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Reactor Transients

Abstract

In this report two methods of calculating fast reactor transients

economically are considered: the energy synthesis method and the few

group schemes. Two transients of interest for safety studies were

considered for a simple representative 1-d fast reactor model. These

were a partial voiding transient and a complete voiding and fuel

slimping transient.

The energy synthesis method gave excellent agreement both stati­

cally and transientlY with the exact 26 groups results. Only 3 trial

runctLcnswere used: the unpert.urbed core and blanket and the perturbed

core averaged f~ux spectra. The weighting functions were their corres-

ponding adjoints.

In few group schemes normal flux weighted collapsing and bilinear

(flux-adjoint) collapsing were considered. The flux weighted procedure

dIDd not really give satisfactory results with even up to 12 groups.

However the bilinear flux-adjoint schemes give satisfactory results

with only 6 to 8 groups when bhe unperturbed flux and perturbed

adjoint spectra (or vice versa) were used. For cases where the

reactivity effects are not so sensitive (away from one dollar),

acceptable results were obtained with just the unperturbed fluxes

and adjoints. With bilinear collapsing it is necessary to consider

discontinuities arising at interfaces between regions where the

flllE and adjoint-spectra are different •. This requires the current

conditions to be modified at such interfaces, while the normal

few group flux continuity is sufficient.



Untersuchungen der Spektralsynthese-Methode und der Wenig-Gruppen-

Methoden für Transienten Schneller Reaktoren

Zusammenfassung

In diesem Bericht werden zwei Methoden zur Berechnung von

Transienten in schnellen Reaktoren untersucht: die Methode der

Energiesynthese und die Wenig-Gruppen-Methode.

Zwei im Hinblick auf Sicherheitsstudien interessante Transienten

werden in einem einfachen, repräsentativen 1-dimensionalen Modell

eines schnellen Reaktors genauer untersucht: ein Transient für

teilweisen Verlust des Kühlmittels und ein zweiter Traasient für

vollständigen Kühlmittelverlust und Niederschmelzen der Brenn­

stäbe (Brennstoff-Verdichtung).

Die Methode der Energiesynthese liefert eine ausgezeichnete

Übereinstimmung sowohl im statischen als auch im transienten Ver­

halten mit dem als Referenzfall angenommenen 26-Gruppenergebnis.

Benutzt wurden lediglich 3 Versuchsfunktionen. Diese wurden im

ungestörten Reaktorkern und Brutmantel und im gestörten Kern mit

einem gemittelten FlußspektrUDl berechnet. Als Wichtungsfunktionen

wurden die entsprechenden adjungierten Lösungsfunktionen verwendet.

Bei den Wenig-Gruppen-Methoden wurde: die Energiezusa.D1D1enfassung

mit der normalen Flußwichtung und mit der bilinearen Wichtung

(Fluß/adjungiert) untersucht. Das Verfahren mit Flußwichtung lie­

fert keirezufriedenstellenden Ergebnisse bis herauf zu 12 Energie­

gruppen. Dagegen ergeben die Verfahren mit bilinearer Wichtung be­

friedigende Ergebnisse für nur 6 bis 8 Energiegruppen, wenn man den

ungestör-ten!luß und das gestörte adjungierte Spektrum verwendet

(oder umgekehrt). In Fällen, bei denen die Reaktivitätseffekte

nicht so empfindlich sind (etwas von 1 $ entfernt),erhält man hin­

reichende Ergebnisse unter der Verwendung der ungestörten Flüsse

und ihrer adj ungi.er-t en Ir

Bei der Energiezusammenfassung und bilinearer Wichtung müssen

Unstetigkeiten genauer untersucht werden/die an Grenzflächen zwischen

Gebieten auftreten, in deren sich die adjungierten Spektren unter­

scheiden. Die Stetigkeitsbedingungen für den Strom müssen an solchen

Grenzflächen modifiziert werden/während die üblichen Stetigkeitsbe­

dingungen für die Wenig-Gruppen-Flüsse verwendet werden können.
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I. INTRODUCTION

In many fast reactor transients it is necessary to explicitly con­

sider spatial and spectral variations in the flux during the course of

the transients. Normal static models for fast reactors consider from

20 to over 200 energy groups in 2 or 3 dimensions. To use such detail

routinely in transient calculations would be impractical because of the

high costs involved. Therefore approximations are needed, to reduce the

dimensionality of the problem for transient analyses by either decrea­

sing the number of energy groups, or space dimensions or both.

Spectral synthesis methods give a way of effectively reducin~ the

number of groups to he considered in the spatial and time dependent

calculations. These methods were originally developed for static pro­

blems (1,2,3) and hftve been carried over to transient nroblems

(4,5,6,7,8). The basic idea is to expand the space ener~-time

dependent flux as a linear combination of known spectral functions mul­

tiplied by unknown spatial and time dependent combinin~ or mixing

functions. These expansions are then substituted into the system

equations requirinp these to be satisfied in a weighted integral sense

gives reduced equations for the unknown combining coefficients. These

eql1ations can be derived either variationally or with the direct weight

and integrate technique (4,5,8). Recently Sta.cey (7) has had good

success with these methods for representative voiding and poisoning

transients in a 1-d fast reactor.

Another approach is to just reduce the number of groups to be con­

sidered to a reasonable number 6-8 by using a proup collapsing 01.'

condensation scheme. However, in actual fact, these condensation methods

are really discontinuous synthesis methods wi th single tria.l functions

and few group spatially dependent combining coefficients (4,5,8).

The difference in the various collapsing schemes lies in the choice of

the weighting function. When it is taken as unity, the normal flux­

weighted, few ~roup constants are obtained. When it is taken as the ad­

joint flux, the Pitterle (9) bi linear scheme results, which should lead

to better reactivity predictions. As always with discontinuous trial and

weighti.ng functions, special consideration must be given to the internal

Zum Druck eingereicht am: 11.6.1974
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boundary conditions at interfaces where the functions are discontinuous.

This is true of the bilinear scheme, and even now there is arbitrariness

as to what to do at these interfaces (12,13).

In this study both the energy synthesis method and various RrOUp

collapsing schemes were investigated. The framework of the study was

the simple, 1-d representative fast breeder power reactor model used

by Stacey in his synthesis study (7), using his partial voiding

transient and also a full voiding with fuel slumping transient. For

these l-d studies, the program RAUMZEIT (14) was modified to handle

up to 26 energy groups (the standard), modified interface conditions

and synthesis.

The results are encouraging end indicate that the methods should

be pursued further. Synthesis gives excellent agreement with the exact

26 group results with only three trial functions. Eight and six group

bilinear collapsing particularly with a combination of initialflux

spectra and final adjoint spectra (on vice versa) give comparable

results. Further studies will consider more complicated, multizoned

1-d reactors before proceeding to 2 and 3 dimensional reactors.

In the next two sections, the synthesis and group collapsin~

equations are derived. Then the calculational model is given for the

transients and results described.
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II. ENERGY SYNTHESIS METHOn

A. GENERAL REMARKS

The basic idea behind the various synthesis approximation techniques

is to satisfy the original system equations (including external and in­

ternal boundary conditions) in some approximate weighted integral sense.

The synthesis techniques were originally introduced in the variational

context by Selengut of reactor analysis (15). Since then these methods

have found with applications for expanding flux spectral and spatial

dependence especially in thermal reactors and now increasingly in

fast reactors. Recently Stacey (8) showed that the eRergy synthesis

method was able to quickly and accurately calculate fast reactor

transient where spatial and spectral efforts were important.

The methods involve assuming the solutionas an expansion of

the product of known spectral functions and unknown spatial and time

dependent coefficients. These are substituted into the system

equations, which are then required to be satisfied approximately in

a weighted integral sense. This yields the reduced equations for the

unknown functions. These approximate equations can be obtained either

by this direct weight and integrate procedure or by variational

formulations, with the same results (4,5,8).
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For reactor transient problems, the G multigroup diffusion equatioris
. ~may be wrltten as

d
C = - Cm dt m

m = 1, ••• M

(2)

where ~(r,t) Gx1 column vector of the multigroup flux

C scalar delayed neutron precursor density for type mm

r GxG matrix of removal and scattering cross sections

F Gx1 column vector of group Nu-fission cross section

D GxG diagonal matrix of diffusion coefficients

T GxG diagonal matrix of inverse group velocities

X,X
m

Gx1 column vector of prompt and delayed fission

neutron spectra, respectively

Am,ßm delayed neutron precursor decay rate and yield

per fission, respectively

together with the external boundary conditions of zero flux and current

and the internal interface continuity conditions of flux and current.

( 4 )

* In this study, the delayed X's were generally taken equal to the prompt

X and ß-eff was used. When RAUMZEIT was later modified to allow the use

of different delayed and prompt X's, the results were checked and all

the conclusions obtained here regarding the various ~roup cOllapsing

and synthesis schemes were verified. In addition, it was found that

using either ß-eff and the same delayed and prompt X's or the real ß' S

and different X's gave the same results.These results are shown in

Appendix E.
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An expansion of the form

may be assumed for the multigroup flux, where for each trial function n

~n 1S a Gxg matrix giving the energy dependence assumed with

multigroup flux, e.g.

Gxg

~n
- n= ~ 0 ...
~n 0 ...

2

0 ~n
3

~4
~n

5
n

~G-1

~n is a gx1 column vector of the n-th combining coefficient
e.g.

gx1

cf>n =

The g allows different spatial and time dependent combining coefficient

for g broad groupings of the spectral trial function, i.e. it permits

the many groups to be combined in g few broad groups.
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To obtain the reduced equations Equation (5) is substituted into

Equations (1) and (2). Then the flux equation is multiplied by aseries
.. . T . . .of nwe1ght1ng matr1ces w. to Y1eld the M+m vector equat10ns 1n the

1

M+m unknown vector ~ and C .n m

N
1:

n=1
W: {V • D V .1. ~ - 1: .1. ~ + (1-8) X FT

.1. ~1 "'n 'f'n "'n 'f'n p "'n 'f'n (6 )

N
1:

n=1
~ - A Cn m m

d C
m---

dt = 0

where w. is a Gxg matrix g1v1ng the energy dependence of the i-th
1

weighting function of the equation

Siroilarlythe flux and current continuity conditions at interfaces

roust be satisfied in a weighted integral sense

N
I:

n=1
= 0 (8)

Fwhere w.
1

i=1, •••• ,N

is a Gxg matrix with the energy dependence of the i-th

weighting function for the flux continuity condition

is a Gxg matrix with the energy dependence of the i-th

weighting function for the current continuity condition.

The various synthesis (or collapsing) schemes arise from the

choice of the tPn (as well as the g broad groupings) and the Wie The

weightings for the differential equations and interface conditions

do not have to be the same. In fact for the discontinuous synthesis
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case with different expansion and weighting functiom in different

regions, this is impossible and a number of possibilities exist.

The next section discusses the continuous spectral (or energy) .

synthesis methode
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B. ENERGY SYNTHESIS

In the energy synthesis considered here the same expansion

functions and wei~hting functions are used throu~hout the reactor.

The flux expansion functions are considered to be spectra functions

obtained elsewhere, e.g. from zero dimensional er space dependent

calculations. The weighting functions are taken as the corresponding

adjoints. The expansion then is a Gx1 vector of the many group flux

spectra times aspace and time dependent combining coefficient, i.e.

~ = ~ tJJ. ~.(r,t)
i ~ ~

where

and

tIJ· =
~

i

w. =
1

i

*tJJ·, tJJ·1 ~
are the i th multigroup flux and

adjoint spectra respectively

The equations for the flux and precusors then become in matrix

form

'" .. ~ t - (1-ß) '" ptr ..
V • D V cf> - Xp ~

r ~. "'. = ~ ~"$+ Xm Cm dCm

C = ß ptr."$- x Cmm m m

where

l is a Nx1 vector of the spatially dependent combining

coefficients 4> i

( 11)
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and the corresponding cross section matrix and vector elements are

given as

'" T
D •• = w. D1jI.

1J 1 J

t. T
1: $. ( 12)= w.

1J 1 J

pt. = F
T · $.

1 1

'" i T
Xp = w. · Xp1

'\ID T · m
X· = w. X1 1

'" T
1: •• = W. 1: 1/1.

1J 1 J

At the internal interfaces, all the trial function expansions and

weighting functions are continuous, therefore regardless of the

weighting in the flux continuity equation, the flux continuity condition

1S

-+ -+

41+ = ~_

For the current continuity condition it 1S reasonable to weight

with the weighting function that appears at the interfaces. Since these

are the same throughout the reactor, there is no ambi~ity and the

resulting current continuity in matrix form is

These are the same conditions and equations that one obtains for

spectral synthesis using a variational functional with continuous flux

and adjoint spectral trial functions (4,8).

In applying the method, adecision must be made as to how many trial

functions are to use, and also which regions or conditions they should

represent. When only a few trial function are required, the method

offers great savings. This is demonstrated in the Results t Section where

for the sampIe problem only 3 trial functions are needed, and are simply

the static unperturbed and ~erturbed spectra.
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III. GROUP COLLAPSING METHODS

A. GENERAL REMARKS

There are two main differences between group condensation schemes

and the energy synthesis method discussed above. The first is that

the many groups are reduced not to one broad group but to g broad

groups. This is evidenced by the fact that wi and ~i become Gxg

matrices and the $i become gx1 vectors instead of scalars. Secondly,

different trial and weight functions are used in different parts of

the reactors, rather than using the same ones throughout. However, only

one expansion is used in each region. This can cause problems at inter­

faces where both trial and weighting functions are discontinuous.

There are two common condensation schemes. One is the normal fJl1X

wpighting scheme and the other is the bilinear or flux-adjoint weighting

scheme discussed by Pitterle (9). In the flux weighting scheme, the

elements of the w matrices are unity, whereas in the bilinear scheme

they give an adjoint spectrum dependence. The interface conditions are

only a problem with the bilinear scheme, since the wei~hting function

as wel~ as the trial functions may be discontinuous at an interface. In

the normal scheme, the weighting function is the same (unity) throughout

the re~ctor an0 introduces no discontinuities at the interfaces. Both

methods are descrihed below.



- III.? -

B. NORMAL FLUX WEIGHTED CONDENSATION

In both the flux arid usual bilinear group co.l.Lapsi ng schemes (8)*,

the single expansion function in each region for the flux is the same,

and has the form of a Gxg matrix

1/1 1/ r 1/1. 0 · . · · · 0

iE1
1

1/1 2/ r 1/1. 0 · . · · · 0

iE1 1

. . . . . . · ·
~I = (12)

0 1/1./ r 1/1. · 0
.J ie:2 1

. . . . . .
0 0 · I/IG/.r 1/1.

1
le:g

and

where the

~. is the ith broad group flux integral in each of the
1

g broad groups

1/1. is the ith multigroup flux spectra
1

The rows in each column indicate the group collapsing scherne, on

which multigroup are combined to form each of the g broad groups. Also

the broad group ~. actua.lly represent the physical hroad group flux,
1

i.e. the sum of the many group fluxes in the broad group.

~ Another bilinear weighting scheme is given in Appendix C.

It has a different assumed flux energy dependence
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The difference between the normal and bilinear wei~hting schemes

lies in the choice of the weighting matrix. For the usual scheme, the

W matrix has the same form as the $ matrix except that the non-zero

elements are unity. In effect this means that the many group equations

are simply added up according to the new broad group structure, i.e.

the Gxg matrix looks like

W = w
I - 0 0

0 0

. .. . (14)
0 0

. .. .
0 0

which is identified as wI ' the unity weighting matrix.

The resulting diffusion theory equation in each region is given as

- '" ~- 'T dt

where ~ is the vector of broad group fluxes and now the gxg cross

section matrices and vector elements are given as

. I:k Di 1/1.
1.1:: 1.

·I:k $i
1.1::

(16)
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.rk l:tot t/Ji= 1E: 1 .

. rk 1/Ji
1E:

.rI .rJ 1/Ji l: .
== 1E: JE: 1 ....,J

ib 1/Ji

~p = .r
k

'f.-p
k 1E: i

~Jllc = .r
k

'f.- m.
1E: 1.

which are the definitions of the normally used broad or few group

constants.

Since the same weighting function is used throu~hout the reactor

and it is simply the unity weighting matrix, it can be used at the

interfaces without ambiguity, resulting in the normal few group flux

and current continuity conditions

( 17)

These are the normal few group equations and have also been derived

without problems from variational principles (4,8). These normal

diffusion codes solve these equations. The problem lies in choosing

the number of reduced groups and their structures, as weIl as the flux

spectra to use in the expansion.
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C. BILINEAR CONDENSATION

With the normal flux wei~hted condensation scheme, the difference in

importance of the various multi~roups in the collapsed broad ~oups

is not accounted for. Using adjoint on bilinear weightin~ accounts for

that and from first order perturbation theory should give better reactivity

predictons (9). The flux expansion~ is the same as before but now the

weighting matrix 1S taken to represent the average adjoint structure

in the collapsed broad groups, i.e.

1/1*/1 . I: 1 I/I~ lm .
1- 1.E: 1. 1.U

1

1/I*j1 ·I: 1 I/I~ tm.2- 1.E: 1. 1.U
1

o •••••••••••••••••••••••••••••••••••••

o •. 111 ••••••••••••••••••••••••••••••••••

o •••••••••••••••••••••••••••••••••••••••••••••••••

w = o ·I:21.E: *"l/J. ÄU. • •••••••••••••••••••••1. 1.
(18)

..........................................................

o o •••••••••••••••••••• 1/1*/1G ....
U

g

,i(
. I: 1/1. im.1.E:g 1. 1.

where

1/1; 1.S the i-th multigroup average adjoint flux
1

~Ui is the lethargy width in the i-th multi~roup

UI = ·I:I ~u. is the lethargy width 1.n the I-th1.E: 1.
broad group.

Carrying out the substitution and weighting as before, Equations (15)

again result for the few group fluxes and precursors in each region,

*' Another formulation 1.S given in Appendix C. It is more complicated

and does not really work as weIl, because the interfaces are not

properly treated. That given here is essentially the Pitterle

scheme (7).
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with the exception that the few group gxg cross section matrices and

vectors are now given by

j)ck =
*i~k Fi 1/Ii

E 1/1.
1

*1 . Ek 1/1. 6u. . Ek 1/1.
l€ 1 1 1€ 1Uk

. EI .E
J * ~}i1/1. E..

t'I+J
1€ J€ J l+J=
1 .EJ '* .Er 1/Ii

..I... J€
1/Ij 6uj 1€U.

J

~Pk
i~k iti 1/1~

=
1 . Ek 1/Ii 6u .
Uk

1€ 1
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Notice that when the $7 are taken as unity, the normal flux

weighted group constants result.

With bilinear weighting at interfaces between different regions

the adjoint or weighting function spectra as weIl as the trial function

or flux spectra will also be discontinuous as opposed to the normal

flux weighted case. Therefore, the choice of the weighting functions

for the interface conditions is not quite so straightforward.

For the current condition, it is not unreasonable to use the

averaged adjoint spectra as weighting function at the boundary, i.e.

(20 )

which results in

'V 'V , • ••• •
where D+ and D are the b111nearly collapsed d1ffuS10n coeff1c1ent, at

the positive and negative side of the interfaces, respectively and the

S matrices are given by the cross products

:JE
i~k $i+ Di- $i-

S ... =.:.:..----------
kk_ "*

1 . Lk $1'+ lm, ,Lk $1'----:u; 1 1e:
Uk

(22)

*".Lk $1' Öu.. Lk $1'+1e: - 1 1e:

Notice that when the weighting functions are continuous this gives

the normal current continuity condition.
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If the effects of the discontinuities in the weighting functions

are ignored, and the weighted currents on each side are rnerely

equated, i. e , ,

then the more fkmiliar ~sual condition is obtained

(24)

where the diffusion coefficient is defined as in Equation 19. The results

show that this is not as good as using the S matrices.

The S matrix formulation is the same as that Terney (10) and

Stacey (8) obtain from variational formulations by assuming that the

variations in the flux combining coefficients at the interface are

equal. There are ambiguities in the variational approach when both the

weighting (adjoint) and trial (flux) functions are discontinuous at

the same interface because, as is weIl known the problem becornes

overdetermined (4,8,10,11,12). One way to alliviate the over­

determination is to equate variations at the interface, which gives

these results obtained here. Another approach is to not allow both

flux and adjoint functions to be discontinuous at the same interfaces (4).
To do this artificial overlap regions are added where the flux or

adjoint from the adjoint region is used together with these for the

region in question. This approach was tried and the results are given

in Appendix D. Unfortunately, it turns out that they are sensitive to

the width of the overlap region, which apparently must be aleast

1-2 diffusion lengths thick, and seems to act rnerely as the buffer

to diminish the effects of the discontinuity. The approach also has

the disadvantage of requiring extra regions. Buslik (11,12) has tried

to alliviate this problem by adding the boundary conditions to the

variational functional with Lagrange Multipliers which should be

representative of the values of the adjoint current and flux at the
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interface. Recently, Stacey (13) has proposed notjust equating the

variations at the interface but postulatinr some relRtionship between

them.

The end results of all approaches is to decide somewhat arbitrarily

on a weighting function to use in requiring the interna! continuity

conditions to be satisfied. Here with the substitute and integrate

procedure, the choice was simply to use the avera~e adjoint or

weighting spectra at the interface to introduce the S matrices.

For the flux continuity the choice is again not clear. In fact,

there are 3 reasonable approaches. The first and rrobably physically

most logical is just to require continuity of the few group fluxes,

i.e.

This implies that the weighting matrix is

F =ww I
(26)

given ln Equation (14). Equation (25) may be written in the more general

form as

where R
l

is the unit matrix. This condition requires continuity of the

few group flux and the choice is to use the averaged flux adjoint or

weighting function at the interface, i.e.,

where the w+ and ware those given by Equation (18) for each side of

the interface.
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With thf> enrl result that

(28)

where R2 eS a diar-on~l ~xg matrix ~iven hy

(29 )

A third alternative is to weight the flux continuity condition with

the averaged adjoint current spectra at the interface, i.e.

(30)

where the Cll t S are aga i n by equation (18). This yields

where the cross product diffusion coefficients matrices C are given by

"*
C+

i~k t/Ji+ Di+ tlJi-
=

k
1 ·1:k * im. ·1:k tlJ·tlJi+

Uk
1E 1 1E 1

(32)

*i~k tlJi- Di_ tlJi+
C =

k
1 • 1: tlJ~ L\u. ·1:k tlJi- lEk 1- 1 1EUk

where

(34 )
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This is the result Stacey (8) Terney (10) obtain variationally when

the adjoint current variations are equated at the interfaces.

The actual best choice of boundary conditions can really not be

determined beforehand and must probably be resolved by actual comparison

of the various approximationswith the exact many group calculations.

The various possibilities given here were investigated numerically

with the model given in the next section. The results indicate that

using S matrix is necessary but that the usual flux continuity condition

is sufficient when the S + R matrices are used, the diffusion theory

finite difference equations at the interface are different than normal

and the usual programs must be modified. Appendix A gives the modified

diffusion theory equations and the alterations which were made to

RAUMZEIT to handle tham.
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IV. TEST PROBLEM

In order to economically test the syntheses and various group

collapsing procedures, Stacey's (7) one-dimensional, representative

fast breeder power reactor model was used. The reactor consisted of

a single core zone of half width 175 cm and ablanket of width 50 cm.

It is depicted in Figure 1 together with the material concentrations

in the two zones.

Two transients were considered which are of interest for safety

analysis. The partial voiding transient (identical to Stacey (7))
was initiated by linearly decreasing the Na concentration in the

50 cm of the core by 50 %in 0.5 sec. To crudely mock up the Doppler

effect and keep the total inserted reactivity about 50 %the B-10

concentration in that region was increased by 20 %in the time interval

0.1 to 0.5 sec. The second transient was a full voiding of the

central region coupled with the addition of fuel and B-10 to mock up

fuel slumping and the doppler effect. It was initiatedby voiding

the central 50 cm of Na in 20 millisec. The fuel concentration was

linearly increased 50 %and the B-10 to .00117 in the 2 to 20 millisec

time interval.

Transient and static calculations were run with the finite difference,

1-d space time program, RAUMZEIT (14). It was mOdified to handle up to

26 groups, synthesis, and the modified interface conditions needed when

bilinear weighting is used. The basis of comparison were the 26 ~oup

results obtained for both static and dynamic calculations. The 26 group

cross sections were obtained from the Karlsruhe cross section set (16),

and were used to obtain the collapsed group cross sections through

the NUSYS system (17).

The static eigenvalues and reactivities for the 26 group, 1-d

RAUMZEIT calculations are given in Table I. The transient power

distributions initially and at the end of each transient are shown

in Figure 2. The power distribution at the end of the partial voiding

transient is the same as the initial power distribution, while that

at the end of the fuel slumping transient refers to the addition of

more fuel. In, both cases, the static and transient power distributions
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are essentially identical. This means that the spatial flux effects,

are not so important for these transients. However, the reactivity

effects must be calculated well so that the amplitude or total power

changes are accurately predicted.

The total powers, power factions and moments for both transients

are ~iven in Tables 11 and 111. The results are also plotted on

Figures 3 and 4. In addition, the point kinetics results for both
. . *"cases are shown ln the flgure •

The point kinetics reactivity input was obtained by linearly

interpolating between the reactivities obtained for each of the static

calculations at the 3 perturbations. For the partial voiding transient

the results are not too bad, with errors in the total power 5 - 10 %
durin~ the transient. For the fuel slumping transient, however, the

powers are too high by up to factors of 10 with point kinetics. This

indicates that it is not sufficient to use the end point reactivities

and the interpolated in between values but that one must have a good

reactivity trace or table as input. In other words, more 26 g static

calculations or improved perturbation theory calculations are needed.

When a better reactivity trace was used, point kinetics was capable

of giving acceptable powers values.

* The point kinetics were calculated with a KFK version of the

AlREK III. code (19).
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TABLE I

STATIC 26 GROuP AND SYNTHESIS RESULTS WITH RAUMZEIT

EIGENVALtW,S AND REACTIVITIES:

Cas e

Initial k

10 %void k
p

%
50 ~ void k
+ B-10 p

%

100 %Void
More 'F'uel
+ B-10 k

o
%

26 group

.995005

.996606

.001601

.997042

.002037

.998682

.003677

Synthesis
Partial Voiding Fuel Slumping

Model Model

.995007 .995007

.996608 .996603

.001601 .001596
0 (-.'3 %)

.997049 .997037

.002042 .002030
(+.2 %) (-.3 %)

.998677

.003670
(-.2 %)

POWER FRACTIONS AND MOMENTS

Case

Initial (PF) Core 1
(PF) Core 2
(PF) Blanket

Moment

50 %Void

100 %Void
More Fuel + B-10

26 group

.1990

.7897

.0113
71.2

.1998

.7891

.0111
70.7

.2730

.7171

.0099
65.0

Synthesis
Partial Voiding Fuel Slumping

Model Model

.1990 .1990

.7898 .7897

.0113 .0111
71.2 71.2

.1998 .1998

.7892 .7891

.0110 .0110
70.7 70.7

.2730

.7170

.0098
65.0







TABLE !II

FUEL SLUMPING TRANSIENT

MODEL 26 group Synthesis FLUX WEIGHTED BILINEAR WEIGHTED 6g 8g 6g 8g
TIME 6g 8g 6g 8g
(sec) or F - or A MF F- or A or F- MFA

TOTAL REACTOR POWER

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
.001 1.282 1.280 1.284 1.292 1.286 1.281 1.282 1.281 1.282 1.280
.002 1~ 845 1.839 1.856 1.891 1.845 1.842 1.846 1.839 1.846 1.839
.004 1. 718 1. 712 1.717 1.802 1.713 1. 714 1.727 1.720 1.733 1.719
.006 1.624 1.616 1.592 1.716 1.611 1.617 1.637 1.631 1.641 1.626
.010 1.831 1.815 1.698 1.961 1.787 1.812 1.851 1.842 1.854 1.833
.014 2.877 2.856 2.352 3.160 2.696 2.812 2.918 2.901 2.905 2.868
.018 11. 755 11.857 5.541 14.59 9.008 10.70 12.04 11.91 11.61 11.46
.020 134.37 135.1 16.71 210.8 61.5 102.5 140.0 137.4 122.6 122.4

Computing H

Time :ror 40 .3 .8 1.7 0.8 1.7 <:.
Transient 0\.
(Min. )

POWER FRACTIONS AND MOMENTS

o sec

Core 1 .1990 .1990 .1988 .1989 .1989 .1989 .1988 .1986 .1988 .1988
Core 2 .7897 .7899 .7899 .7898 .7899 .7898 .7900 .7901 .7900 .7899
Blanket .0113 .0111 .0113 .0113 .0112 .0113 .0112 .0113 .0113 .0113
Moment 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2
.020 sec

Core 1 .2735 .2747 .2704 .2713 .2730 .2734 .2725 .2733 .2726 .2734
Core 2 .7167 .7156 .7198 .7169 .7172 .7168 .7177 .7169 .7176 .7168
Blanket .0098 .0097 .0098 .0098 .0098 .0098 .0098 .0098 .0098 .0098
Moment 65.0 64.9 65.4 65.0 65.0 65.0 65.1 65.0 65.1 65.0
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V. RESULTS

A. SYNTHESIS

The syntheis trial and weighting functions for the 2 transients were

obtained from 26 group, 1-d static diffusion theory calculations. In each

case only 3 functions were used. Two were the avera~ed spectra in the core

and blanket for the unperturbed reactor.

The third trial function was taken as the averaged flux spectra in the

central core region for the perturbed reactor condition, again obtained

from a static, 1-d 26 group diffusion theory calculation. For all trial

functions,the corresponding adjoints were taken as the weighting functions.

The static eigenvalue for the 26 group and synthesis models are ~iven

in table I for various reactor conditions. The agreement in reactivity

worths is excellent. In addition the power distribution shapes also are

in good agreement as shown in table I by the power fractions in each of

the 2 core zones and the blanket, as weIl as the moment of the power

measured from the center line*. Figures 2 show the power distribution

which can not be distinguished from the 26 group static transient results.

The transient results bear out the promise of the static calculation.

The total power as a function of time for both transients are tabulated

in Tables 11 and 111 together with initial and final power fractions and

moments. The agreement between the transient total powers calculated with

synthesis and 26 groups at the end of the transient is within 1 %.

In addition, the power sharing is also weIl calculated as revealed in

Tables 11 and 111, as weIl as in Figure 2. Only in the fuel slumping

transient 1S there appreciable spectral power shifting, but it is weIl

calculated.

The remarkable time saving feature of synthesis for the transient calculation

is also shown in Tables 11 and 111. The time requirements with synthesis

are equivalent to using a 3 group model. However, the accuracy obtained

is on the order of that obtained with 6 to 8 or more groups.
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FEW GROUP RESULTS

FLUX WEIGHTED GROIW CONSTANTS... -..-.__.

The simplest approach for obtaining few group constants is to use the

flux weightin~ procedure. Many 1-d, static caIculations were carried out

within the NUSYS system to determine the best few group structures for

various numbers of groups. The standard was to do weIl on static eigen­

values and reactivity worths for a variety of perturbations ran~ing from

voiding to adding fuel and boron. In each case, the collapsing was done

with the averaged 26 g spectra in each region obtained from the 26 g,

1-d diffusion theory calculation for the unperturbed reactor. It was found

help-ful to select group structures so that the ratios of perturbed to

unperturbed fluxes was nearly the same for each group in the new broad

group. The best group structures are given in Table IV and Appendix B.

Table IV gives the static results for the best 6, 8 and 12 group

structures for the cases with perturbations in the central core zone

corresponding to the partial voiding and fuel slumpings of interest.

There is fairly substantial improvement in going from 6 to 8 groups, but

going from 8 to 12 groups brings less of a change. In most cases, the

reactivity errors are less than a few percent. However, for these transients

such accuracy is not good enough . The transient results are given in

Tables 11 and 111 for 6 and 8 groups and are shown in Figures 2 and 3.

Even going to 12 ~ gave unacceptable errors of more than 30 %in the

total powers for the fuel slumping transient.

These results show the importance of calculating the reactivity

extremely accurately for perturbations above 50 C and in the neigh­

borhood of $ 1. In fact for the partial voiding transient, the point

kinetics results are even better than the 8g flux weighted result,

because of the better reactivity values. Adding more regions as transition

reg10ns near the interfaces had no effect on calculating the reactivity

worths of the perturbations. Therefore in order to gain acceptable

accuracy more than 12 groups would have to be used when simple flux

weighting is used for the collapsing. This originally motivated the

attempt to see if bilinear weighting with only a few (6-8) groups

would work. These results are given in the next section.
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TABLE IV

NUSYS FEW GROUPS STATIC EIGENVALUES

r-ase 26 g FLUX WEIGH'T'ED BILINP.ARLY WEIGHTED
UNPERTURBED SPECTRA

121S 8g 6g 8g 6g

Base k .995085 .995063 .995065 .995049 .995089 .995091

10 %Void k .996684 .996697 .996712 .996668 .996697 .996698

I1k .001599 .001634 .001647 .001619 .001610 .001609

%error (2.0 %) (+3.0%) (1-3 %) (7 %) (5 %)

Partial

Void k .997119 .997166 .997213 .996942 .997123 .997089

I1k .002034 .0021030 ~02148 .001893 .002036 .001998

% error (3 . 3 %) (5-6 %) (6-9 %) ( .1 %) (-1 .8%)

Total Void k .998748 .998755 .998791 .998267 .998715 .998633

+ More Fuel t,k .003663 .003693 .003726 .003218 .003628 .003542

+ Boron %error ( .8 %) (+1.1%) (-12.1%) (-9 %) (-3.3%)

The best few group structures were found to be

12 g: 1-3, 4, 5, 6, 7, 8-9, 10, 11-12, 13, 14-15, , 16-17, 18-26

10 g: 1-3, 4, 5, 6, 7, 8-9, 10, 11-12, 13, 14-26

8 g: 1-3, 4-6, 7, 8, 9, 10, 11-12, 13, 14-26

7 g: 1-3, 4-6, 7, 8-9, 10, 11-13, 14-26

6 g: 1-3, 4-6, 7, 8-9, 10-13 , 14-26
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VI. BILINEARLY WEIGHTED GROUP CONSTANTS

The first attempt with bilinearly wei~hted cross sections was to use

the initial or unperturbed averaged spectra. Both the flux and adjoint

spectra in each region were obtained again from the 1-d, 26 group static

calculation of the unperturbed reactor. The reduced group constants were

obtained within the NUSYS system using the version of the condensation

routine modified by Kiefhaber to handle the Pitterle method.

The static eigenvalues obtained by NUSYS are shown in Table IV. Both

the6 and 8 group reactivities are much improved over the flux weighted

values. In fact the 8 group bilinearly weighted results are as ~ood as

or a little better than the 12 group flux weighted results. However, the

reactivity for the fuel slumping perturbation still has errors which

are too high.

The transient results are again g1ven 1n Tables 11 and 111 and on

Figure 2.

Table 11 shows that both the 6 and 8 g group constants obtained with

bilinear weighting using the unperturbed flux and adjoint give acceptable

results for the partial voiding transient, the 8 g results are too low

by only 2 - 3 %, and even the 6 g results are only 5 - 6 %.

However, for the fuel slumping transient with a reactivity of the

order of 1.15 the seemingly small errors in reactivity (1 ~) are actually

very important. The 8 group power at the end of the transient is 23 %
too low which is probably, only marginally acceptable. The 6 group power

is 54 %too low and clearly unacceptable.

Therefore, when the reactivity is in the neighbarhood of $ 1, it

must be calculated with good accuracy. One approach would be to use more

groups. When 12 groups are used the reactivity error for the fuel

slumping case dropped to about .3 %and gave powers which were acceptable,

only 6 or 7 %too low. However, continually adding groups is not so

attractive an alternative, especially when the number must be greater

than 12 or so. Another approach is to calculate the reactivity better

by a W1ser choice of flux and adjoint spectra. Using a combination of
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the initial flux and final adjoint spectra (or vice versa) is a way to do

this. In a sense this approaches the synthesis method where use 1S made

of knowledge or an estimate of the sp~ctra at the beginning and at the

end of the transient. For the 8 g bilinear scheme it is apparent that only

a little improvement is needed.

When this approach is used the interface conditions between regions

1n which different adjoint and flux spectra are used become important.

The studies with only the unperturbed flux and adjoint were originally

made by ignoring the modified interface condition. That is, only the D

matrices and not the S matrices were used for the current condition and

the usual few group flux continuity conditions were used. But since the

original adjoint in both core regions are nearly identical the S + D

matrices at the important first interface were essentially the same

only a barely discernible change in the results was observed when the

S matrices were added. However, for the cases where the adjoint spectra

Was different in adjacent regions, namely, using the slumped fuel case

adjoint appreciable efforts arF' apparent. Tables V + VI give the results

for static eigenvalues and reactivities for the various 8 + 6 group

cases using the version of RAT~7,EIT modified to handle the new interface

cond i t i ons •

The importance of the current interface conditions for 8 groups can

be seen in Table V by comparing the columns with D's and those with S's.

For the cases with the original adjoint there is essentially no differen~e

in rpsults since the adjoint is practically the same at the core lnt~r­

f"lce. and the S + D mat.r i ces are nearly equaL, When the original ad j oi rrt

and final flux A.re used to get the few group constants, all the eigen­

values an"i reactivity are calculated extremely weIl. When the final adjoint

and intial flux are used, however, the eigenvalues and reactivities

deteriorate when the interface conditions are ignored. When the modified

conditions are used, i.e. the S's are used, excellent agreement is again

obtained. Using final flux and adjoint is always as bad as or a little

worse than usin~ the original flux and adjoint.

The other columns show the effect of us i ng the var i ous flux

continuity conditions given in Section 111 as weIl as the improved current

condition. There is no constant improvement in using R2 and R
3

over the
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the usual few group continuity condition (R1 = UNIT MATRIX). The usual

condition works as weIl as Bny of the others. Therefore, because of its

simplicity and physical meaning, it is reasonable to use it for the

flux continuity condition.

The results are the same for 6 groups as Table VI shows. When the

adjoints are discontinuous, the modified current condition with the

S matrices must be considered. For both cases when a mix of the final

and initial flux and adjoint spectra are used is the agreement with

the 26 of static eigenvalues and reactivities good.

The final and intermediate reactivities determined with the 8 group

bilinear mixed mode scheme, including those with S matrices, gave really

acceptable results. A disadvantage of using a few number of groups with

mixed weighting is that both the interface conditions become more

important and the intermediate reactivities are not calculated as weIl

which can lead to erroneous transient results. In fact when only 1 group

was used with the mixed modes the total overall static reactivity cases

fairly weIl predicted but the partial perturbations had reactivity

errors of 10 - 58 %leading to transient power errors of factors of

1/2 to 10.

The 6 and 8 g transient results for the difficult fuel slumping

transient are also given in Table 111 and Figure 4 for both cases with

mixed fluxes and adjoints. All these results have the corrected

current continuity condition and the usual flux continuity conditions.

The 6 and 8 group models give essentially the same results and either

could be used. This accuracy is in contrast to when only the original

fluxes and adjoints are used for the weighting. Further, the accuracy

for both mixed mode models is good and comparable to that with

synthesis. Power distributions are shown in Figure 2 and are also good.

The results for the 2 mixed mode model are different but within

10 - 12 %of each other. This reflects both the differences in the two,

spectra combinations and also the effect of the interfaces. The better

results are those with the nearly continuous adjoint at the interface.

However, for both combinations the results are acceptable, especially

for the 8 group model.



TABLE V: a GROUP BILINEAR STUDY,OF INTERFACE CONDITIONS

SPECTRA FOR '.o 0+ 00 0MF o 0 * 0MF 0MF '*,

COLLAPSING 0 MF 0

Case 26 g D,R1 S,R1 S,R2 S,R
3

D,R1 S,R 1 S,R2 S,R
3

D,R1 S,R 1 S,R2 S ,R
3

D S S,R2 S,R
3

Base k ...995005 .994994 .994996 .99496li .994986 -995032 995033 995003 ,995053 .994994 994997 .994967 ,99498E .994973 994971 B94941 .995001

10 %void .996606 -996592 .996594 ,996565 -996585 .996620 .996630 996601 .996648 .996590 ~996592 .996563 ,996583 .996558 -996565 996536 ..996598

ök 0001601 <001598 ~001598 0001600 .001599 .001588 1c01597 f001598 0001595 .001596 rOo1595 ~01596 .001595 ~001585 .001594 1-001595 .001597

%error 7'l!'I.19 -0.19 -0.06 -0.12 -0.81 -0.25 -0.19 -0.37 -0.3 -0.37 . -0.31 -0.37 -1.00 -0.44 -0.37 -0.25

Partial Void .997042 ,997009 ·997011 ,996982 -997002 ·997017 ~97072 997044 .997090 ~997028 997030 {)97002 ..997021 ,,996990 997043 997015 .-997082

'002037 <002015 ,,002015 <002017.002016 ,001985 .002039 002041 .002037 0002034 1002033 1002035 002033 ..002017 002072 i002074 .002081

1.07 1.07 -0.98 -1.03 -2.54 +0.09 +0.20 0 -0.2 -0.2 -0.1 -0.2 -0.98 i+1.72 ,+1.81 +2.16

Total Void _998682 ,998630 ;998632 0998608 ,998625 .998592 [998698 998674 998714 ,998673 998675 998653 ..998667 .998595 998700 998677 .998744

with More '003677 ,003636 c003636 .003643 -003639 .003560 1003665 003671 003661 "003679 003678 003688 003679 0003622 03729 003736 .003743

Fuel + B -1.09 -1.09 -1.02 -1.03 -3.28 -0.32 -0.16 -0.44 +0.05 0 +0.24 +0.05 -1.5 +1.41 +1.68 -0.95
.

<:
H

.l:'"



TABLE VI

6 GROUP BILINEAR STUDY OF INTERFACE CONDITIONS

x x x x
00 00 0MF 00 0MF 00 0MF 0MF

.. ---'.
Case 26 g D S D S D S

Base .995005 .995001 .995009 .995010 .995017 .995034 .995035 .994976 .994966

10% Void .996606 .996605 .996612 .996612 .996619 .996629 .996639 .996570 .996570 -<
H.

.001601 .001604 .001603 .001602 •001602 .001595 .001604 .001594 .001604 V1

(+0.19%) (+.06%) (+.06%) (+.06%) (-.37%) (+0.19%) (-.43%) (+.19% )

50% Void+B .997042 .996986 .996993 ·997030 .997037 .997043 .997116 .997016 .997082

.002037 .001985 .001984 .002020 .002020 .002009 .002081 .002040 .002116

(-2.552) (-2.60) (.84% ) (-.83%) (-1. 37%) (+2.16%) ( 1. 15%) (+3.88%)

More Fuel .998682 .998550 .998557 .998690 .998696 .998556 .998697 .998577 .998715
.003677 .003549 .003548 .003680 .003679 .003522 .003662 .003601 .003749

t3.48%) (-3.52%) (+0.8%) ( .05%) (-4.21%) (-.41%) (-2.07%) (+1.96%)
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CONCLUSIONS

Synthesis Methods

The results obtained here show that energy synthesis is a very

promising techniques for treating fast reactor transient. In the 2

transients of interest only 3 trial (and Adjoint weightung) functions

were needed to obtain excellent agreement with the "exact" 26 group

results.

However, for more complicated reactors with more dimensions and

representative regions i t may be necessary to use more trial functions

say 6-8 to span the spectra of the reactor and the perturbation. If

too many energy trial functions are required, it may be necessary to

use discontinuous synthesis methods and face the interface problem

again. A basic trouble with the energy synthesis approach for real

reactors is that a 2 or 3 dimensional but few group transient problem

still must be solved.

Probably the most attractive alternative is to use a Kaplan type

approach, where the problem will always be reduced to a one-dimensional

synthesis in the z-direction by using either partially or fully collapsed

planar trial functions.
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Few Group Methods

With few groups methods, the importance of preserving the reactivity

effects of a variety ofperturbations (especially in the neighborhood

of $ 1) become apparent. For the normal flux weighting condensation

scheme more than 12 groups would be needed to get acceptable accuracy.

By uS1ng bilinear flux-adjoint condensation schemes, the reactivity

effects and transients are calculated much better. Using only 8 groups

and the original Flux and adjoint spectra to do the collapsing gave

both static and transient results better than the 12 group flux weighted

case.

There are cases where using the initial spectra is not quite good

enough. When a mixture of the initial flux and final adjoint spectra

0r vice vasa) is used, excellent results are obtained also for these

cases. This may be thought of as modifying either the flux or the

adjoint function slightly to get a better reactivity consideration of

the perturbation using this method enabled 6 or 8 groups to be used

to get comporable accuracy as with synthesis.

With bilinear weighting it is necessary to ac count far the dis­

continuities which occur at the interfaces between regions where

different flux and adjoint collapsing spectra are used. This lS

especially true of the adjoint and the effect it has on the current

continuity condition. When the normal current condition at the inter-

face is modified by using the averaged adjoint spectra at the inter-

face, the problem appears to be resolved. The usual few groups flux

continuity condition appears to be acceptable without modifications.

The methods will carry over directly to more complicated multi­

dimensional reactors. For these problems however, the interface condi­

tions and discontinuities may become even more important. In addition,

they do require modifying the internal boundary conditions built into

most finite difference codes.
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Both the synthesis and bilinear weighting group collapsing schemes

preserve reactivity effects. In addition, they also, in effect, preserve

the effective delayed neutron fraction and generation time, since the

approximate transient results agree with the exact results. Where the

effect of the delayed neutrons having a different spectra is considered

explicity, the results given here are maintained. These results are

shown in Appendix E, and indicate that one can use either ße f f and the

same X's for delayed and pro~ neutrons or the actual ß's and the

different X's.
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FUTURE WORK

The work will be continued by applying these procedures to more

complicated reactor models in both one and more dimensions. A 1-d

reactor will be considered first, which has the characteristics of a

more typical fast reactor prototype. This will be investigated to make

sure that both the number of trial functions does not become excessive

and that the modified interface conditions hold up.

A 2-d, r-z study should also consider a typical, prototype reactor.

For this energy synthesis, Kaplan synthesis, and the bilinear collapsing

schemes should be checked before any of the methods are excluded.

The results to date indicate that these approximate methods are

useful, fast and accurate. They should find greater applications 1n

actually solving fast reactor transients of interest.
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APPENDIX A

RAUMZEIT MODIFICATIONS

The Subroutine RAUM of RAUMZEIT solves a source problem

which is put in a difference equation format

(A.1. )

PD___n_
2rh

n
(~'+1 - ~. 1) + H ~. =S.1 1- n 1 1

(A.2. )

where subscript n is for the material, i for the point.

These equations are solved in a recursion relation

-1
= o . (~. + ß. 1)

1 1 1-

where

(A.3.)

21 + h2D-1h (1- hP) -1- <l.n n 2r 1 (A.4.)<li+1 =
1 + hP

2r

h2D-1s . (1- hP) -1
ß. 1+ <l.

ß. 1 2r 1 1- (A.5. )=1 1 hP+-2r

At an interface point B one assumes the normal continuity realtions

(A.6.)
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1..-­
I

~I

I

I I
I· 1
I 1_<1>

I+- B-r+1

<I> ---+-1
. B+1 I

I
I

..I.----I------L---4---.l---_+_ -L-
h

n
h

m·

B-1 B B+1

material n IFP .material m

and uses it to couple the difference equation for the half mesh

boxes on either side of the interface. These difference equations

are

D <l>B - <l>B-1 h H <l>B h S
- D 'V <l>B +

n + n n n Bn=n h 2 2n

and

+B+1 - <1>+
+ h H <1>; h SBB m m m mD + D 'V <l>B + =m h m 2 2m

(A.8.)

+Solving for Dn'V<I>B and Dm'V<I>B~ and sUbstituting in the current con-

tinuity relation and using the flux continuity

one has for

1- hnP
2r

1+ hnP
2r

(A. 10.)

and

h
ß = -1!! D- 1

B 2 m h P
1+-.lL

2r

(A.11. )
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With the modifications of the interface boundary conditions given in

Section 111, the current and flux continuity relation at the inter­

face become

(A.12.)

These are used to get new recursion relationships at the interfaces

By rewriting A.12. as

(D + S ) D-1 D V ~+
m R m m '+'B (A.13. )

Substituting in (A.13.) for DnVlfl; and DmVlfl; .from equations (A.7.)

and (A.8.), and rearranging, aB+1 and ßB can be obtained

Let

and

D + SLn
"n2 -

D + SRm

"2 - m

Writing the recursion relation as

and noting that at all other points ~: _ ljl~ _ ljl.
111

except at the interface

(A.14. )

+
lflB-1

B-1

-
4>B

B

+
lflB

+
ljlB+1

B+1



where + -
~. = R. ~.

). ).).
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the algorithem is in general
h p

1- ..E!­
2r

(h 6 D-1H
h p n n n m

1+-!L
2r

26
+~W+h6DHRh m m m m

m
(A.15.)

(A.16.)

These two relations reduce to (A.10.) and (A.11.),

when 6 = D . 6 = D and R=I, i.e. where there are no discontinuities.m m' n n

These new relations were included in subroutine RAUM of RAUMZEIT

to accomodate the extraterms arising out-of using discontinuous

functions in bilinear collapsing of cross section libraries. When

there are no discontinuities the results are the same as before.
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APPENDIX B

BEST GROUP STRUCTURALS

The normal 26 group structure is given below as weIl as the selections
of best few group structures.

gp Energy Range 12 10 8 7 6

6.5 - 10.5 MeV T T T 1 1
2 4 - 6.5 I 1 I 1 I 1 I 1 I
3 2 4 1 1 1 .1 1
4 1,4- 2 2 2 1 T T
5 0.8 1.4 3 3 I 2 I 2 I 2

6 0.4 0.8 4 4 1 1 1
7 0.2 0.4 5 5 3 3 3

8 0.1 0.2 T 1
'4 I 4 T

46.5 1 6 1. 6
I

4
9 100 keV 1 1

10 21.5 46.5 7 . 7 5 5 1"j T 1 6 T11 10.0 21.5 I 8 I 8 T
12 4.65 10 1 1 1 I 6 I 5

113 2.15 4.65 9 9 7 1
14 1.0 2.15 T T T , ,
15 465 1000 eV 110 I I I I
16 215 465 T11 I I I I
17 100 215 t I I I I
18 46.5 100

1
10 8 7 6

I I I I
19 21.5 46.5 I I 1 II20 10 21.5 I I I I4.• 65 1,1221 10.0

I I I 1
4,65 I22 2.15

I II I I
23 1.0 2.15

1 I I I0.465 I24 1.0 I I I I
125 0.215 0.465 1 1 .1 1

26 Thermal group ..1
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APPENDIX C

ALTERNATE BILINEAR FORMULATION

Another bilinear collapsing scheme was formulated and investigated.

The ground rules were that the same weighting function in any given

region was to be used for the differential equation, and the flux and

current continuity conditions at the interface. The boundary conditions

were to be obtained by setting the weighted current and flux in each

region equal to that in the adjacent region. An addition~ requirement

was that the boundary conditions should have the form of the usual

conditions.

Algebrarially

(C.1-)

(C.2.)

where w is the same weighting matrix used to obtain the reduced group

diffusion equation and w and ~ are chosen so that Eqs. C.1. and C.2.

reduce to

(C.3.)

(c.4. )

where the DIS are the appropriatelY defined few group diffusion

coefficients in each region. Notice that this method again neglects

the effects of discontinuities at the interfaces. Instead it

just substitutes a new set of conditions which are to be satisfied

and look like the usual conditions.
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A cheice ef ~ and w that makes this werk is

~1-----
i~l ~i ~f

*"E 1/1. l1U.
1 1

U,

~ = ~2 E 1jJ~ l1Ui._------- .
i~' ~i ~f U,

(C.5. )

~ 3f
1

.i, .E, 3f
~. l1U.

U 1€ 1 1,

~ *2 (C.7.)M =
.i, .E, *~. l1U.
U a e 1 1,

~ *G

.L .E
U Hg, *~. l1U.

1 1

where all the terms are defined as befere and

tfl = (c.s. )
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However, now the few group fluxes (the ~'.) are not.the simple flux
1

integral over the broad group, but rather the importance averaged

flux integral.

Carrying out the usual substitute, weight and integrate procedure

leads to the equations

and at the interfaces

where

IV * 1jJ./ E *Dkk = E 1jJ. D. 1jJ. 1jJ.
iEk 1 1 1 . k 1 1le:

*
})tk

1jJ. AU.
'*E F. 1jJ. E

1 1 / E= 1jJ. 1jJ.
ie:k 1 1 i Uk ie:k

1 1

(C.10. )

=

AU.
X 1

( E ljJi ~I) ( E
ie:I ie:J

( E
ie:I

1jJ. * 1jJ.) ( E
1 1 je:J

E 1jJ.*
ie:I J

E. . 1jJ.)
l~J 1
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xW. ~./ L
1 1. k

1€

xW. 6U.
1 1

~
for prompt

or delayed as the case may be.

Notice that when the W. are unity the results are the same as for
1

normal flux weighting. Further, the avera~ed group constants are

really averaged over the product of the flux and adjoint spectra,

rather than the product of the averages. The new few group flux is

really not a pure flux but an importance weighted flux integral.

One-dimensional NUSYS calculations were carried out with this

collapsing scheme for the various cases with 8 groups. Table C.1.

shows a comparison of the results obtained with this formulation and

those using the Pitterle scheme without accounting for the interface

discontinuities. This means that the boundary conditions with the

Pitterle scheme were just theusual current and flux continuity

conditions and in fact are more or less comparable to those used in

the new scheme.

The modified results are somewhat better than the usual Pitterle

formulation. However, the improvement is not great enough. The

remaining errors, especially in the cases of discontinuous adjoints,

indicate that the interface conditions are not being properly treated

as had been hoped.

Modifying the standard Pitterle method with the new interface

conditions gives acceptable results as seen in the Results sections.

Presumably the same improvement could be obtained here, by using

modified interface conditions. But then one of the motivations for

this formulation is lost. In addition, the somewhat unphysical

interpretation of the few group flux would remain.



TABLE C.1.

COMPARISON OF PITTERLE (p) AND MODIFIED (M) BILINEAR SCHEMES 8 GROUP-NUSYS

x '/Jo '/JMF
x x '/JMF '/JMF

x
'/Jo '/Jo '/JMF «

Cases M P M P MP M P

INITIAL k .995087 .995063 .995091 .995076 .995096 .995065 .995031 .995031

10% Void k .996697 .996668 .996677 .996673 .996694 .996660 .996632 .996614
!lk .001610 .001605 .001586 .001597 .001598 .001595 .001601 .001597

%error +.7 % + .4 % - .8% +.1% -.1% -.3% + .1% - .1% ><
H.
~

0.
Partial Void k .997123 .997103 .997083 .997077 •997148 .997122 .997058 .997050

Llk .002036 .002040 .001992 .002001 .002052 .002057 .002027 .002033
% error + .1% + .3% -2.1% -1.6% + .9 % +1.1 -.3% -.1%

Slumping k .998715 .998706 .998649 .998656 .998757 .998731 .998649 .998662
Llk .003628 .003643 .003558 .003558 .003661 .03666 .003618 .003645

%error -.9% -.6% -2.9% -2.3% +.1% .1% -1-2% -.5%
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APPENDIX D

OVERLAPPING REGIONS'---_._---.. ~ ~

One of the suggestions for avoiding ambiguity problems at interface is

to not allow the expansion and weighting functions to be discontinuous

at the same interface (4). This was attempted here simply by allowing

the flux spectra to be discontinuous at the region interfaces, but by

requiring the adjoint spectra from the lefthand region to be used accross

the j nt.erface A shor-t di abance into the r i ght.hand r-egi on , This is

depicted in Figure D.l.

The 11sua1 Pitterle bilinear scheme was used where the groun constants

were calculate~ in each of regions (now 5 instead of 3), using the

appr-oxi mat;e ailjoint arid flux as shown in the F'igure . The regular

boundary conditions 0f continuous current and flux were used to determine

if this were a way to solve the problem. Results were obtaineo as a

function of width of the overlap regions, ranging from 2 cm in a

region to, completely overlapping the reactor with the core adjoint.

The results are given in Table D.1 for the cases with the final adjoint

spectra. The cases which used the initial adjoint spectra are not shown

since the spectra is essentially continuous at the first interface and

overlapping had na noticeable effect.

The eigenvalues and reactivities are fairly sensitive to the width

of the overlap region, which is not very satisfying. For the

original flux case an overlap width of 10 cm or so (~ 2 diffusion

lengths) gives good results. For the final flux spectra the best

results are obtained with about 5 cm or one diffusion length. By the

proper choice of this width, the effects of discontinuities seem to

be ameliorated. However, this can also be obtained by using the

modified boundary conditions. The other disadvantage of this method

ia that involves adding more regions to the reactor model.

FIGURE D.1

Reg

I lj>~ ~ *"1 '2 ....<I>Blkt ...
I "

1 2 i 3' r'+ I 5

lcore 1 I Core 2 ~lktI

i~ '2 +3



TABLE D.1

OVERLAPPING ADJOINT STUDIES

8 GROUPS NUSYS

Case Orig. Flux-MF Adjoint MF Flux - MF Adjoint

Overlap Base 2 em. 6 em. 10 em. All Base 2 em. 6 em. 10 em. All

INITIAL k .995091 .995095 .995096 .995103 .995113 .995031 .995032 .995038 .995043 .995045

10% Void k .996677 .996683 .996694 .996698 .996708 .996632 .996637 .996647 .996650 .996652

~k .001586 .001588 .001598 .001595 .001595 .001601 .001605 .001609 .001607 .001607

%error -.8% -.7% -.1 -.2% -.3% +.1% + .4 % + .6 % + .5 % + .5 %
~
H.
-"
I'\)

Partial Void k .997083 .997104 .997132 .997144 .997146 .997058 .997075 .997104 .997119 .997140 .
~ .001992 .002009 .002036 •002041 .002051 .002027 .002043 .002066 .002076 .002095

%error - 2.1 % -1.2 % +.10 +.3% + .8 % -.3% + .4 % + 1.6 % + 2.1 % + 3.0 %

Slumping k .998649 .998682 .998729 .998756 .998780 .998649 .998683 .998730 .998755 .998778
~k .003558 .003587 .003633 .003653 .003667 .003618 .003651 .003692 .003712 .003733

%error -2.9% -2.1% -.8% -.3% + .1 % -1.2% -.3% + .8 % + 1.3 % + 1.9 %
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APPENDIX E

ß AHD X EFFECTS

Originally RAUMZEIT did not allow different del~ed neutron and

prompt neutron spectra t even though they are substantically different

from one another as seen in Figure E.1. However this difference was

accounted for by using a ßeff instead of the actual (i.e. isotope

averaged) ß's.

When RAUMZEIT was mOdified t the provision for allowing different

prompt and de~~ed XIS was added. The calculations were repeated using

actual ß's corresponding to the ßeff (0.0032) used previously and the

different prompt and delayed spectra t for the two transients and the

various group collapsing and synthesis schemes were tested. The

conclusions reached before hold UPt and the agreement between the

various collapsing modelst synthesis t and the exact results are

maintained. The results for the fuel slumping transient are shown

in Table E.1 for the original adjoint and final flux 8g modelt the

26 group model and synthesis.

This means that the collapsing and synthesis scheme in addition

to accurately predicting reactivity effects also account properly for

ßeff and the generation time. In fact t the agreement between the two

calculational models indicate that using ßeff and the same XIS is

equivalent to using the actual ß's and different XIS. The differences

are only of the order of 1-2 %.



TABLE E.1

s AND X EFFECT

Time 26 gr. x
6 ~r. 0MF 00

x
8 gr , 0MF °0 Synthesis

millisec. A B A B A B A B

0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.845 1.843 1.839 1.838 1.846 1.845 1.839 1.840

4 1. 718 1. 715 1.720 1. 718 1.727 1.725 1. 712 1. 711

6 1.624 1.619 1.631 1.627 1.637 1.633 1.616 1.610 ><
H

8 1.665 1.657 1.668 1.676 1.645 .
-".,...

10 1.831 1.820 1.842 1.834 1.851 1.843 1.815 1.807 .
12 2.173 2.158 2.178 2.189 2.164

14 2.877 2.852 2.901 2.882 2.918 2.900 2.856 2.839

16 4.62 4.57 4.66 4.623 4.658 4.608 4.582

18 11.76 11.59 11.97 11.78 12.04 11.93 11.86 11.82

20 134.4 131.0 137.4 134.7 140.0 137.4 135.1 135.4

A: ?-p = ?-d but ßef f is used

B: ?-p F ?-d and actual ß is used



FIGURE E.1

Prompt and Averaged Del~ed Neutron Spectra
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