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Investigation of Spectral Synthesis and Few Group Methods for Fast

Reactor Transients

Abstract

In this report two methods of calculating fast reactor transients
economically are considered: the energy synthesis method and the few
group schemes. Two transients of interest for safety studies were
considered for a simple representative 1-d fast reactor model. These
were a partial voiding transient and a complete voiding and fuel

slamping transient.

The energy synthesis method gave excellent agreement both stati-
cally and transiently with the exact 26 groups results. Only 3 trial
functions were used: the unperturbed core and blanket and the perturbed

core averaged flux spectra. The weighting functions were their corres-

ponding adjoints.

In few group schemes normal flux weighted collapsing and bilinear
(flux-adjoint) collapsing were considered. The flux weighted procedure
dnd not really give satisfactory results with even up to 12 groups.
However the bilinear flux-adjoint schemes give satisfactory results
with only 6 to 8 groups when hhe unperturbed flux and perturbed
adjoint spectra (or vice versa) were used. For cases where the
reactivity effects are not so sensitive (away from one dollar),
acceptable results were obtained with just the unperturbed fluxes
end adjoints. With bilinear collapsing it is necessary to consider
discontinuities arising at interfaces between regions where the
flux and adjoint-spectra are different. This requires the current
conditions to be modified at such interfaces, while the normal

few group flux continuity is sufficient.



Untersuchungen der Spektralsynthese-Methode und der Wenig-Gruppen-—

Methoden fiir Transienten Schneller Reaktoren

Zusammenfassung

In diesem Bericht werden zweli Methoden zur Berechnung von
Transienten in schnellen Reaktoren untersucht: die Methode der

Energiesynthese und die Wenig-Gruppen—-Methode.

Zwei im Hinblick auf Sicherheitsstudien interessante Transienten
werden in einem einfachen, représentativen 1-dimensionalen Modell
eines schnellen Reaktore genauer untersucht: ein Transient fiir
teilveisen Verlust des Kiihlmittels und ein zweiter Tramsient fir
vollsténdigen Kiihlmittelverlust und Niederschmelzen der Brenn—

stébe (Brennstoff-Verdichtung).

Die Methode der Energiesynthese liefert eine ausgezeichnete
Ubereinstimmung sowohl im statischen als auch im transienten Ver-
halten mit dem als Referenzfall angenommenen 26-Gruppenergebnis.
Benutzt wurden lediglich 3 Versuchsfunktionen. Diese wurden im
ungestSrten Reaktorkern und Brutmantel und im gestdrten Kern mit
einem gemittelten Fluﬁépektrum berechnet. Als Wichtungsfunktionen
wurden die entsprechenden adjungierten Ldsungsfunktionen verwendet.
Bei den Wenig-Gruppen-Methoden wurde: . die Energiezusammenfassung
mit der normalen FluBwichtung und mit der bilinearen Wichtung
(FluB/adjungiert) untersucht. Das Verfahren mit FluBwichtung lie-
fert keire zufriedenstellenden Ergebnisse bis herauf zu 12 Energie-
gruppen. Dagegen ergeben die Verfahren mit bilinearer Wichtung be-
friedigende Ergebnisse fiir nur 6 bis 8 Energiegruppen, wenn man den
ungestdrten FluB und das gestdrte adjungierte Spektrum verwendet
(oder umgekehrt). In Fdllen, bei denen die Reaktivitdtseffekte
nicht so empfindlich sind (etwas von 1 § entfernt),erhélt man hin-
reichende Ergebnisse unter der Verwendung der ungestdrten Fliisse

und ihrer adjungierten.

Bei der Energiezusammenfassung und bilinearer Wichtung miissen
Unstetigkeiten genauer untersucht werden,die an Grenzflichen zwischen
Gebleten auftreten, in dermsm sich die adjungierten Spektren unter-
scheiden. Die Stetigkeitsbedingungen flir den Strom miissen an solchen
Grenzfléchen modifiziert werden, véhrend die liblichen Stetigkeitsbe-

dingungen fir die Wenig-Gruppen-Fllisse verwendet werden konnen.
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I. INTRODUCTION

In many fast reactor transients it is necessary to explicitly con-
sider spatial and spectral variations in the flux during the course of
the transients. Normal static models for fast reactors consider from
20 to over 200 energy groups in 2 or 3 dimensions. To use such detail
routinely in transient calculations would be impractical because of the
high costs involved. Therefore approximations are needed, to reduce the
dimensionality of the problem for transient analyses by either decrea-

sing the number of energy groups, or space dimensions or both.

Spectral synthesis methods give a way of effectively reducing the
number of groups tc he considered in the spatial and time dependent
calculations., These methods were originally developed for static pro-
blems (1,2,3) and have been carried over to transient vroblems
(4,5,6,7,8). The basic idea is to expand the space energy-time
dependent flux as & linear combination of known spectral functions mul-
tiplied by unknown spatial and time dependent combining or mixing
functions. These expansions are then substituted into the system
equations requiring these to be satisfied in a weighted integral sense
gives reduced equations for the unknown combining coefficients. These
equations can be derived either variationally or with the direct weight
and integrate technique (4,5,8). Recently Stacey (7) has had good
success with these methods for representative voiding and poisoning

transients in a 1-d fast reactor.

Another approach is to just reduce the number of groups to be con-
sidered to a reasonable number 6-8 by using a group collapsing or
condensation scheme., However, in actusl fact, these condensation methods
are really discontinuous synthesis methods with single trial functions
and few group spatially dependent combining coefficients (k4,5,8).

The difference in the various collapsing schemes lies in the choice of
the weighting function, When it is taken as unity, the normal flux-
weighted, few group constants are obtained. When it is taken as the ad-
joint flux, the Pitterle (9) bilinear scheme results, which should lead
to better reactivity predictions. As always with discontinuous trial and

weighting functions, special consideration must be given to the internal

Zum Druck eingereicht am: 11.6.1974
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boundary conditions at interfaces where the functions are discontinuous.
This is true of the bilinear scheme, and even now there is arbitrariness

as to what to do at these interfaces (12,13).

In this study both the energy synthesis method and various group
collapsing schemes were investigated. The framework of the study was
the simple, 1-d representative fast breeder power reactor model used
by Stacey in his synthesis study (7), using his partial voiding
transient and also & full voiding with fuel slumping transient. For
these 1-d studies, the program RAUMZEIT (14) was modified to handle
up to 26 energy groups (the standard), modified interface conditions

and synthesis.

The results are encouraging and indicate that the methods should
be pursued further. Synthesis gives excellent agreement with the exact
26 group results with only three trial functions. Eight and six group
bilinear collapsing particularly with a combination of initial flux
spectra and final sdjoint spectra (on vice versa) give comparable
results. Further studies will consider more complicated, multizoned

1-d reactors before proceeding to 2 and 3 dimensional reactors.

In the next two sections, the synthesis and group collapsing
equations are derived. Then the calculational model is given for the

transients and results described.
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IT. ENERGY SYNTHESIS METHOD

A. GENERAL REMARKS

The basic idea behind the various synthesis approximation techniques
is to satisfy the original system equations (including external and in-

ternal boundary conditions) in some approximate weighted integral sense.

The synthesis techniques were originally introduced in the variational
context by Selengut of reactor analysis (15). Since then these methods
have found with applications for expanding flux spectral and spatial
dependence especially in thermal reactors and now increasingly in
fast reactors. Recently Stacey (8) showed that the emergy synthesis
method was able to quickly and accurately calculate fast reactor

transient where spatial and spectral efforts were important.

The methods involve assuming the solution-as an expansion of
the product of known spectral functions and unknown spatial and time
dependent coefficients. These are substituted into the system
equations, which are then required to be satisfied approximately in
a weighted integral sense., This yields the reduced equations for the
unknown functions. These approximate equations can be obtained either
by this direct weight and integrate procedure or by variational

formulations, with the same results (4,5,8).
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For reactor transient problems, the G multigroup diffusion equations

may be written as *

-+ -+ T + _ as
v-nv¢—z¢+(1—8)xp-F b+ T N X% Cp =T

dt
(1)
m T, 3 _ =4
B"F - c =grC (2)
m=1, ... M
where 3(r,t) Gx1 column vector of the multigroup flux
Cm scalar delayed neutron precursor density for type m
T GxG matrix of removal and scattering cross sections
F Gx1 column vector of group Nu-fission cross section
D GxG diagonal matrix of diffusion coefficients
T GxG diagonal matrix of inverse group velocities
XX Gx1 column vector of prompt and delayed fission

neutron spectra, respectively

A_,B delayed neutron precursor decay rate and yield

per fission, respectively

together with the external boundary conditions of zero flux and current

and the internal interface continuity conditions of flux and current.
-+
=9 | (3)

=DVv3E|_ ()

# In this study, the delayed x's were generally taken equal to the prompt
x and R-eff was used. When RAUMZEIT was later modified to allow the use
of different delayed and prompt x's, the results were checked and all
the conclusions obtained here regarding the various group collapsing
and synthesis schemes were verified. In addition, it was found that
using either B-eff and the same delayed and prompt x's or the real B's
and different y's gave the same results.Thege results are shown in

Appendix E,
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An expension of the form

N . . .
©= E v ()

may be assumed for the multigroup flux, where for each trial function n

vy is a Gxg matrix giving the energy dependénce assumed with

multigroup flux, e.g.

Gxg
v, = B O ue. ]
n
wz O eoe
n
o) w3
n
Yy
n
Vs
n
Yo-1
n
L wG .
¢n is & gx1 column vector of the n-th combining coefficient
e.g.
gx1
1
%9 = | %
g
_¢’n_1

The g allows different spatial and time dependent combining coefficient
for g broad groupings of the spectral trial function, i.e., it permits

the many groups to be combined in g few broad groups.
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To obtain the reduced equations Equation (5) is substituted into
Equations (1) and (2). Then the flux equation is multiplied by a series
of n weighting matrices w? to yield the M+m vector equations in the

M+m unknown vector ¢n and Cm.

N
T . - - T

z wp (VU DV e - T b+ (1-8) X F v 4y (6)
FIA % C -T2y s)=o
m m'm m dt 'n 'n

N o ac

I B F Y b - A Co-gp =oO (7)

n=1

where Wy is a Gxg matrix giving the energy dependence of the i-th

weighting function of the equation

Similarlythe flux and current continuity conditions at interfaces

must be satisfied in a weighted integral sense

™ =

FT
1 vy {wn ¢n|+ - wn ¢n|-} =0 (8)

n

o1 =

. T t '
n=1 Jwi {pv ¥y ¢nl+ ~DV Y, e Y=o (9)

where Fmi is a Gxg matrix with the energy dependence of the i-th

weighting function for the flux continuity condition

w. 1s a Gxg matrix with the energy dependence of the i-th

weighting function for the current continuity condition.

The various synthesis (or collapsing) schemes arise from the
choice of the v (as well as the g broad groupings) and the w; . The
weightings for the differential equations and interface conditions

do not have to be the same. In fact for the discontinuous synthesis
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case with different expansion and weighting functiors in different

regions, this is impossible and a number of possibilities exist.

The next section discusses the continuous spectral (or energy)

synthesis method,
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B. ENERGY SYNTHESIS

In the energy synthesis considered here the same expansion
functions and weighting functions are used throughout the resactor.
The flux expansion functions are considered to be spectra functions
obtained elsewhere, e.g. from zero dimensional or spsace dependent
calculations. The weighting functions are taken as the corresponding
adjoints. The expansion then is a Gx1 vector of the many group flux

spectra times a space and time dependent combining coefficient, i.e.

N
¢ = I.: wl ¢i(r,t)
1

where
= [ T = I T
¥y vy w3 ¥y
Vs v
¥ g
[V |, %,
and
Vs wix are the ith multigroup flux and

adjoint spectra respectively

The equations for the flux and precusors then become in matrix

form
v-'ﬁv&f—%?{—u—s)'{p?’r@*
o . |
+ 1) xmcmuEEE (11)
m
cm=em%”~$—xmcm
where

$ is a Nx1 vector of the spatially dependent combining

coefficients ¢
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and the corresponding cross section matrix and vector elements are

given as

g

Iy, (12)

[}
€

At the internal interfaces, all the trial function expansions and
weighting functions are continuous, therefore regardless of the
weighting in the flux continuity equation, the flux continuity condition

is
> >
¢, = ¢_

For the current continuity condition it is reasonable to weight
with the weighting function that appears at the interfaces. Since these
are the same throughout the reactor, there is no ambiguity and the

resulting current continuity in matrix form is
DVel =DV |_.

These are the same conditions and equations that one obtains for
spectral synthesis using a variational functional with continuous flux

and adjoint spectral trial functions (4,8).

In applying the method, a decision must be made as to how many trial
functions are to use, and also which regions or conditions they should
represent. When only a few trial function are required, the method
offers great savings. This is demonstrated in the Results' Section where
for the sample problem only 3 trial functions are needed, and are simply

the static unperturbed and perturbed spectra.
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IIT. GROUP COLLAPSING METHODS

A. GENERAL REMARKS

There are two mein differences between group condensation schemes
and the energy synthesis method discussed above. The first is that
the many groups are reduced not to one broad group but to g broad
groups. This is evidenced by the fact that Wy and ¢i become Gxg
matrices and the ¢i become gxl1 vectors instead of scalars. Secondly,
different trial and weight functions are used in different parts of
the reactors, rather than using the seme ones throughout. However, only
one expansion is used in each region. This can cause problems at inter-

faces where both trial and weighting functions are discontinuous.

There are two common condensation schemes. One is the normsl flux
weighting scheme and the other is the bilinear or flux—adjoint weighting
scheme discussed by Pitterle (9). In the flux weighting scheme, the
elements of the w matrices are unity, whereas in the bilinear scheme
they give an adjoint spectrum dependence. The interface conditions are
only a problem with the bilinear scheme, since the weighting function
as well as the trial functions may be discontinuous at an interface. In
the normal scheme, the weighting function is the same (unity) throughout
the reactor and introduces no discontinuities at the interfaces. Both

methods are described below.
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B. NORMAL FLUX WEIGHTED CONDENSATION

In both the flux and usual bilinear group collapsing schemes (8)*,
the single expansion funetion in each region for the flux is the same,

and has the form of a Gxg matrix

— T
w1/ Z \b- O « o e+ o+ O
. 1
iel .
‘.’)2/.2 wi o . * . . . (o]
1el
P o= ' (12)
o v./ £ Y. . 0 '
J ig2 1
o o . wG/;E wi
B leg
and
o= [ o,
’ _ _ (13)
¢8
where the

¢i is the ith broad group flux integral in each of the
g broad groups

wi is the ith multigroup flux spectra

The rows in each column indicate the group collapsing scheme, on
which multigroup are combined to form each of the g broad groups. Also
the broad group ¢i actually represent the physical broad group flux,

i.e, the sum of the many group fluxes in the broad group.

% Another bilinear weighting scheme is given in Appendix C.

It has a different assumed flux energy dependence
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The difference between the normal and bilinear weighting schemes
lies in the choice of the weighting matrix. For the usual scheme, the
w matrix has the same form as the § matrix except that the non-zero
elements are unity. In effect this means that the many group equations
are simply added up according to the new broad group structure, i.e.

the Gxg matrix looks like

w = Wy =1 o o]
1 o o
. . .o 1 ] (1h)
o 1..0
©c 0 .. 1
L. o

which is identified as w,., the unity weighting matrix.

I,

The resulting diffusion theory equation in each region is given as

vBve- (¥, oy - 206 + (1-8) ¥p ¥ g+ i Ay % C

=78 (15)
d C
m
o B0 -y 0y =t

where ¢ is the vector of broad group fluxes and now the gxg cross

section matrices and vector elements are given as

v _igx PtV
kk T b
iek "1
I, Fi g
1 1
¥oo= 2k - (16)

B gk M
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v o _ ik frot Y
Tl ik i
¥ ifr 3Eg Vi L
S1ag 1B Vi
= .1
gpk i€k ¢Pi
2mk =ik *m

which are the definitions of the normelly used broad or few group

constants.

Since the same weighting function is used throughout the reactor
and it is simply the unity weighting matrix, it can be used at the
interfaces without ambiguity, resulting in the normal few group flux

and current continuity conditions

ol, = ¢l

(17)

Bvel,=Bvel

These are the normal few group equations and have also been derived
without problems from variational principles (4,8). These normal
diffusion codes solve these equations. The problem lies in choosing
the number of reduced groups and their structures, as well as the flux

spectra to use in the expansion,
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C. BILINEAR CONDENSATION

With the normal flux weighted condensation scheme, the difference in
importance of the various multigroups in the collapsed broad groups
is not accounted for. Using adjoint on bilinear weighting accounts for
that and from first order perturbation theory should give better reactivity
predictons (9). The flux expansioﬁ*'is the same as before but now the
weighting matrix is taken to represent the average adjoint structure

in the collapsed broad groups, i.e.

T ox *
w1/l i§1 wi Aui o.'.....Q.........."...l...‘.l'.l..l.
1
¥ *
1 » 3 - @ 0 9 0 560 9 ¢ 0 @ OO & 8 LS G P YL OO S DS SO NP EOC L eSS C e
lJJ2/-— 1%1 wl bu °
1
"0‘..0!l.l.l...ll.l...'...l.l...l0..0..'0'.".0.0...'00
w = * * (18)
o wj(l ig2 wi L R R R
2
* %
O o‘...‘.‘..‘....l'l‘l. l,)G/lj*l lég lpi Aul
L— g —
where ,
w; is the i-th multigroup average adjoint flux
Aug is the lethargy width in the i-th multigroup
_ Av. . . . _
UI igI uy is the lethargy width in the I-th

broad group.

Carrying out the substitution and weighting as before, Equations (15)

again result for the few group fluxes and precursors in each region,

% Another formulation is given in Appendix C. It is more complicated
and does not really work as well, because the interfaces are not
properly treated. That given here is essentially the Pitterle

scheme (7).
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with the exception that the few group gxg cross section matrices and

vectors are now given by

4

*
b Wi DYy

Dy =
Lour Au, LI, W
i€k "1 i ik "1
X
*
X il Fi Wi
=
R

X
_ifk Vi P TV

Totk %
Lok Vi 8y ik ¥
U
k
3*
¥ - iy JEJ w.j zi-rj i
I+J
3
UJ JEJ 5 Au,J igI ]
J
*®
Yo, = i Pi i
Py N
o ik ViAy
k
¥*
Y = 1B My Vg
My *
B Vi Ay
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Notice that when the ¢§ are taken as unity, the normal flux

weighted group constants result.

With bilinear weighting at interfaces between different regions
the adjoint or weighting function spectra as well as the trial function
or flux spectra will also be discontinuous as opposed to the normal
flux weighted case. Therefore, the choice of the weighting functions

for the interface conditions is not quite so straightforward.

For the current condition, it is not unreasonable to use the

averaged adjoint spectra as weighting function at the boundary, i.e.

[w + o] (DY Yo |, -DVwel}=o (20)

N|—

which results in
1 [3 +8.]vé¢ | =1 D, +8 ] v ¢ | (21)
2 - ¢ --2 + - ¢ +

where B+ and B_ are the bilinearly collapsed diffusion coefficient, at
the positive and negative gide of the interfaces, respectively and the

S matrices are given by the cross products

3%

skk_ N
Tk Vie Buy g Vio
U
k
(22)
%
il Vi- Di+ Vis
S =
Kk,
1 .5 v¥ A LI, s
e igk "i- "1 igk 't

k

Notice that when the weighting functions are continuous this gives

the normal current continuity condition,
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If the effects of the discontinuities in the weighting functions
are ignored, and the weighted currents on each side are merely

equated, i.e.,

w, D vw¢|+=w_Dvw¢!_ (23)

then the more familiar jusual condition is obtained

Ny N
D, Vé, =D_V¢ (2k)

where the diffusion coefficient is defined as in Equation 19. The results

show that this is not as good as using the S matrices.

The S matrix formulation is the same as that Terney (10) and
Stacey (8) obtain from variational formulations by assuming that the
variations in the flux combining coefficients at the interface are
equal, There are ambiguities in the variational approach when both the
weighting (adjoint) and trial (flux) functions are discontinuous at
the same interface because, as is well known the problem becomes
overdetermined (4,8,10,11,12). One way to alliviate the over-
determination is to equate variations at the interface, which gives
these results obtained here. Another approach is to not allow both
flux and adjoint functions to be discontinuous at the same interfaces (4).
To do this artificial overlap regions are added where the flux or
adjoint from the adjoint region is used together with these for the
region in question. This approach was tried and the results are given
in Appendix D. Unfortunately, it turns out that they are sensitive to
the width of the overlap region, which apparently must be a least
1-2 diffusion lengths thick, and seems to act merely as the buffer
to diminish the effects of the discontinuity. The approach also has
the disadvantage of requiring extra regions. Buslik (11,12) has tried
to alliviate this problem by adding the boundary conditions to the
variational functional with Lagrange Multipliers which should be

representative of the values of the adjoint current and flux at the
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interface. Recently, Stacey (13) has proposed not just equating the
variations at the interface but postulating some relatijonship between

them,

The end results of all approaches is to decide somewhat arbitrarily
on a weighting function to use in requiring the internal continuity
conditions to be satisfied. Here with the substitute and integrate
procedure, the choice was simply to use the average adjoint or

weighting spectra at the interface to introduce the S matrices.

For the flux continuity the choice is again not clear. In fact,
there are 3 reasonable approaches. The first and probably physically
most logical is just to require continuity of the few group fluxes,

i.e.

-+

¢, = 6_ (25)
This implies that the weighting matrix is

F, =W (26)

given in Equation (14). Equation (25) may be written in the more general

form as

where R, is the unit matrix. This condition requires continuity of the
few group flux and the choice is to use the averaged flux adjoint or

weighting function at the interface, i.e.,

(wr + '] (vol, ~vel Y=o (27)

VIR

vhere the w_ and w_ are those given by Equation (18) for each side of

the interface.
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With the end result that
¢, =R, ¢ (28)
where R, is a diagonal gxg matrix given by

-1
Ry = [uy v, + ol 0] oy v_ + o ] (29)

A third alternative is to weight the flux continuity condition with

the averaged adjoint current spectra at the interface, i.e.

T T
[w, D, + w_D_] {v, ¢, - v_o.} =0 (30)
where the w's are again by equation (18). This yields
(D, +C_) ¢, =(D_+C.) ¢_ (31)

where the cross product diffusion coefficients matrices C are given by

+*
ik i+ Di4 V4o
c, =
T v
- jek 1+ i i€k "1
U
k
(32)
3*
o iék Vi- Di— b3+
k 3*
o gLy Yi- Buy 5Ty Vg
U
k
b, = Ry b_ (33)

where

-1
Ry = o, +c1 [p_+c] (3h)
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This is the result Stacey (8) Terney (10) obtain variationally when

the adjoint current variations are equated at the interfaces.

The actual best choice of boundary conditions can really not be
determined beforehand and must probably be resolved by actual comparison

of the various approximations with the exact many group calculations.

The various possibilities given here were investigated numerically
with the model given in the next section. The results indicate that
using S matrix is necessary but that the usual flux continuity condition
is sufficient when the S + R matrices are used, the diffusion theory
finite difference equations at the interface are different than normal
and the usual programs must be modified. Appendix A gives the modified
diffusion theory equations and the alterations which were made to
RAUMZEIT to handle tham.
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IV. TEST PROBLEM

In order to economically test the syntheses and various group
collapsing procedures, Stacey's (7) one-dimensional, representative
fast breeder power reactor model was used. The reactor consisted of
a single core zone of half width 175 cm and a blanket of width 50 cm.
It is depicted in Fipgure 1 together with thé material concentrations

in the two zones.

Two transients were considered which are of interest for safety
analysis. The partial voiding transient (identical to Stacey (7))
vas initiated by linearly decreasing the Na concentration in the
50 cm of the core by 50 % in 0.5 sec. To crudely mock up the Doppler
effect and keep the total inserted reactivity about S0 % the B-1o
concentration in that region was increesed by 20 % in the time interval
0.1 to 0.5 sec. The second transient was a full voiding of the
central region coupled with the addition of fuel and B-1o to mock up
fuel slumping and the doppler effect. It was initiated by voiding
the central S0 em of Na in 20 millisec. The fuel concentration was
linearly increased So % and the B-10 to .00117 in the 2 to 20 millisec

time interval.

Transient and static calculetions were run with the finite difference,
1-d space time program, RAUMZEIT (14). It was modified to handle up to
26 groups, synthesis, and the modified interface conditions needed when
bilinear weighting is used. The basis of comparison were the 26 group
results obtained for both static and dynamic calculations. The 26 group
cross sections were obtained from the Karlsruhe cross section set (16),
and were used to obtain the collapsed group cross sections through
the NUSYS system (17).

The static eigenvalues and reactivities for the 26 group, 1-d
RAUMZEIT calculations are given in Table I. The transient power
distributions initially end at the end of each transient are shown
in Figure 2. The povwer distribution at the end of the partial voiding
trensient is the same as the initial power distribution, while that
at the end of the fuel slumping transient refers to the addition of

more fuel. In, both cases, the static and transient power distributions
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are essentially identical. This means that the spatial flux effects,
are not so important for these transients. However, the reactivity
effects must be calculated well so that the amplitude or total power

changes are accurately predicted.

The total powers, power factions and moments for both transients
are given in Tables II and III. The results are also plotted on
Figures 3 and 4. In addition, the point kinetics results for both

, . ®
cases are shown in the figure .

The point kinetics reactivity input was obtained by linearly
interpolating between the reactivities obtained for each of the statie
calculations at the 3 perturbations. For the partial voiding transient
the results are not too bad, with errors in the total power 5 - 1o %
during the transient. For the fuel slumping transient, however, the
powers are too high by up to factors of 1o with point kineties. This
indicates that it is not sufficient to use the end point reactivities
and the interpolated in between values but that one must have a good
reactivity trace or table as input. In other words, more 26 g static
calculations or improved perturbation theory calculations are needed.
When a better reactivity trace was used, point kinetics was capable

of giving acceptable powers values.

# The point kinetics were calculated with a KFK version of the

AIREK ITI, code (19).
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TABLE I

STATIC 26 GROUP AND SYNTHESIS RESULTS WITH RAUMZEIT

EIGENVALUES AND REACTIVITIES:

Case 26 group Synthesis
Partial Voiding TFuel Slumping
Model Model
Initial k . 995005 .995007 995007
10 % void k . 996606 .996608 .996603
p 001601 .001601 .001596
% . o] ("03 %)
50 % void k .99Tok2 .99Tok9 .99T037
+ B-1o0 0 .002037 .002042 .002030
% (+.2 %) (-.3 %)
100 % Void
More Fuel
+ B-1o0 k .998682 - .9986TT
0 .003677 .003670
% (-02 %)
POWER FRACTIONS AND MOMENTS
Case 26 group Synthesis
Partial Voiding TFuel Slumping
Model Model
Initial (PF) Core 1 . 1990 . 1990 .1990
(PF) Core 2 .7897 .7898 L7897
(PF) Blanket .0113 0113 .0111
Moment T1.2 T1.2 T1.2
50 % Void . 1998 . 1998 .1998
. 7891 .T7892 .7891
0111 .0110 .0l1o
To.T To.T To.T
100 % Void .2730 .2730
More Fuel + B-1o JTATH .T170
.0099 .0098

65.0 65.0
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TABLE 1T
PARTIAL VOIDING TRANSIENT

Time 26 group SYNTHESIS FLUX WEIGHTED BILINEAR WEIGHTED
(Seconds) 6g 8g 6g 8g
' (ORIG § ORIG #*)

TOTAL REACTOR POWER

o 1.0 1.0 1.0 1.0 1.0 1.0
.05 1.331 1.331 1.336 1.346 1.331 1.331
.10 2.037 2.035 2,060 2.105 2.036 2.033
.20 2.136 2.136 2.118 2.2h47 2.126 2.126
.30 2.346 2.346 2.260 2.507 2.315 2.326
Lo 2.732 2.736 2.528 2.915 2.659 2.69L4
.50 3.k460 3.477 3.002 3.862 3.289 3.383
.60 3.721 3.7h1 3.180 L4.198 3.517 3.628
.To 3,984 4,008 3.359 k4,542 3.147 3.877
Computing 38 .25 .8o 1.6 .8o 1.6
Time for
Transient
(Minutes)

POWER FRACTIONS AND MOMENTS
Osec
Core 1 . 1990 . 1990 .1988 .1989 .1989 .1989
Core 2 .T891 . 7898 .7899 .7898 .7899 .7898
Blanket 0113 0113 0113 .,0113 0112 .0113
Moment T1.2 . T1.2 T1.2 T1.2 T1.21 T1.21

.50 sec
Core 1 . 1998 . 1998 .1994  ,1999 . 1999 . 1999
Core 2 . 7892 .7892 .7806 .7889 .T7891 .7891
Blanket .0110 .0110 .0110 .otlo .0l10 .0110

Moment To.T To.T To.8 To.7 To.T To.T



TABLE IIT
FUEL SLUMPING TRANSIENT

MODEL 26 group Synthesis FLUX WEIGHTED BILINEAR WEIGHTED 6g 8g bg 8¢
TIME g 8g bg 8g

(sec) or F - or A MF F- or A or F- MFA

' TOTAL, REACTOR POWER

o 1.0 1.0 1.0 t.0 1.0 1.0 1.0 1.0 1.0 1.0
.001 1.282 1.280 1.284 1,292 1.286 S 1.281 1.282 1.281 1.282 1.280
.002 1.84s5 1.839 1.856 1.891 1.8L45 1.8Lk2 1.846 1.839 1.846 1.839
.ool 1.718 1.712 1.717  1.802 1.713 1.7k 1.727 1.720 1.733 1.719
.006 1.624 1.616 1.592 1.716 1.611 1.617 1.637 1.631 1,641 1.626
.olo 1.831 1.815 1.698 1.961 1.787 1.812 1.851 1.8k2 1.85hF 1,833
.0lk 2.877 2.856 2.352 3.160 2.696 2.812 2.918 2.901 2.905 2.868
.018 11.755 11.857 5.541 14.59 9.008 10.70 12.0b 11.91 11.61 11.k46
.020 13k.37 135.1 16.71 210.8 61.5 102.5 1do.0 137.4 122.6 122.4
Computing
Time for ho .3 .8 1.7 0.8 1.7
Transient

(Min.)

POWER FRACTIONS AND MOMENTS

0 sec
Core 1 . 1990 . 1990 .1988  .1989 .1989 .1989 .1988 .1986 .1988 .1988
Core 2 .T7897 .7899 . 7899 .7898 . 7899 .7898 .T900 .T901 .T900 .7899
Blanket .0113 .0111 0113 .0113 0112 .0113 0112 .0113 .0113 .0113
Moment 71.2 T71.2 71.2 71.2 71.2 71.2 71.2  T1.2 T1.2  T1.2
.020 sec
Core 1 .2735 L2ThT .2Tok  .2713 .2730 L273h L2725 .2733  .2726 .273%
Core 2 JT167 .T156 .T198  .T169 L7172 L7168 TJITT WT169 L7176 .T168
Blanket .0098 .0097 .0098 .0098 .0098 .0098 .0098 ,0098 .0098 .0098

Moment 65.0 64.9 65.4 65.0 65.0 65.0 65.1 65.0 65.1 65.0

090AI -
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V. RESULTS
A. SYNTHESIS

The syntheis trial and weighting functions for the 2 transients were
obtained from 26 group, 1-d static diffusion theory calculations. In each
case only 3 functions were used. Two were the averaged spectra in the core

and blanket for the unperturbed reactor.

The third trial function was taken as the averaged flux spectra in the
central core region for the perturbed reactor condition, again obtained
from a static, 1-d 26 group diffusion theory calculation. For all trial

functions ;the corresponding adjoints were taken as the weighting functions.

The static eigenvalue for the 26 group and synthesis models are given
in table I for various reactor conditions. The agreement in reactivity
worths is excellent. In addition the power distribution shapes also are
in good agreement as shown in table I by the power fractions in each of
the 2 core zones and the blanket, as well as the moment of the power
measured from the center line*. Figures 2 show the power distribution

vhich can not be distinguished from the 26 group static transient results.

The transient results bear out the promise of the static calculation.
The total power as a function of time for both transients are tabulated
in Tables II and III together with initial and final power fractions and
moments., The agreement between the transient total powers calculated with

synthesis and 26 groups at the end of the transient is within 1 %.

In addition, the power sharing is also well calculated as revealed in
Tables II and III, as well as in Figure 2. Only in the fuel slumping
transient is there appreciable spectral power shifting, but it is well
calculated.

The remarkable time saving feature of synthesis for the transient calculation
is also shown in Tables II and III. The time requirements with synthesis
are equivalent to using a 3 group model. However, the accuracy obtained

is on the order of that obtained with 6 to 8 or more groups.

X) ¢(x) © ax

% Power moments is defined as X, = jlﬁ vzf(&) o(x) d%/j vzf(
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FEW _GROUP RESULTS

FLUX WEIGHTED GROUP CONSTANTS

The simples£ approach for obtaining few group constants is to use the
flux weighting procedure. Many t-d, static calculations were carried out
within the NUSYS system to determine the best few group structures for
various numbers of groups. The standard was to do well on static eigen-
values and reactivity worths for a variety of perturbations ranging from
voiding to adding fuel and boron. In each case, the collapsing was done
with the averaged 26 g spectra in each region obtained from the 26 g,

1-d diffusion theory calculation for the unperturbed reactor. It was found
help-ful to select group structures so that the ratios of perturbed to
unperturbed fluxes was nearly the same for each group in the new broad

group. The best group structures are given in Table IV and Appendix B.

Table IV gives the static results for the best 6, 8 and 12 group
structures for the cases with perturbations in the central core zone
corresponding to the partial voiding and fuel slumpings of interest.

There is fairly substantial improvement in going from 6 to 8 groups, but
going from 8 to 12 groups brings less of a change. In most cases, the
reactivity errors are less than a few percent. However, for these transients
such accuracy is not good enough. The transient results are given in

Tables II and III for 6 and 8 groups and are shown in Figures 2 and 3.

Even going to 12 g gave unacceptable errors of more than 30 % in the

total powers for the fuel slumping transient.

These results show the importance of calculating the reactivity
extremely accurately for perturbations above 50 ¢ and in the neigh-
borhood of $ 1. In fact for the partial voiding transient, the point
kinetics results are even better than the 8g flux weighted result,
because of the better reactivity values. Adding more regions as transition
regions near the interfaces had no effect on calculating the reactivity
worths of the perturbations. Therefore in order to gain acceptable
sccuracy more thah 12 groups would have to be used when simple flux
weighting is used for the collapsing. This originally motivated the
attempt to see if bilinear weighting with only a few (6-8) groups

would work. These results are given in the next section.
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TABLE IV

NUSYS FEW GROUPS STATIC EIGENVALUES

Case 26 g FLUX WEIGHTED BILINFARLY WEIGHTED
UNPERTURBED SPECTRA
12¢g 8g bg 8g 6g
Base k .995085 .995063 .995065 .995049  .995089 .995091
10 % Void k . 996684 .99669T .996T712 .996668  ,996697 . 996698
Ak .001599 .001634 001647 .001619 001610 ,001609

% error (2.0.%) (+3.0%) (1-3 %) (71 %) (5 %)

Partial

Void K .997119 .997166 .997213 .9969L42  .99T7123 .997089
Ak .00203k .0021030 002148 .001893  .002036 .001998
% error (3.3 %) (5-6 %) (6-9 %) (.1 %) (-1.8%)
Total Void k .9987L8 .998755 .998791 .998267 .998715 .998633
+ More Fuel Ak .003663 .003693 003726 .003218 .003628 .003542
+ Boron %error (.8 %) (+1.1%) (-12.1%) (-9 %) - (=3.3%)

The best few group structures were found to be

12 g: -3, 4, 5, 6, 7, 8-9, 1o, 11-12, 13, 1h=15, 16-17, 18-26
1o g: 1-3, 4, 5, 6, 7, 8-9, 10, 11-12, 13, 14-26

8 g: 1-3, 4b-6, 7, 8, 9, 1o, 11-12, 13, 14-26

T a: 1-3, 4-6, 7, 8-9, 10, 11-13, 14-26

6 g: 1-3, k-6, 7, 8-9, 10-13, 14-26
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VI. BILINEARLY WEIGHTED GROUP CONSTANTS

The first attempt with bilinearly weighted cross sections was to use
the initial or unperturbed averaged spectra. Both the flux and adjoint
spectra in each region were obtained again from the 1-d, 26 group static
calculation of the unperturbed reactor. The reduced group constants were
obtained within the NUSYS system using the version of the condensation

routine modified by Kiefhaber to handle the Pitterle method.

The static eigenvalues obtained by NUSYS are shown in Table IV. Both
the6 and 8 group reactivities are much improved over the flux weighted
values. In fact the 8 group bilinearly weighted results are as good as
or a little better than the 12 group flux weighted results. However, the
reactivity for the fuel slumping perturbation still has errors which

are too high.

The transient results are again given in Tables II and III and on

Figure 2.

Table II shows that both the 6 and 8 g group constants obtained with
bilinear weighting using the unperturbed flux and adjoint give acceptable
results for the partial voiding transient, the 8 g results are too low

by only 2 -~ 3 %, and even the 6 g results are only 5 - 6 %.

However, for the fuel slumping transient with a reactivity of the
order of 1.15 the seemingly small errors in reactivity (1 ¢) are actually
very important. The 8 group power at the end of the transient is 23 %
too low which is probably, only marginally acceptable. The 6 group power

is 54 % too low and clearly unacceptable.

Therefore, when the reactivity is in the neighbarhood of ¢ 1, it
must be calculated with good accuracy. One approach would be to use more
groups. When 12 groups are used the reactivity error for the fuel
slumping case dropped to about .3 % and gave powers which were acceptable,
only 6 or T % too low. However, continually adding groups is not so
attractive an alternative, especially when the number must be greater
than 12 or so. Another approach is to calculate the reactivity better

by a wiser choice of flux and adjoint spectra. Using a combination of
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the initial flux and final adjoint spectra (or vice versa) is a way to do
this. In & sense this approaches the synthesis method where use is made
of knowledge or an estimate of the spéctra at the beginning and at the

end of the transient. For the 8 g bilinear scheme it is apparent that only

8 little improvement is needed.

When this approach is used the interface conditions between regions
in which different adjoint and flux spectra are used become important.
The studies with only the unperturbed flux and adjoint were originally
made by ignoring the modified interface condition. That is, only the D
matrices and not the S matrices were used for the current condition and
the usual few group flux continuity conditions were used. But since the
original adjoint in both core regions are nearly identical the S + D
matrices at the important first interface were essentially the same
only a barely discernible change in the results was observed when the
S matrices were added. However, for the cases where the adjoint spectra
was different in adjacent regions, namely, using the slumped fuel case
adjoint appreciable efforts are apparent. Tables V + VI give the results
for static eigenvalues and reactivities for the various 8 + 6 group
cases using the version of RAIMZEIT modified to handle the new interface

conditions.

The importance of the current interface conditions for 8 groups can
be seen in Table V by comparing the columns with D's and those with S's.
For the cases with the original adjoint there is essentially no difference
in results since the adjoint is practically the same at the core inter-
face, and the S + D matrices are nearly equal. When the original adjoint
and final flux are used to get the few group constants, all the eigen-
values and reasctivitv are calculated extremely well. When the final adjoint
and intial flux are used, however, the eigenvalues and reactivities
deteriorate when the interface conditions are ignored. When the modified
conditions are used, i.e. the S's are used, excellent agreement is again
obtained. Using final flux and adjoint is always as bad as or a little

worse than using the original flux and adjoint.

The other columns show the effect of using the various flux
continuity conditions given in Section III as well as the improved current

condition. There is no constant improvement in using R, and R, over the

2 3
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the usual few group continuity condition (R1 = UNIT MATRIX). The usual
condition works as well as any of the others. Therefore, because of its
simplicity and physical meaning, it is reasonable to use it for the

flux continuity condition.

The results are the same for 6 groups as Table VI shows. When the
adjoints are discontinuous, the modified current condition with the
S matrices must be considered. For both cases when a mix of the final
and initial flux and adjoint spectra are used is the agreement with

the 26 of static eigenvalues and reactivities good.

The final and intermediate reactivities determined with the 8 group
bilinear mixed mode scheme, including those with S matrices, gave really
acceptable results. A disadvantage of using a few number of groups with
mixed weighting is that both the interface conditions become more
important and the intermediate reactivities are not calculated as well
which can lead to erroneous transient results. In fact when only 1 group
was used with the mixed modes the total overall static reactivity cases
fairly well predicted but the partial perturbations had reactivity
errors of 10 - 58 % leading to transient power errors of factors of
1/2 to 1o, ¢

The 6 and 8 g transient results for the difficult fuel slumping
transient are also given in Table III and Figure 4 for both cases with
mixed fluxes and adjoints. All these results have the corrected
current continuity condition and the usual flux continuity conditions.
The 6 and 8 group models give essentially the same results and either
could be used. This accuracy is in contrast to when only the original
fluxes and adjoints are used for the weighting. Further, the accuracy
for both mixed mode models is good and comparable to that with

synthesis, Power distributions are shown in Figure 2 and are also good.

The results for the 2 mixed mode model are different but within
io - 12 % of each other. This reflects both the differences in the two,
spectra combinations and also the effect of the interfaces. The better
results are those with the nearly continuous adjoint at the interface.
However, for both combinations the results are acceptable, especially

for the 8 group model.



TABLE V: 8 GROUP BILINEAR STUDY 'OF INTERFACE CONDITIONS
SPECTRA FOR + ' ~ x p
@ o @ P B /)

COLLAPSING ° °o W Mo W
Case 26 g |D.R, |S.R, |S.R, |S,R; |D.R, I5,R, [|S,R, |S,R, |D,R, [S,R, [I5,R, [B,k, D 5 [S.R, |S.Ry
Base k 995005 99499kl 99L9961.994965 .994986{,9950329950331995003}.995053[.994994 [ 994997 |.99L96T].994988 -'991*973 99k 971 H9L9L1} 995001
10 % void 9966069965921 .996591.996565|.996585|.996620 |996630 1996601[.996648{.996590 1996592 |996563|.996583].996558 |996565 1996536|.996598
Ak «001601/:001598|:001598|.00 1600}:001599}.001588 001597 loo1598}001595/.001596 }001595 koo 1596|. 001595001585 oo 159k loo1595(. 001597
% error -8.19 | -0.19 | -0.06 | -0.12 | ~0.81 }{-0.25 {-0.19 |-0.37 [{-0.3 |-0.37 {-0.31 |-0.37 | -1.00 |-0.bk }-0.37 {~-0.25
Partial Void|.997ok2.997009|-997011{:996982|:997002|.99T01T 897072 9970kl |997090L.99T028 1997030 199T7002{.997021],99699¢ 199Tok3 199T7015/.99T082

«002037].002015/:002015|.0020 17}, 0020 16}.001985 l002039 0020k 1}002037|.00203k 1002033 |002035L002033|.602017 l0o20T2 jo020Th. 002081

1.07 |1.07T [-0.98 |-1.03 |-2.54 |+0.09 | +0.20| o 0.2 -0.2 |~0.1 }|-0.2 }|-0.98 ¥1.72 +1.81 |[+2.16

Total Void {.998682|.998630{:998632|-:998608|.998625{.998592 1998698 {99867k r9987“* 998673 -998675 9986531.9986671.998595 B98Too 199867T{.998Tkk
with More .003677):003636:003636.0036L3|.003639/|:003560 003665 |0036T7 1 |003661|0036T79 l0036T78 b03688F0036T791003622 b3729 bo3736{003Th3
Fuel + B -1.09 |-1.09 | -1.02 '—1.03 -3.28 i—o.32 -0.16 |-o.4kl §+0.05 ) +0.24 |+0.05 | -1.5 +1.41 r1.68 ~0.95

“NUIA -



TABLE VI
6 GROUP BILINEAR STUDY OF INTERFACE CONDITIONS

X X X X
¢o ¢o ¢MF 1) ¢MF ¢o ¢MF ¢MF
Case 26 g D S D S D S
Base .995005 .995001 .995009 .995010 .995017 .99503k .995035 .99L9T6 .99L966
10% Void .996606 .996605 L9960 12 .996612 .996619 .996629 .996639 .996570 .996570
.001601 .0o0160k .001603 .001602 .001602 .001595 .00 160k .001594 .00160kL
(+0.19%) (+.06%) (+.06%) (+.06%) (-.37%) (+0.19%) (-.43%) (+.19%)
50% Void+B .99Tok2 .996986 .996993 .99T7030 .997037 .99T0ok3 .997116 .997016 .997082
.002037 .001985 .001984 .002020 . 002020 . 002009 .002081 .0020ko .002116
(-2.552) (-2.60) (.84%) (-.83%) (-1.37%) (+2.16%) (1.15%) (+3.88%)
More Fuel .998682 © .998550 .998557 .998690 .998696 .998556 .998697 .998577 .998715
.003677 .0035L49 .003548 .003680 .003679 .003522 .003662 .003601 .003749
3.48%) (-3.52%) (+0.8%) (.05%) (-4.21%) (-.41%) (-2.07%) (+1.96%)
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CONCLUSIONS

Synthesis Methods

The results obtained here show that energy synthesis is a very
promising techniques for treating fast reactor transient. In the 2
transients of interest only 3 trial (and Adjoint weightung) functions
were needed to obtain excellent agreement with the "exact" 26 group

results.

However, for more complicated reactors with more dimensions and
representative regions it may be necessary to use more trial functions
say 6-8 to span the spectra of the reactor and the perturbation. If
too many energy trial functions are required, it may be necessary to
use discontinuous synthesis methods and face the interface problem
again, A basic trouble with the energy synthesis approach for real
reactors is that a 2 or 3 dimensional but few group transient problem

still must be solved.

Probably the most attractive alternative is to use a Kaplan type
approach, where the problem will always be reduced to a one-dimensional
synthesis in the z-direction by using either partially or fully collapsed

planar trial functions.
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Few Group Methods

With few groups methods, the importance of preserving the reactivity
effects of a variety of perturbations (especially in the neighborhood
of § 1) become apparent. For the normal flux weighting condensation

scheme more than 12 groups would be needed to get acceptable accuracy.

By using bilinear flux-adjoint condensation schemes, the reactivity
effects and transients are calculated much better. Using only 8 groups
and the original Flux and adjoint spectra to do the collapsing gave
both static and transient results better than the 12 group flux weighted

case.

There are cases where using the initial spectra is not quite good
enough., When a mixture of the initial flux and final adjoint spectra
(or vice vasa) is used, excellent results are obtained also for these
cases. This may be thought of as modifying either the flux or the
adjoint function slightly to get a better reactivity consideration of
the perturbation using this method enabled 6 or 8 groups to be used

to get comporable accuracy as with synthesis,

With bilinear weighting it is necessary to account for the dis-
continuities which occur at the interfaces between regions where
different flux and adjoint collapsing spectra are used. This is
especially true of the adjoint and the effect it has on the current
continuity condition. When the normal current condition at the inter-
face is modified by using the averaged adjoint spectra at the inter-
face, the problem appears to be resolved. The usual few groups flux

continuity condition appears to be acceptable without modifications.

The methods will carry over directly to more complicated multi-
dimensional reactors. For these problems however, the interface condi-
tions and discontinuities may become even more important. In addition,
they do require modifying the internal boundary conditions built into

most finite difference codes.
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Both the synthesis and bilinear weighting group collapsing schemes
preserve reactivity effects. In addition, they also, in effect, preserve
the effective delayed neutron fraction and generation time, since the
approximate transient results agree with the exact results. Where the
effect of the delayed neutrons having a different spectra is considered
explicity, the results given here are maintained., These results are
shown in Appendix E, and indicate that one can use either B.g¢ and the
same x's for delayed and prompt neutrons or the actual B's and the

different x's.
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FUTURE WORK

The work will be continued by applying these procedures to more
complicated reactor models in both one and more dimensions. A 1-4
reactor will be considered first, which has the characteristics of a
more typical fast reactor prototype. This will be investigated to make
sure that both the number of trial functions does not become excessive

and that the modified interface conditions hold up.

A 2-d, r-z study should also consider a typical, prototype reactor.
For this energy synthesis, Kaplan synthesis, and the bilinear collapsing

schemes should be checked before any of the methods are excluded.

The results to date indicate that these approximate methods are
useful, fast and accurate. They should find greater applications in

actually solving fast reactor transients of interest.
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APPENDIX A

RAUMZEIT MODIFICATIONS

The Subroutine RAUM of RAUMZEIT solves & source problem
-D v2¢ +H ¢=28 (A.1.)
n n . .

vwhich is put in a difference equation format

D2 PD_
T2 (0549 + 059 ~ 285) - 2rh_ (549 = 05q) * Hpoy = 8; (A.2.)
n

where subscript n is for the materials i for the point.

These equations are solved in a recursion relation

_ =1
where
2T + b°D_ 'h - (1- B2y 71
a - n n 2r 1 (A )4 )
i+1 hp P
1+ =
2r
2 ~1 hp -1
h"D s, + (1 or) % By,
B, = (A.5.)
1 hP
1+ 5=
2r

At an interface point B one assumes the normal continuity realtions

- ‘ + . ) ‘
D Vié¢y =D 7 dg (A.6.)
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| | PN
| . . PB+ 1
1 l l
| [— Oy —] |
|e— TB_r*l I l
| | l |
| h |
n m -
B~-1 B B+1
material n IFP material m

and uses it to couple the difference equation for the half mesh

boxes on either side of the interface. These difference equations

are

- D V¢, + Dn ¢B -'¢B—1 + hanq)B = hn SBn (A.7.)
n B h N 2 2 e

n
and
+ +

- D ¢B+1 B d>B +D v ¢+ ; hm Hm ¢B = hm SBm (A.8.)

m h m B 2 2 cer

m

. - + . . . .
Solving for DnV¢B and DmV¢B, and substituting in the current con-

tinuity relation and using the flux continuity

MR | (A.9.)
one has for
h
hm m1 1 7%7 2Dn 2Dn -1 2Dm
%1 = T = (han+-H—--h—aB)+hmHm+T (A.10.)
1+ “n n n m
2r
and
“hp
3 =ED'1 " 2"; (h s +——2Dn '8 )+n s (A.11.)
B 2 “m h o Bn ~ n_ % *p-1 m “B,m -1
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With the modifications of the interface boundary conditions given in
Section III, the current and flux continuity relation at the inter-

face become

(D_+8) 7 ¢y = (D +8.)7V ¢; (A.12.)

Rég = 5

These are used to get new recursion relationships at the interfaces

By rewriting A.12. as
(D +8)D "D Vel =(D +85) ﬁ" DV ¢ (A.13.)
n L "n “n B m R m "m B

Substituting in (A.13.) for DnV¢; and DmV¢; from equations (A.T.)

and (A.8.), and rearranging, and BB can be obtained

%841
D, + S

Let T2 “n

1]
D>

Pn * Sp _
2 m

1]
>

and

Writing the recursion relation as

+ -1
and noting that at all other points ¢; S ¢; = 4
except at the interface
\ '
) i
\ |
- + - + 0 - +
|
%p-1 | %3-1 1 %8 | ®B ¢ %B+1 | ®B41
1. i

-




- XT.bh, -~

where ¢. = R. ¢

h p
ho A or B 2a  2a
%pe1 = T 2 hp (hpa D Hy + 3= - 5 og )
"
28
+ T W + hmAmDmHmR (A.‘S.)
m
g lwP
h A~ or B 28 .
Bp =72 h o (hpd Dy Sy + 5 o Bpy)
1+ 2
-1
+ B0y RSy (A.16.)

These two relations reduce to (A.10.) and (A.11,),

when Am = Dm; An = Dn and R=I, i.e. where there are no discontinuities.

These new relations were included in subroutine RAUM of RAUMZEIT
to accomodate the extraterms arising out-of using discontinuous
functions in bilinear collapsing of cross section libraries. When

there are no discontinuities the results are the same as before.




- XI.s. -

APPENDIX B

BEST GROUP STRUCTURALS

The normal 26 group structure is given below as well as the selections
of best few group structures.

gp Energy Range 12 10 8 7 6
1 6.5 - 10.5 MeV T T T T T
2 L - 6.5 | 1 | 1 | 1 | 1 | 1
3 2 b 1 L 1 1 1
4 1.4 - 2 2 2 T T T
5 0.8 1.k 3 3 | 2 l2 | 2
6 o.bL 0.8 h i J_ _|_ _]_
T 0.2 o.k4 5 5 3 3 3
8 0.1 0.2 T p T T ) T \ T .
9 46,5 100 keV 1 1 6 1 1 |
1 21. h6a )
o 5 5 -7 LT T 5 T s |
11 1o.0 21.5 | 8 | 8 6 T
12 .65 1o 1 1 il | 6 | 5
13 2.15  L,65 9 9 T { 1
14 1.0 2,15 T T T T —I-
15 h65 1000 ev .ljo | l | I
16 21 L6
> ° T | | | |

17 100 215 ]L | | | |
18 46.5 100 |1o | 8 | T I 6
19 21.5 6.5 l | l | |
20 10 21.5 |

| | | o
21 4.65 10.0 12

, I R
22 2.15 4,65 | | | |
23 1.0 2.15 | | | | |
o 0.465 1.0 | , I | I
25 0.215 0.l65 ! _|_ l i_ _l_

26 Thermal group
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APPENDIX C

ALTERNATE BILINEAR FORMULATION

Another bilinear collapsing scheme was formulated and investigated.
The ground rules were that the same weighting function in any given
region was to be used for the differential equation, and the flux and
current continuity conditions at the interface. The boundary conditions
vere to be obtained by setting the weighted current and flux in each
region equal to that in the adjacent region. An additional requirement
was that the boundary conditions should have the form of the usual
conditions,

Algebrarially

(" vDus) |, = (u” vDYS)|_ (c.1.)
(0" o), = (0" v ¢)]_ (c.2.)

vhere w is the same weighting matrix used to obtain the reduced group
diffusion equation and w and ¢ are chosen so that Egs. C.1. and C.2.

reduce to

=8ve¢ | (c.3.)

o
<
-
+_

i

¢ I (c.h.)

-
+_
]

where the D's are the appropriately defined few group diffusion
coefficients in each region. Notice that this method again neglects
the effects of discontinuities at the interfaces. Instead it

just substitutes a new set of conditions which are to be satisfied

and look like the usual conditions.
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A choice of ¢ and w that makes this work is

* —
™ v, L v, AU,
B } 3
A
*
v=| %o Loy AU (c.5.)
ify Vi V¥ Y,
‘pG z lpi Awi
x U
| iég '4’1 \bl 4 |
e * -
¥,
1 *
a—'1€1 u’i AU
1
%
v
o= 2* (c.7.)
7151 wi AUy
1
Vo
2.3 v.*au.
U1 ieg "1 i

where all the terms are defined as before and

¢ = . (c.8.)
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However, now the few group fluxes (the ¢1) are not.the simple flux
integral over the broad group, but rather the importance averaged

flux integral.

Carrying out the usual substitute, weight and integrate procedure

leads to the equations

n o - vd¢
veBre - (B, - ¥ e+ (-8) X F 44 Ay Hy oy = ¥ G (c.9.)
dac
m
sm%’r¢—xm C, = 3¢ (C.10.)
and at the interfaces
¢, = ¢_
B,V ¢, =D_V ¢_
where
N *® *
Dyge = T W3~ Dy 05/ X b7 by
1ek 1ek
lpi*AUi *
l')(k =1z Fl vy z U /X vy wi
iek i k iek
% %%
¥ = 1 vz v/ I w.T U,
Totk i€k 1 'I‘oti 1 iek 1 1
x AUi *®
(z v."—7pg=)(z T v,  E, .v.)
z - iel * I ieJ iel Y 1% 1
I+J
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. v. " AU,
EEE R W
iek iek k

for prompt

or deleyed as the case may be.

Notice that when the wi are unity the results are the same as for
normal flux weighting., Further, the averaged group constants are
really averaged over the product of the flux and adjoint spectra,
rather than the product of the aversges. The new few group flux is

really not a pure flux but an importance weighted flux integral.

One-dimensional NUSYS calculations were carried out with this
collapsing scheme for the various cases with 8 groups. Table C.1.
shows & comparison of the results obtained with this formulation and
those using the Pitterle scheme without accounting for the interface
discontinuities. This means that the boundary conditions with the
Pitterle scheme were just the usual current and flux continuity
conditions and in fact are more or less comparable to those used in

the new scheme.

The modified results are somewhat better than the usual Pitterle
formulation. However, the improvement is not great enough. The
remeining errors, especially in the cases of discontinuous adjoints,
indicate that the interface conditions are not being properly treated

as had been hoped.

Modifying the standard Pitterle method with the new interface
conditions gives acceptable results as seen in the Results sections.
Presumably the same improvement could be obtained here, by using
modified interface conditions. But then one of the motivations for
this formulation is lost. In addition, the somewhat unphysical

interpretation of the few group flux would remain.,



COMPARISON OF PITTERLE (P) AND MODIFIED

TABLE C.1.

(M) BILINEAR SCHEMES 8 GROUP-NUSYS

X X X X
¢o ¢o ¢o 8 ¢0 ¢MF MF
Cases P M p M P M P M

INITIAL k .995087 .995063 .995091 .995076 .995096 .995065 .995031 .995031
10% Void k 996697 . 996668 .99667T .996673 .996694 .996660 .996632 .996614
Ak .001610 .0c01605 .001586 .001597 .001598 .001595 .0o01601 .001597

% error +.T % + .L 7 - .8% +.1% -.1% -.3% + .1% - 1%
Partial Void k .997123 .997103 .997083 .99T7oTT .997148 .997122 .99T7058 .99T7050
Ak .002036 .002oko .001992 .002001 . 002052 .002057 .002027 .002033

% error + .1% + .3% -2.1% -1.6% + .9% +1.1 -.3% -.1%
Slumping k .998715 .998706 .998649 .998656 .998757 .998731 .9986L49 .998662
Ak .003628 .003643 .003558 .003558 .003661 .03666 .003618 .003645

%error -.9% -.6% ~-2.9% -2.3% +.1% .1% -1-2% -.5%

‘Ol IX -
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APPENDIX D

OVERLAPPING REGIONS

One of the suggestions for avoiding ambiguity problems at interface is
to not allow the expansion and weighting functions to be discontinuous
at the same interface {4). This was attempted here simply by allowing
the flux spectra to be discontinuous at the region interfaces, but by
requiring the adjoint spectra from the lefthand region to be used accross
the interface a short distance into the righthand region. This is

depicted in Figure D.1,

The usual Pitterle bilinear scheme was used where the grouv constants
were calculated in each of regions (now 5 instead of 3), using the
approximate adjoint and flux as shown in the Figure. The regular
boundary conditions of continuous current and flux were used to determine
if this were a way to solve the problem. Results were obtained as a
function of width of the overlsp regions, ranging from 2 cm in a
region to, completely overlapping the reactor with the core adjoint.

The results are given in Table D.1 for the cases with the final adjoint
spectra. The cases which used the initial adjoint spectra are not shown
since the spectra is essentially continuous at the first interface and

overlapping had no noticeable effect.

The eigenvalues and reactivities are fairly sensitive to the width
of the overlap region, which is not very satisfying. For the
original flux case an overlap width of 10 cm or so (~ 2 diffusion
lengths) gives good results. For the final flux spectra the best
results are obtained with about 5 cm or one diffusion length. By the
proper choice of this width, the effects of discontinuities seem to
be ameliorated. However, this can also be obtained by using the
modified boundary conditions., The other disadvantage of this method

is that involves adding more regions to the reactor model.

FIGURE D. 1
X X H
| o _ ¢, b1kt o
l TN
Reg | 1 z 3 ) 5
tCore 1 ! Core 2 Blkt
¥ 4 L
L ¢1 ¢2 _ ¢3




TABLE D.1
OVERLAPPING ADJOINT STUDIES
8 GROUPS NUSYS

Case Orig. Flux-MF Adjoint MF Flux - MF Adjoint
Overlap Base 2 cm. 6 cm. 10 cm. A1l Base 2 cm. 6 cm. 1o cm. All
INITIAL k .995091 .995095 .995096 .995103 .995113 .995031 .995032 .995038 .9950k43 .9950k45
10% Void k .9966TT .996683 . 996694 .996698 .996708 .996632 .996637 .99664T .996650  .996652
Ak .001586 .c01588 .001598 .001595 .001595 .001601 .001605 .001609 .001607 001607
% error -.8% -.7% -.1 -.2% -.3% +.1% + b 7 + .6 % + .5 % + .5%
Partial Void k¥  .997083 .99710kL .997132 .99T71LY .997146 .99T7058 .997075 L9971k 997119  .99T1ko
Ak .001992 . 002009 .002036 .0020k1 .002051 .002027 .002043 .002066 .002076 . 002095
% error - 2.1 % -1.2 % +.10 +.3% + .8 % -.3% + .4 3 + 1.6 % +2.1% +3.0%
Slumping k .998649 .998682 .998729 .998756 .998780 .998649 .998683 .998730 .998755  .998778
Ak .003558 .003587 .003633 .003653 .003667 .003618 .003651 .003692 .003712  .003733

%4 error -2.9% -2.1% -.8% -.3% +.1% -1.2% -.3% + .87% +1.3% +1.9%

‘el IX -
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APPENDIX E

B _AND x EFFECTS

Originally RAUMZEIT did not allow different delayed neutron and
prompt neutron spectra, even though they are substantically different
from one another as seen in Figure E.1. However this difference was
accounted for by using a Beff instead of the actual (i.e. isotope

averaged) B's.

When RAUMZEIT was modified, the provision for allowing different
prompt and delmyed x's was added. The calculations were repeated using
actual B's corresponding to the Beff (0.0032) used previously and the
different prompt end delayed spectra, for the two transients and the
various group collapsing and synthesis schemes were tested. The
conclusions reached before hold up, and the agreement between the
various collapsing models, synthesis, and the exact results are
maintained. The results for the fuel slumping transient are shown
in Table E.1 for the original adjoint and final flux 8g model, the
26 group model and synthesis.

This means that the collapsing and synthesis scheme in eddition
to accurately predicting reactivity effects also account properly for
Beff and the generation time. In fact, the agreement between the two
calculational models indicate that using Beff and the same x's is
equivalent to using the actual B's and different x's. The differences

are only of the order of 1-2 %.



TABLE E. 1
B AND y EFFECT
Time 26 gr. 8 gr. ¢MF ¢ox 6 gr. ¢MF ¢ox Synthesis
millisec. A B A B A B A B
0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.845 1.843 1.839 1.838 1.846 1.845 1.839 1.8ko
L 1.718 1.715 1.720 1.718 1.727 1.725 1.712 1.711
6 1.624 1.619 1.631 1.627 1.637 1.633 1.616 1.610
8 1.665 1.657 1.668 1.676 1.6k45
1o 1.831 1.820 1.842 1.83L 1.851 1.843 1.815 1.807
12 2.173 2.158 2.178 2.189 2.164
14 2.877 2.852 2.901 2.882 2.918 2.900 2.856 2.839
16 L.62 L.s57 4.66 L.623 L.658 4.608 k.582
18 11.76 11.59 11.97 11.78 12.0k 11.93 11.86 11.82
20 1344 131.0 137.4 1347 1ko.o 137.4 135.1 135.L

A: ﬁp = %d but Beff is used

B: %p # ¢d and actual B is used

- "HLCIX -



FIGURE E.1

Prompt and Avereged Delasyed Neutron Spectra

GROUP STRUCTURES

|VII|

NEUTRON FRACTION

8G I i IT JIII) IV Vg VI
6G 1 I o s I

_r prompt spectra

_Z_)[*‘
0,2 l
1 |
U
- I
o.1 _#_ |
4 |
|
,___l .
0 ; ' ﬁL L e i‘ﬁ’lj‘_‘. ' :
1 2 3 N 6 7 8 9 1o 11 12 13

GROUP NUMBER






