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Abstract
Acetic acid promotes the reduction of aldehydes and ketones by the readily available N-heterocyclic carbene borane, 1,3-

dimethylimidazol-2-ylidene borane. Aldehydes are reduced over 1–24 h at room temperature with 1 equiv of acetic acid and

0.5 equiv of the NHC-borane. Ketone reductions are slower but can be accelerated by using 5 equiv of acetic acid. Aldehydes can

be selectively reduced in the presence of ketones. On a small scale, products are isolated by evaporation of the reaction mixture and

direct chromatography.
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Introduction
Reduction of carbonyl compounds is a common, fundamental

chemical transformation. Among the numerous hydride

reagents available for such reductions, boron reductants are

widely used in the field of synthetic chemistry due to their

availability and favorable reaction profiles [1-3]. For instance,

sodium borohydride (NaBH4) is an inexpensive salt that is one

of the most popular hydride sources for the reduction of alde-

hydes and ketones [4]. Reactions with NaBH4 are usually

performed in a protic solvent such as methanol, and quenching

and aqueous workup are essential steps along the way to isola-

tion of the product. Although many borohydride reagents are

relatively stable solids, their contact with moisture can cause

decomposition with the release of hydrogen gas. Therefore,

appropriate precautions are required for larger scale reactions as

well as during transport and storage [5].

N-Heterocyclic carbene boranes (NHC-boranes) have emerged

in recent years as a useful class of synthetic reagents, which
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have interesting chemistry in their own right [6,7]. Most NHC

complexes of borane (NHC-BH3) are white solids that are con-

venient to handle because they are stable to air, water, strong

bases, and weak acids [8]. Unlike amine-boranes such as R3N-

BH3 or pyridine-BH3 [9-11], carbene-boranes (NHC-BH3) do

not decomplex easily to release reactive borane (BH3) to solu-

tion under typical thermal reaction conditions. Perhaps because

of their stability, the potential use of carbene-boranes as hydride

sources has been largely overlooked. Lindsay and McArthur

reported that strong Lewis acids such as BF3 and Sc(OTf)3 acti-

vate ketones towards reduction by achiral and chiral carbene

boranes [12], and we showed that some high-temperature reduc-

tions of halides were probably occurring by ionic rather than

radical pathways [13].

Recently, we discovered in collaboration with Mayr that NHC-

boranes are good hydride sources by measurement of the nucle-

ophilicity parameter, N [14]. By this measure, NHC-boranes are

among the best neutral hydride donors known, more reactive

than distant relatives such as silanes, stannanes, and dihydropy-

ridines, and more reactive even than their amine-borane cousins

[15-19]. Despite being neutral, 1,3-dimethylimidazol-2-ylidene

borane (diMe-Imd-BH3, 1, see Scheme 1) has an N value (N =

12) that is roughly comparable to the anion cyanoborohydride

(NaBH3CN) in DMSO. Unlike NaBH3CN, diMe-Imd-BH3 (1)

is freely soluble in many organic solvents, including most

aprotic solvents. Unaided reductions of aldehydes and ketones

by 1 are not practical (little or no reaction occurs, depending on

the substrate). However, addition of silica gel causes reductions

to occur at ambient temperatures (Scheme 1) [20]. In a

preferred small-scale procedure, 0.5 mmol of an aldehyde or

ketone can be reduced by 0.25 mmol of 1 and 500 mg of added

silica gel over periods ranging from 1–24 h.

Scheme 1: Aldehydes and ketones are reduced by 1 when silica gel is
added.

Results and Discussion
DiMe-Imd-BH3 (1) does not react with silica gel, so it seems

likely that silica gel serves as a weak acid to activate carbonyl

groups toward reduction by 1. Based on this analysis, we

decided to replace the silica gel with weak acids in order to

extend the practicality of reductions with NHC-boranes. We

specifically targeted acetic acid because it is a weak acid that is

cheap, soluble and volatile. A pilot reduction of 3-phenyl-

propanal 2 (0.5 mmol), 1 (0.5 equiv), and acetic acid (1.0 equiv)

in ethyl acetate (EtOAc) was complete in 30 min and gave

3-phenylpropanol (3) in 86% yield after evaporation and flash

chromatography (Scheme 2). Other acids including pyridinium

p-toluenesulfonate, benzohydroxamic acid, and 2,2-dimethyl-

1,3-dioxane-4,6-dione (Meldrum’s acid) also promoted this

reduction, but offered no clear advantages over acetic acid. No

reduction occurs over 24 h when 1 and 2 are stirred in EtOAc

without acid under these conditions.

Scheme 2: Pilot reduction of aldehyde 2 with 1 and acetic acid.

We next conducted a series of experiments to look at the boron

products of such reactions by 11B NMR spectroscopy, and these

results are summarized in Figure 1. A control experiment

showed that the direct acid/base reaction of 1 with acetic acid

(aldehyde omitted) was very slow at rt (entry 1). Evolution of

hydrogen gas was not evident (no bubbling), and boryl acetate

4a was present in only trace amounts (<<5%) after 24 h.

Evidently then, the acetic acid functions as a Brønsted acid to

activate the carbonyl group towards attachment by 1. This is

different from NaBH4, which reacts quickly with acetic acid to

liberate H2 and form a modified reducing agent, NaBH(OAc)3

[21,22].

Even with heating, the direct acid/base reaction of 2 and acetic

acid was rather slow [23]. After one day (entry 2), about 18% of

2 was converted to the known boryl acetate 4a (−14 ppm) [14].

After three days (entry 3), the major component was still the

starting NHC-borane 2, but now there was 22% of 4a and 19%

of a new product that exhibited a broad doublet at −3 ppm. We

could not isolate this product by flash chromatography, but we

tentatively assign it as boryl diacetate 4b. For comparison, the

known ditriflate dipp-Imd-BH(OTf)2 resonates at −2 ppm [24].

Next we reduced hydrocinnamaldehyde 2 (1 equiv) under the

standard procedure (AcOH, 1 equiv) but varying the amount of

NHC-borane 1. Alcohol 3 is the reduction product, and the

soluble boron products [25] were identified by 11B NMR spec-

troscopy of the crude product mixture. Each product spectrum

gave the same four resonances, but in different ratios. With

1 equiv of 1 (entry 4), there was 55% of the starting NHC-

borane 1, 24% boryl monoacetate 4a, 4% boryl diacetate 4b,
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Figure 1: 11B NMR studies of boron products from 1 and acetic acid with and without aldehyde 2. aIn C6D6; bunreacted aldehyde remained.

and 17% of a broad resonance at about +18 ppm. This is not in

the region expected for an NHC-borane, but is instead where

boric acid and similar molecules resonance. Thus, it might be

B(OAc)3, but it could also be boric acid itself (the solvent was

not dried) or some intermediate product. We write this simply

as B(OR)3. With 0.5 equiv 1 (entry 5), there was 32% of the

starting 1, 39% 4a, 4% 4b and 25% B(OR)3. The final reaction

with 0.33 equiv of 1 was considerably slower (entry 6). Alde-

hyde 2 still remained after 6 h, and the 11B NMR spectrum

shows 2% starting 1, 46% 4a, 14% 4b and 38% B(OR)3. These

results demonstrate that the reaction is complex on the boron

side, with the second and third hydride transfers competing with

the first. This makes little difference when the alcohol is the

target product because all the other boron and NHC products

are held back on the silica gel during flash chromatography.

To compare the acid-promoted reductions with the silica-gel-

promoted reactions, we tested the scope of this reaction on

many of the same aldehydes and ketones (Table 1 and Table 2).

The typical procedure is convenient, and no precautions were

taken to exclude moisture or air. For aldehyde reductions

(Table 1), the reactants were mixed in EtOAc that was taken

from the bottle without drying. The standard ratio of aldehyde

to 1 was 1:0.5, so two of the three hydride equivalents of 1 are

consumed. After completion of the reaction, the solvent was

removed on a rotary evaporator, and the residue was directly

purified by silica gel chromatography.

Aromatic aldehydes 5–8 gave the corresponding benzylic alco-

hols 12–15 in yields of 79–93% (Table 1, entries 1–4).

Cinnamaldehyde underwent exclusive 1,2-reduction to give

allyl alcohol 16 in 86% (entry 5). Branched aldehydes 10 and

11 were also reduced to the corresponding primary alcohols 17

and 18 in 85% and 84% yield, respectively (entries 6 and 7).

To be consistent with the prior silica gel reductions, ketones

(Table 2) were reduced in dichloromethane, and the molar ratio

of ketone to 1 was 1/1. Under the standard conditions for reduc-

tion of aldehydes (25 °C, 1 equiv acetic acid), the reaction of

1-(4-bromophenyl)ethanone (19) was very slow. Heating of 19

(1 equiv), 1 (1 equiv) and acetic acid (1 equiv) at 40 °C for 24 h

gave a moderate yield (68%) of secondary alcohol 26, but unre-

acted ketone remained. This problem was solved by increasing

the amount of acetic acid to 5 equiv. Now ketone 19 was

consumed in 24 h and alcohol 26 was isolated in 93% yield

(Table 2, entry 1). The excess of acetic acid was removed prior

to chromatography during evaporation, so the simple isolation

procedure was not changed. Under these conditions, ketones

20–25 were reduced to the corresponding secondary alcohols

27–33 in good yields (Table 2). Reductions of 4-tert-butylcy-

clohexanone (21) and 4-phenyl-2-butanone (22) needed only

1 equiv of acetic acid (as with aldehydes), while the other

substrates were reduced with 5 equiv.

Reduction of 4-tert-butylcyclohexanone (21) gave the cis-

alcohol 28 in 65% yield and the trans-alcohol in 24% yield

(89% combined yield). The major product results from axial

attack and is seen with borohydride reagents [26,27] as well as

with the combination of 1 and silica gel. Reaction of (E)-4-

phenylbut-3-en-2-one (23) gave the 1,2-reduction product 31

along with a small amount of doubly reduced, saturated alcohol

30 (90:10). The combined yield of these inseparable products

was 79%. Reductions of hindered ketones 24 and 25 were

slower even with 5 equiv of acetic acid, but gave the corres-
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Table 1: Reductions of aldehydes by diMe-Imd-BH3 (1) and acetic
acid.a

entry aldehyde alcohol yield

1

5 12

92%

2

6 13

79%

3

7 14

89%b

4

8 15

93%

5

9 16

86%

6

10 17

85%

7

11 18

84%b

aConditions: aldehyde (0.5 mmol), 1 (0.25 mmol), and AcOH
(0.5 mmol) in EtOAc (2 mL) at room temperature for 24 h; breaction
time was 1 h.

ponding alcohols 32 and 33 in 83% and 97% after 48–72 h. For

comparison, the yield of the reaction of 24 using silica gel was

73% after 96 h [20]. Overall, the reductions of aldehydes and

ketones with the combination of 1 and acetic acid gave compa-

rable yields to the silica procedure.

Chemoselective reductions were also readily achieved under the

present reaction conditions (Scheme 3). Treatment of a mixture

of aldehyde 6 (0.5 mmol) and ketone 19 (0.5 mmol) with 1

(0.25 mmol) and acetic acid (1 equiv) in EtOAc exclusively

provided the primary alcohol 13 in 95% yield, while the ketone

19 was intact (<5% conversion to 26). The reduction of

4-acetylbenzaldehyde (34) was also chemoselective and

afforded only 4-acetylbenzyl alcohol (35) in 79% yield.

Table 2: Reductions of ketones by diMe-Imd-BH3 (1) and acetic acid.a

entry ketone alcohol yield

1

19 26

93%

2

20 27

88%

3

21

28

29

65%b

24%b

4

22 30

88%b

5

23
 + 30

31

79%c

(90:10)

6

24 32

83%d

7

25 33

97%e

aConditions: ketone (0.5 mmol), 1 (0.5 mmol), and AcOH (2.5 mmol) in
CH2Cl2 (2 mL) at 40 °C for 24 h; bonly 1 equiv of acetic acid was used;
cminor product 30 could not be separated; dreaction time was 48 h;
ereaction time was 72 h.

Conclusion
In summary, we have shown that acetic acid is a good activator

for the reductions of aldehydes and ketones by stable NHC-

borane 1. DiMe-Imd-BH3 (1), and by implication related

carbene-boranes, are convenient reagents for small-scale reduc-

tions, because their ease of handling allows simple reaction and

separation procedures.

The results of control experiments suggest that the acetic acid

activates the carbonyl component, not the NHC-borane. Thus,

the acid does not consume a hydride equivalent of NHC-BH3,

and a stoichiometric amount of H2 gas (a safety hazard on a

large scale) is not produced.
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Scheme 3: Chemoselective reductions of aldehydes with 1 and acetic
acid. aDetermined by 1H NMR spectroscopic analysis of the
crude product; bisolated yield after flash chromatography.

Further research and process-development work are needed

before one can conclude that diMe-Imd-BH3 and related

carbene boranes are generally attractive reagents on larger

scales [5,21]. However, based on the established physical and

chemical properties of 1 and its relatives and on the conve-

nience of the small-scale reduction procedures with both silica

gel and acetic acid, NHC-boranes deserve serious consideration

as candidates for large-scale reductions.

Experimental
Procedure for aldehyde reduction (examples in Scheme 2,

Scheme 3, and Table 1): diMe-Imd-BH3 (1, 27.5 mg,

0.25 mmol) and acetic acid (30.0 mg, 0.50 mmol) were added to

a solution of 4-bromobenzaldehyde (6, 92.5 mg, 0.50 mmol) in

EtOAc (2 mL). After 24 h at room temperature, the solvent was

removed under reduced pressure, and the residue was purified

by silica-gel flash chromatography (hexane/EtOAc, 1:1) to give

4-bromophenylmethanol (13, 74.0 mg, 79%) as a white solid.

11B NMR experiments in Figure 1, entries 4–6: The above

procedure was followed on the same scale but with varying

amounts of 1. After the solvent was removed, the residue was

taken up in C6D6 prior to recording of the 11B NMR spectrum.

Procedure for ketone reduction (examples in Table 2):

DiMe-Imd-BH3 (1, 55.0 mg, 0.50 mmol) and acetic acid

(150 mg, 2.5 mmol) were added to a solution of 1-(4-

bromophenyl)ethanone (19, 99.6 mg, 0.50 mmol) in CH2Cl2

(2 mL). After stirring for 24 h at 40 °C, the mixture was cooled,

and the solvent was removed under reduced pressure. The

residue was purified by silica-gel flash chromatography

(hexane/EtOAc, 2:1) to give 1-(4-bromophenyl)ethanol (26,

94.2 mg, 93%) as a colorless oil.

Supporting Information
Supporting Information File 1
contains copies of the 1H NMR spectra of all the products

from Figure 1, Scheme 2 and Scheme 3, and Table 1 and

Table 2.

NMR spectra of all products.
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