has no parameters.

gives also the date corresponding to the last version

of the system and the user is advised to verify if the

date of his handbook matches the information provided

by lUST.

219

3.3 Same special features in the reduction of da ta series

3.3.1 Synchronism of two records

The basic scheme for a SEDAP task is to obtain arecord from

the warehause and to store the results of a specific mathema

tical operation into the warehause by creating a new record.

This operation involves an input record or a segment of the

input record and the new record will derive his new parameters

from the values of the warehause parameters: date. time. fre

quency and number of points. If the user has specified a sor

ting factpr and the transfer of only arecord segment. the

relation still exists after application of the frequency re

duction and of the shift of the time origin. Same other tasks

involve an operation performed on two input records.

for instance C = A + B

where A. Band C represent experimental records.

It is expected that when the user specifies such an operation.

the two input records A and B will be synchronaus. Two SEOAP

records (ar segments of records) will be synchronaus if:

a) the two records have the same time origin. This must also

be valid if the two selected segments are specified by a

delimiter other than 1 and should be extended to the date.

b) the two records have the same sampling frequency. i. e.

the time interval between two points of both records will

be the same.

c) the number of points involved by the task is the same for

the two records.

The synchronism of two input records is important since the de

limiters and the sorting factor are specified for the two input

records by a single set of values and since the transfer sub

system is mainly concerned with blocks. A special situation

arises if two input records contain respectively e.g~ 612 and 614

points. Both records will be accepted by the TRANSFER subsystem

which has received 1 and 2 as delimiters. The transfer zone

will however correctly compute the two numbers. of points (S12

and 614) since the filling factars of the last blocks will be

220

respectively 100 and 102. The computing subroutine could

theoretically choose between two possibilities:

- stop the process after 612 values and disregard the two last

points which are present on only one of the records

- execute the operation up to the 614th value and since nobody

knows what are the values stored into the last positions of

the shorter record, the results can become at least unpredic

table.

Such a situation would speak in favor of a radical solution

(reject the task) but there are other situations where the lack

of synchronism could be tolerated.

- An experiment er can justify the comparison (for instance sub

traction) of two records which have the same frequency, the

same number of points but two different time origins because

he compares the runs of two different days.

- One would like to compensate the drift of an integrator by

subtracting the ramp signal generated by DAGEN.

The most important thing is that the user should be aware of

what he does and the following rules which reflect the duality

of the previouB considerations are applied to the detection of

non synehronous records:

1) Any operation involving two input records supposes that the

user has selected two synchronous records.

2) The synchronism of two records is always verified and the

lack of synchronism does not cause an interruption of the

task but a warntng message will be issued if:

- the two numbers of points are not identical

- the two time origins are not the same

- or if the two sampling frequencies are not identical.

3) The resulting record derives always its parameters from the

first record listed in the command card.

The last point leads to suggest that the first record should

always be the shorter record if the two records don't have the

same length (it is obvious that the difference of length con

cerns only the case of the last block of arecord when both

AX+B

OIVI

MULT

221

don't have the same filling factor). Thls is very easy to per

form operations where the commutativity is accepted like for

the addition or the multiplication of two records:

C c A + B = B + A

G = E * F = F * E

but requires some more care for other operations.

The user can find numerous ways to solve similar problems and

although it should be considered as a very minor point the

following' examples are given to provide a few complementary

explanations about the way how the system handles the records.

Assuming two records R612 and R614 which contain respectively

612 and 614 values:

The following operation

SUBT (R612,R614,REST) (1,2,1)

is easy because the shorter record i8 the first listed.

SUBT (R614,R612,REST) (1,2,1)

will be followed by a 8erious warning and can be replaced

by the following list

AX+B (R614,Z614) (1,2,1) (-1.0,0.0)

AOOI (R612.Z614,REST) (1,2,1)

where the operator AX+B with a = -1 and b = 0 has inverted

the record to replace the subtraction by an addition which is

commutative.

The following command

OIVI (R614,R612,QUOT) (1,2,1)

could be replaced by the following list

(R612"FRAM) (1,2,1) (0.0,1.0)

(FRAM,R612,X612) (1,2,1)

(X612,R614,QUOT) (1,2,1)

which follows almost the same pattern. It is interesting

to note that the operator AX+B has created arecord filled with

values equal to 1. but with the same parameters as the previous

one. Such records filled with 1 or 0 are called "frame-records"

because they carry only the former frame of the record and can

be used in many different "tricky combinations".

222

There is obviously a shorter way to replace the two first

lines of the previous example:

WERT (R614"D612) (1,612,1)

with the last line changed to

DIVI (D612,R612,QUDT) (1,2,1)

The example of the compensation of the drift of an integrator

can also illustrate the flexibility of the system if the user

knows how to take advantage of the modularity. Any D.C. offset

at the input of an integrator will cause a drift of the inte

gration an~ must be compensated by a rampe If the record to

be compensated contains only 614 values,the record produced by

DAGE with the modifier AX+B will simulate a ramp of 1024 valuesj

Since the larger record is subtracted from the first one, the

system will not issue a warning. The user could replace the

subtraction by an addition by generating a negative ramp if the

commutativity would be involved but a better solution would be

to use the additive option of DAGE and to spare the interme

diary record.

3.3.2 The sampling freguency

The digital data acquisition systems record the different

state variables not as continuous signals but as sequences of
points which are considered as equispaced. The experimenter

must always be conscious of the sampled nature of the recording

and this requires to treat the data reduction with some extra

care. Most of the scientists are familiar with the applications

of the Stroboscope which substitutes an apparent frequency to

the real rotation,everybody knows the imperfections of an

optical sampling like a cinematographic sequence which often

gives an unsatisfactory representation of a motion (the wheels

of the stage coaches seem always to challenge the motion's

laws). But many experimenters disregard the importance of the

sampling frequency in their own data reduction. This is mainly

due to the fact that many experimenters have had considerable

experience with the techniques of continuous analog recording

where the inertia of the galvanometers have a strong limiting

influence on the frequency bandwidth of the signals. If the

223

basic relationship between the sampling frequency and the

signal bandwidth is not respected. the resulting record may be

aliased./17.18.19/. The aliasing of arecord is not only

dangerous because of the inaccuracy of the results but es

pecially by the fact that a serious aliasing can be inter

preted as a new phenomenon which has nothing to do with the

real experiment.

It is therefore recommended to pay the greatest attention to

the sampling frequency at the different steps involved in the

recording of the reduction of numerical values.

- The first step is to select a sampling frequency which is at
least twice as high than the highest frequency one wishes

to investigate. (A signal which must be evaluated up to

200 Hz could be sampled at 500 Hz).

- The experimenter must verify that the frequencies which

repre5ent a higher spectrum are correctly eliminated prior

to the sampling process. That implies that the variable low

pass filter be correctly adjusted in order to cut off the

frequencies which exceed the folding frequency (250 Hz in

the previous example).

- These preliminary steps are extremely important and must

be followed by others which deal with the data reduction.

The user must supply the correct sampling frequency when the

records are passed by the input system (ERAK.PTAP). The value

of the frequency is extremely important for the operation

which involve the time interval (for instance integration or

differentiation).

- Many users have a tendency to select the highest sampling

frequency and justify this excess by saying that "one never

knows" if a fast transient will not require such a high re

solution. The discussion of this viewpoint does not belong

to the frame of this report but it should be pointed out that

such a "safe" viewpoint generally involves the use of a high

sorting factor in the data reduction to compress the records

into shorter ones. The use of the sorting factor necessarily

implies that the setting of the low pass filter is no more

224

valid for the new "sorted frequency". It is therefore advis

able to perform a smoothing of the record before attempting

to reduce its length by a sorting factor.

3.3.3 Complex values

The values recarded by the data acquisition system are always

real. When the recorded values are processed by a Fourier

Transform the resulting values will be complex and build a

complex record which must be treated with same special care.

Like in most of the computing systems,complex data are stored

as couples of scalar values, the first scalar value being the

argument of the real part, the second one the argument of the

imaginary part. The experimenter who directs the process of

complex values generally knows the meaning of the operations

he has planned and it is his responsibility to select the

appropriate operators which are designed to handle such comp

lex records. A complex record may be printed in a horizontal

format (PBHE) but if the same record is directly plotted, the

graph will be of little use because of the alternation of real

and imaginary parts. The user who wants to plot a complex

record will generally use a preliminary sorting task (5002)

and plot separately the real and imaginary parts. The user

will find the Fourier Package especially easy to handle and

the modular structure allows to perform all the standard ope

rations with a very good flexibility. He must however pay

same attention to the following points:

- The commands which handle the complex records will generally

disregard the sorting factor which is always set to one by

the system itself. If the user, in aseparate task specifies

a sorting factor, he will obtain a new record which may be

of no further use.

- The use of the command WERT (call by values) mayaiso

destroy the structure of a complex array. If the first value

is even (2 to 127 for instance), the first value will be

skipped and the imaginary parts will be stored where the

real va lues were expected.

225

4. EVALUATION OF SEOAP

The first version of SEOAP was implemented in 1970 and was

used for different tasks of da ta reduction involving up to

several millions of sampled values. The system was enlarged

to include the Fourier Package and a few other components

/20, 21/. Ouring the first months of 1972 the system was

slightly modified to insure a better uniformity of the sub

routines and a better efficiency and to allow the proces

sing of larger records. This version was designed to

form a eomplete and consistent package which includes not

only the master deck with the listing but also the test runs,

the user's handbook and the documentation with a detailed

description of the commands and the associated procedures.
1

)

SEOAP has been widely used already in different experiments

mainly related to thermodynamics or to the sodium technology

(sodium boiling, simulation of fuel rod failures, perfor

mance of sodium loops etc.) The SEOAP approach has been so

far considered as very successful /22/. An average experi

menter can learn the SEDAP language in one or two hours and

after a few runs he is able to conduct very delicate data

reductions which otherwise would have required many days of

programming work, should a conventional computing technique

have been used. It is obvious that a user will need more

time if he intends to acquire a perfect grasp of the system

and if he tries to master all the tricky applications which

are possible within a complex modular structure like SEDAP.

The use of experimental records, the very simple command

language and the possibility to name the records have been

found very valuable and are especially appreciated by the

scientists who are not familiar with computing sciences. The

modularity of the system has provided the expected versatili

ty and most of the problems of data reduction were solved

with the standard features of SEDAP without resenting the

limitations of the system. It must be added that the SEDAP

package includes a user's subroutine (EXTSED) which gives the

1) As time proceeds, SEDAP will of course be modified to accom
modate more user wishes.

226

possibility to join a user written Fortran subroutine to the

system in order to solve any specific problem which has not

been treated under the organization of the official version.

SEDAP was also used for some applications which were not ori

ginally foreseen. The interfacing capabilitie8 of the system

were used to perform analysis of da ta which were produced by

digital simulation programs and which were then analysed with

the Fourier Package. The flexibility of the data generation

provides many possibilities for the theoretical investigations

of different types of signals and any experimenter can try the

system in the dry run mode.

SEDAP was created according to some preliminary guidelines

which were exposed in the first part of the present report and

the system was progressively extended within the limits of the

original frame. It would have been tempting during the deve

lopment to change some details of the frame but this tendency

was resisted because it was always possible to extend SEDAP

without changing the shape of the basic scheme. The fundamen

tal structure of the system is likely to remain actually stable.

and that is the reason why the documentation of the program

was undertaken at the present time. It is interesting however

to summarize the few points where the frame has been found

somewhat narrow and to discuss the improvements which could be

contributed without great changes to the whole system. In
other words a basic question can be formulated as the following:

Should it be done again. would it be done the same way?

4.1 The command interpreter

It was already stated that the SEDAP language was designed in

the rigid context of a Fortran input. The general scheme has

been very satisfactory. but in some ca ses a few limitations

have become apparent. Dne can refer to the example of two in

put records which block the use of a modifier or to the legi

timate wish to have two modifiers. In some cases an option has

to be passed as a decimal number because the three integers

are already assigned.

227

It seems therefore that a more sophisticated command inter

preter would greatly improve the system without changing the

basic structure. The interpretation of the language might be

preceded by a syntax check which would allow a detection of

all syntactical errors before the execution. According to our

experience, most of the errors are of trivial nature and we

evaluate to more than 90 % the percentage of the errors which

could be detected by a syntax check. This would involve the

investigation of a catalog belonging to a »dummy warehouse»

and would qonsiderably alleviate the burden of the error

checking procedures at the time of the execution. The efficien

cy could be increased further by introducing a compilation of

the input language rather than an interpretation. It is inter

esting to mention that in such a case the record number would

be substituted to the record name, the absolute address to the

relative address etc .•.• A great improvement could be achieved

if the command interpretation would be executed in a t~me

sharing environment with an interactive mode to allow an imme

diate correction. Another advantage of such a modification

could be obtained by combining the results of the interpreter

to a dynamic linkage. In that case only the necessary modules

would be considered and many of the unnecessary elements could

be' dropped according to the list of the commands.

In many applications, where the same sequences of operations

ought to be executed on a number of signals, the capability of

defining and executing subroutines was found very desirable.

Another method to solve the same problem would be the intro

duction of a macro facility.

4.2 Type dependent operations

One feature which was included in the very early planning for

SEDAP and which was dropped later, was the introduction of

various record types and the sensitivity of the operations

with respect to these types. At present, the user is requested

to use different commands for the multiplication of two records,

whether they contain real data (signals in the timedomain) or

228

complex data (frequency spectra). If the warehouse catalog

would be extended to include the approprtate type information,

the same command syntax could be used in either ca se and many

user errors could be avoided.

4.3 5ize of the system

The size of the complete executable 5EOAP load module amounts

to around 240 K bytes. The last reorganization of the system

brought it down from 300 K to 238 K and by trimming the over

lay version the limit can be expected at about 200 K. 5uch a

size is a compromise between the priority of a job and the

input/output load for the present computer installation but

can be a disadvantage for the smaller computers. The reduction

of the size is possible with the use of the overlay version

but the reduction factor is rather modest and this is mainly

due to the large size of the common area which includes the

catalog and the computing arrays. It has been explained that

the use of a preliminary compilation would almost eliminate

the catalog during the execution and we can add that most of

the checking features which are scattered all over the system

would be reduced in such a way that the combined savings can

be estimated in the range of 25 - 35 K bytes.

The reduction of the computing arrays would obviously contri

bute further to the size reduction of the module. The size of

the computing arrays was determined before the introduction

of a systematic segmenting of the transfer operations. A re

duction of the computing arrays would be perfectly feasible

for most of the commands with a penalty on the input/output

efficiency which is not the sensitive issue of small configu

rations. Two 5EOAP complexes would however be seriously

offended by such a drastic change, they are the sorting sub

routine and the Fourier Package. The sorting subroutine could

be easily modified to sort 2n channels by a succession of ele

mentary steps applied with lower factors like 2 and 4. 5008

will be iteratively treated as a 4 and 2 cascade, 5064 would

require the tripIe cascade 4, 4 and 4. It would be also pos

sible to reduce the size of a block to 256 or 128 and this

229

reduction can be combined with the previous step. In the two

cases the results would influence very negatively the perfor

mance of the input/output operations.

The reduction of the computing arrays would be more disastrous

on the Fourier Package which cannot be implemented with smaller

arrays without loosing either the capability to treat the pre

sently rather high number of frequencies or the advantages of the

Fast Fourier Transform. The involved segmentation would require

a bulky bookkeeping and tremendously increase the computing

time . Henc~. the reduction of the computing arrays would most

likely go along with a reduction in the frequency range of the

FFT.

From the previous considerations it is clear that aseparate

handling of the command interpretation and of the execution

would bring a considerable improvement for the user and an

interesting reduction of the size of the module. Further re

ductions would ba more difficult to justify and narrowly de

pend upon the types of configurations on which SEDAP is run

as wall upon the types of procassed records (langth in' 1000

or millions - with or without Fourier Package etc.). The ver~

sion which has been documented represents a good compromise

for the machines which are generally availabla in tha scienti

fic computing canters.

4.4 Data management

There are two areas of da ta management to be considered:

a) the computing arrays and b) the warehouse.

As mentioned abova. the computing arrays might ba raduced in

siza if one is willing to accept more input/output operations

and a reduction of the frequency range which can be handled

by the FFT. Since in the presant version the computing arrays

ara located in COMMON. almost all sourca programs must be modi

fied and recompiled for such a modification. This would be a

nontrivial job and would be acceptable only for the implemen

tation on another computer installation. However, evan on the

same installation a more flexible version would be desirable

230

in order to save core space and to gain priority for SEDAP

jobs which do not require the full capability. This would

require a modification in such a way that allsubroutines

would obtain their computing arrays through the argument list

and would use adjustable dimensions.

The present date management in the warehouse is extremely

simple. The warehouse is always filled consecutively with the

experimental records, which are kept contiguous to each other

even if intermediate records are to be scratched. A great

deal of input/output is required for copying of data in this

case. Ä new version of SEDAP would certainly contain an address

table in the catalog which would permit scattered storage of

the records in the warehouse.

4.5 Conclusion

Like for many software projects the time which was necessary

to develop end to document SEDAP has exceeded the original

estimation. This is partly due to the fact that the system has

been welcome in its early stage and that because of the favour

able resonance of the user's group, it was decided to adapt

the package several times to user wishes and to include a

complete detailed documentation of SEDAP. One of the main

achievments in dealing with this problem oriented computing

application was the excellent cooperation between the scientists(

involved in the experimental work and the designers of the

system. The aim of the system was to obtain a better quality

and a better efficiency of the data reduction which is one of

the most important problems of the research work in the field

of the fast breeder project. The target has been reached and

the authors are indebted to the different users for their out

standing cooperation and for the numerous discussions which

have oontributed to the progress of the system. The assistance

of G. Rittirsch who is responsible for the data acquisition

system is especially acknowledged.

231

References

/1/ Hoare C. A. ~.: Record Handling in Programming Languages,

F. Genuys Academic Press London and New York 1968

/2/ Eggenbergsr 0.: A8FORM Programm zum Ausdrucken von Texten

im Großformat, Programmbeschreibung 230-GFK (not published)

/3/ RANOU Subroutine in System /360 Scientific Subroutine

Package (360A-CM-03X) Version III, Programmer's Manual

(H20-0205-3), IBM

/4/ Heine S. et al.: PLOTA Ein allgemeines Plotprogramm, Pro

grammbsschreibung Nr. 117, GFK (not published)

/5/ Leinemann K.: PLOTA FORTRAN-IV-Routinen zur Umsetzung von

1130-PLOTA-Aufrufen in Aufrufe der CALCOMP-Software,

IRE-Programmbeschreibung Nr. 96/1972, GFK (not published)

/6/ Cooley J. W. et al.: Application of the Fast Fourier Trans~

form to Computation of Fourier Integrals, Fourier Series,

and Convolution Integrals. IEEE Trans. Vol. AU-15, No. 2,

June 1967, Special iasue on the Fast Fourier Transform

/7/ Webb C.: Practical Use of the Fast Fourier Transform (FFT)

Algorithm in Time-Series Analysis, Texas Univerity, Austin

Texas, June 1970, A0713166

/8/ Cochran W. T., Cooley J. W. et a1.: What is the Fast

Fourier Transform? IEEE Trans. Audio and Electroacoustics

AU-15, 45-55, June 1967

/9/ Kremer H.: Praktische Berechnung des Spektrums mit der

Schnellen Fourier-Transformation, electronische datenver

arbeitung 6/69

/10/ Gentleman W. M. and Sande G.: Fast Fourier Transform

For Fun and Profit, 1966 Fall Joint Computer Conf. AFIPS

Proc., Vol. 29, Washington, Spartan Books, pp. 563 - 578,

1966

232

1111 Brenner N.: Cooley-Tuckey Fast Fourier Transform FOUR1

IBM Corp. PIO, 40 Saw Mill River Road, Hawthorne, New work

10532, Progr. Order Number: 3600-13.4.002) 1968

1121 Bingham C. et al.: Modern Techniques of Power Spectrum

Estimation, IEEE Trans. Audio and Electroacoustics, Vol.

AU-15, pp. 56 - 66, June 1967

1131 Welch P. 0.: The Use of Fast Fourier Transform for the

Estimation of Power Spectra: A Method Based on Time

Averaging Over Short, Modified Periodograms, IEEE Trans.

Audio and Electroacoustics, Vol. AU-15, pp. 70 - 73,

June 1967

1141 Stockham T. G.: High speed convolution and correlation,

1966 Spring Joint Computer Conf., AFIPS Proc. vol. 28.

Washington, Spartan Books, pp. 229 - 233, 1966

1151 Tack P.: Program to Compute Correlation Coefficients,

Spectral Oensity Functions and Cross Spectral Oensity

Functions, Kernforschungszentrum.Karlsruhe, Germany,

KFK 1237, July 1970

1161 Bendat J. S.: Principles and applications of random

noise theory, Wiley, New York,1968

1171 Audoux M.: Grundlagen der digitalen Erfassung primär ana

loger Meßwerte, Kernforschungszentrum Karlsruhe, Germany,

Ext. Bericht 8/69-6, Nov. 1969

1181 Truxal J. G.: Automatic Feedback Control System Synthesis,

New York, 1955

1191 Rittirsch G.: Kriterien zur Wahl der Meßfilter und Abtast

frequenz sowie Methoden zur Meßfehlerkorrektur, angewandt

bei Temperaturmessungen in Natrium, Kernforschungszentrum

Karlsruhe, Germany, Ext. Bericht 8/71-3, 1971

233

/20/ Audoux M.: SEDAP A Systematic Approach to the Processing

of Experimental Data, Proc. ifip congress 71, Booklet
TA-6, North-Holland, Publishing Co., Netherlands P.O.

Box 211, Amsterdam

/21/ Audoux M., Katz F.W., Sohlechtendahl E.G.: SEDAP Rechner

gestützte Auswertung technischer Versuche, KFK-Nachrichten

3/71, Kernforschungszentrum Karlsruhe

/22/ Audoux M., Katz F., Rittirsch G.: Praktische Erfahrungen

mit eirem modularen leicht programmierbaren System zur

Auswertung von Meßsignalen (SEDAP), Angewandte Informatik
8/72

11 SEDAP
I/L
I/SYSLIN
11
IISYSLIB
11
I/
I/LOAD
11 PLOT
IISYSUTI
11 SYSLMOO
11
IISYSPRINT
11
IIG
11 FT05FOO 1

·11 FT06 FOO 1
11
11 fi15 FOOl
11
IIfT40fOOl
11 PLOTTAPE
11
11

234

Appendix A

Job Control Cards for SEDAP

PROC BAND=NULLFILE
EXEC PGM=lEWL,COND=(4,LT),PARM=OVLY
00 DSN=OATA.IRE(SEOVLy),OISP=SH~

00 DDNAME=SYSIN
00 DSN=SYSl.FORTLlB,OISP=SHR
00 OSN=GfK.FORTLIB,DISP=SHR
00 DSN=LOAD.IRE,DISP=SHR
00 OSN=LOAO.IRE,OISP=SHR
00 OSN=LOAO.CAlCOMP,DlSP=SHR
DD UNIT=OISK,SPACE=(3303, (150»,OCB=BlKSIIE=3303
00 OSN=&&GOSET(MAIN),UNIT=OISK,OCB=BLKSIIE=3303,
SPACE=(3303,(150,,1),RLSE),CISP=(,PASS)
ob UNIT=(CTC"OEFER),LAEEl=(,NL),
DCB=(BlKSIZE=968,LRECL=121,RECFM=fBM)
EXEC PGM=*.L.SYSlMOC,CONO=(S,LT)
DD ODNAME=SYSIN
00 UNIT=(CTC"OEfER),LAEEl=(,Nl),
OCB=(BlKSIZE=931,lRECl=133,RECFM=fBA)
00 UNIT=SVSDA,DISP=(NEW,OElETE),SPACE=(1680,(20,l»,
DCB=(BLKSIZE=1680,LkECl=8C,RECFM=FB)
00 UNIT=SYSDA,OISP=(N~W,DElETE),SPACE=(2048,(2500)

00 UNIT=(TAPE9"OEFER),lABEL=(,Nl),OSN=&BANO,
VGl=(,RETAIN,SER=(&BAf\OH
PEND

235

Appendix B

EXAMPLE

FOLGENDE BEFEHLE SIND IN DIESEM JOB ENTHALTEN

~
25.4
17.8

0.0

0.0

6 .. 57
800 ..

2805.71

0.0142

0.005

5.8
650.

21 10000.0
9

19.APRll 1971 .. GENAUE BESCHREIBUNG SIEHE:
INSTITUT FUER REAKTORENTWICKLUNG AUGUST 71

130
256

16
16
16
16

.16
16
16

1 16
29.4.711 MESS.-ST. T16 MIT TEMPo-KORREKTUR

1 16
SEOAP-AN"EISUNG

1 1

SEDAP NSK
AUSWERTUN G DES NSK VERSUCHE S NR.l VOM
EXTERNER BERICHT 8/71-3 G.RITTIRSCH -
SEDA 1000
ERAK DA TE 3
S016 DATE DASS 1
AX+B DAOe AX06 1
TNI1 AX06 CX06 1
DIFF CX06 EX06 1
AX+B EX06 FX06 1
ACDI FXOt CX06 IX06 1
FIL2 CXOt JX06 1
FIL2 IX06 KX06 1
BILD
DEFX
DEFV
PLOT JX06 TEXT
NSK-~ERSUCH NR.1 IVOM

PLOT KX06 ALT*
> ES FOLGT EINE FEHLERHAFTE
AODI KX06 NYDA ERR
STOP

ENDE DER EIN GAeEBEfEHLE

>I< ** AX + B *
* *

BEFEHL WAR WIE FOLGT CODIERT :

DATUM = 20.12.72
ZEIT = 11.04.11

JlX+B CACfAX06

*
1 16
1* 1*

o
1*

0.0050
1*

0.0
• 1*

0.0

AUFTRAG IST WIE FOLGT WEITERGELEITET kORDEN

VON BLOCK 1 BIS BLOCK 16 SOLLEN
UNO CEN EXPER.RECORO AXOf BILDEN

16 BLOECKE DES EXPERo RECORDS DA06 TRANSFORMIERT WERDEN

eIE TRANSFORMATION ERFOLGT MIT EINEM OPERATCR VOM TYP:
AX+B (LINEAR VERSCHEBUNGI

KONTROLLWERTE INPUT = 0.42~2S3E 04 O.424804E 04 0.424804E 04 0.425293E 04 0.425293E 04 0.425293E 04 0.425293E 04 0.425293E 04
KONTROllWERTE OUTPUT = 0.212646~ 02 0.212402E 02 O.21?402E 02 0.212646E 02 O.212646E 02 O.212646E 02 O.212646E 02 0.212646E 02 ~

eiE WERTE SINC UNTER OEN NAMEN AXOf ADDRfSSIERBAR

**** AUFTRAG ERFUELl T **
**

STEP UM 11.04.12 BEENDET

BENOETIGTE CPU-ZEIT: 0.1132 SEK

* *'" ADCIEREN '"

* *
"'*********

BEFEHL WAR WIE FOLGT CODIERT:

DATUM
ZEIT

20.12.12
11.04.28

.ADOI FXC6 CX06 IX06

*
1 16
1* 1*

o
1*

0.0
• I'"

0.0
1*

0.0
•

AUFTR.AG IST WIE FOLGT WEITERGELEITET WORDEN

VON BLOCK 1 AIS BLOCK 16 SOLLEN
UND DEN EXPER.RECORD IX06 BILDEN

16 BLOECKE OER RECORDS FX06 UND CX06 TRANSFORMIERT WERDEN

OIE TR.ANSFORMATION ERFOLGT MIT EINEM OPERATOR VOM TYP:
ADDIEREN ZWEIER DATEIEN

KONTROLLWERTE INPUT = -.507669E 01 -.253834F 01 0.253834E 01 00253834E 01 0.0 0 00 0.0 0.0
KONTROLLWERTE INPUT = 0.514530E 03 0.513958E 03 0.513958E 03 00514530E 03 0.514530E 03 O.514530E ~3 0.514530E 03 O.514530E 03

KONTROLLWERTE OUTPUT = 0.509453E 03 O.511419E 03 O.516496E 03 0.517068E 03 0.514530E 03 0.514530E 03 0.514530E 03 0.514530E 03

eIE WERTf SIND UNTER DEN NAMEN IX06 ADORESSIERe.AR

~

**** AUFTRAG ER FUELL T **
**

STEP UM 11.04032 BEENDET

BENOETIGTE CPU-ZEIT: 0.1531 SEK

************"'*
'" '"'" LAG.BILD *
'" ***************

BEFEHL WAR WIE FOLGT CODIERT :

DATUM
ZEIT

20.12.,72
11.04.,38

eILD

"
o
1*

o
1*

o
1*

0.0
1*

0.0
• 1*

0.0
•

AUFTRAG IST WIE FOLGT WEITERGELEITET ~ORDEN

LAGER ZUST AN C [R UCK EN

FOLGENDE 11 EXPERIMENTAL RECORDS SIND I~ LAGER GESPEICHERT

INOI I NAME ANFANG ENDE BLOCK FREQ

1 DATE 1 256 256 10000.000
2 DA01 257 272 16 625.000
3 OAC2 273 288 16 625.000
4 DA03 28e; 304 16 625.000
5 CAC4 305 320 16 625.000
6 DAG5 321 336 16 625.000
7 DA06 331 352 16 625.000
8 OA07 353 368 16 625.000
9 DAC8 365 384 16 625.000

10 DA09 385 400 16 625.000
11 AXC6 401 416 16 625.000
12 CXC6 411 432 16 625.000
13 EXC6 433 448 16 625.000
14 FXC6 44'9 464 16 625.000
15 IXC6 4E5 480 16 625.000
16 JXC6 481 496 16 625.000
17 KXC6 497 512 16 625.000

**
** AUFTRAG ERFUELLT **
*'"

DATUM UHRZEIT PUNKTE FUELLFAKTOR

2805.110 0.0 131072 512
2805.110 0.0 8192 512
2805.710 0.0 8192 512 I\)

2805.710 0.0 8192 512
-l="
0

2805.710 0.0 9192 512
2805.710 000 8192 512
28050710 0.0 8192 512
2805.110 000 8192 512
2805.710 0.0 8192 512
2805.710 0.0 8192 512
2805.710 0.0 8192 512
2805.710 0.0 8192 512
28050710 0.0 8192 512
2805.710 0.0 8192 512
28050710 000 8192 512
28050710 000 8192 512
2805.710 0.0 8192 512

STEP UM 11004.38 BEENDET

BENOETIGTE CPU-ZEIT: 0.0399 SEK

'" ** PLOTTEN *
* *

BEFEHL W~R WIE FOLGT CODIERT :

DATUM
ZEIT

20.12.72
11.04.39

PLOT JX06 TeXT

'"
1 16
1* 1*

o
1*

0.0
• 1*

0.0
1*

0.0

AUFTR~G IST WIE FOLGT WEITERGELEITET wORDEN

VON BLOCK 1 BIS BLOCK 16 SOLLEN
ES WIRD EIN NEUER PLOT EROEFFNET

16 BLOECKE DES EXPER. RECORDS JX06 GEPLOTTET WERDEN

KCNTROLLWERTE INPUT = 0.514244E 03 0.514243E 03 0.514301E 03 0.514301E 03 O.514415E 03 0.514530E 03 0.514530E 03 O.514530E 03

SKALENBESCHRIFTUNG : NSK-\ERSUCH NR.l IVC~ 29.4.111 ~ESS.-ST. T16 MIT TEMP.-KORR ~....

DIE KURVE HAT FOLGENDE DIMENSIONEN:

**** AUFTRAG ERFUELL T **
**

XMIN
XMAX
YMIN =
YMAX

0.580000E 01
0.651000E 01
0.650000E 03
0.800000E 03

STEP UM 11.04.43 BEENDET

BENOETIGTE CPU-ZEIT: 0.2129 SEK

"*************
* '"* ACCIEREN *
'" ***************

BEFEHL wAR WIE FOLGT CODIERT:

DATUM = 20.12.72
ZEIT = 11.04.44

ADel KXC6 NYDA ERR

'"
1
1*

1
1*

o
1*

0.0
1*

0.0
1*

0.0

AUFTRAG IST WIE FOLGT ftEITERGELEITET wORDEN

VON BLOCK 1 BIS BLOCK
UND CEN EXPER.RECORD ERR

1 SO LLEN
BILDEN

1 BLOECKE OER RECORDS KX06 UND NYOA TRANSFORMIERT WERDEN

eIE TRANSFORMATION ERFOLGT MIT EINEM OPERATCR VCM TYP
ADDIEREN ZWEIER DATEIEN

FE~LER AUFGETRETEN (FEhLER CODE - IERR

»> FEHLERERKLAERUNG :

8 I ~
I

ES WURDE DER EXPERIMENTAL RECORO NYDA VERLANGT. OBWOHL ER NICHT IM LAGER IST

AUFTRAG NICHT ERFUELlT

eIESER SCHWERWIEGENDE FEhLER VERHINDERT EINE SINNVOLLE wEITERFUERUNG DES PROGRAMMES UND VERURSACHT DIE SEDAP UNTERBRECHUNG

"""*****"'*****'"
" '"'" '"* ERROR *

'" '"'" *'" '"* *
*

