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Third Order Transfer Matrix Elements of Octopoles

ABSTRACT:

The matrix elements of the third order transport matrices for electrosta­

tic and magnetic octopoles are derived. They are needed in lon optical

calculations, if octopoles are used as correctors of image aberrations.

Transfer-Matrix-Elemente 3. Ordnung von Oktopolen

ZUSAMMENFASSUNG:

Die Matrixelemente der Transportmatrizen 3. Ordnung werden für

elektrostatische und magnetische Oktopole abgeleitet. Sie werden in

ionenoptischen Berechnungen benötigt, wenn Oktopole zur Korrektur von

Bildfehlern verwendet werden.
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1.) INTRODUCTION

To correct the third order image aberrations of ion optical systems

affecting the imaging in lower orders, oc~~ole elements must be

The most converiientway to calculate image aberrations uses the

matrix formalism2 ,3). For its use the third order transfer matrix

elements of octopole correctors must be known.

2. ) DIFFERENTIAL EQUATIONS OF MOTION

We start from the third order equation of motion of charged particles

in an octopole field:

x" = 3 k
2

y" = 3 k2

2
x Y

2xy

This is a special case of eqs. (13 a,b) of ref. 4. In analogy to the quadru­
+pole and hexapole strength (eqs. (23) and(25) of ref. 5) we introduce

the octopole strength parameter

or

k2
B

=L 0 the magnetic~n case
Po '3

r (2)
U

k2 e ...~ in the electrostatic= case,
Po ·v 4r0

Here the particle momentum p , the particle velocity v , the magnetic field
o 0

strenght of the pole B , the electrical tension of the pole U and the apertureo 0

radius r are used. The orientation of the octopole system within the coordinate

system is shown in fig. 1. The primes in eq. (1) denote differentiation with

respect to the direction of the Z·-axes.

3.) TAYLOR EXPANSION

We consider a ray which starts at the coordinates x ,y with the angles
o 0

x~ = ao and y~ = ßo and with a momentum spread 00' Along the particle ray' path

+Note the different definition of the quadrupole strength in eq. (1-10) of ref. 6.
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the coordinates x, x', y, y' and 0 are functions of Z. If the ray

is a paraxial ray, that means in the neighbourhood of the central

symmetrie axis x=o, y=o, with small angles x~ and y~ we may develope

these functions x, x', y, y', 0 in Taylor series of the original

coordinates x, x', y , y' and 0 , breaking after the third order.o 000 0

The expansion has the form

1 = l (i/j)j + l(i/jk)jk + l (i/j k l)j k 1 + ... (3)

with i = x, x', y, y' ,0

and j,k,l = x , x', y , y', 0
o 0 000

ln analogy to eq. (32) of ref. 5. The parentheses (i/j), (i/jk) and

(i/jkl) are symbols for the Taylor coefficients, i identifies the coordinate

represented by the expansion, while j,k,l indicate the term in question.

These Taylor coefficients are just the first, second and third order matrix

elements in the transport matrix theory and are functions of Z, which

must be determined.

4.) EVALUATION OF THE COEFFICIENTS OF FIRST AND SECOND ORDER

To evaluate the coefficients, we differentiate eq.(3)twice and

substitute these expansions in the left and right hand side of eqs. (1),

breaking after the third order terms.

Collecting the terms with the same power in the particle ray origin

coordinates x , x', y , y', 0, a second order differential equations is ob­
o 0 000

tained for each Taylor coefficient. For the first order coefficients this

is of the type

(i/j)" :::: 0

with i = x,x',y,y', °
J - x x' y y' 0

- 0' 0' 0' 0' 0

(4)

The solutions are obtained by integrating twice, which leads to

the general form



for ].
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=: x, x', y, y', 0

=: x x' y y' 0
0' 0' 0' 0' 0

with two integration constants c
1

and c2 for each coefficient. The constants

are determined by the boundary conditions, demanding that for k2~ 0 the .

octupole must behave like a drift path of the same length Z. This yields

(x/xo ) =: 1

(x/x')=:Z
o

and their nonvanishing derivatives

(x' /x') =: 1o

(Y/Yo) =: 1

(y/y~) =: Z

(y' /y') =: 1
o

As the energy spread is not affected by a drift path, also

(0/0 ) =: 1-
o

All non listed matrix elements of first order are identically zero.

Collecting the terms of second order in the starting coordinates,

we get

for i =: x, x', y, y', 0

j,k =: xo' x~, Yo' y;, 00

(i/j,k)" =: 0 (6)

with the same boundary conditions as for the first order coefficients

we find, that all integration constants of the second order coefficients are

zero, thus

(i/j,k) =: 0

for i =: x, x' ,y, y', 0

j,k =: xo' x~, Yo' y;, 0
0
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5.) THIRD ORDER COEFFICIENTS

Collecting the terms of third order in the starting coordinates

and making use of eqs. (5a,b,c) we derive the following differential

equations for the third order coefficients

(x/x x x )" = -k2 (x/xo )3 + 3 k2 (x/x )(y/x )2 = - k2
o 0 0 2 2 O2 0 2

(x/xxx')" = -3k (x/x) (x/x') + 3k (x/x')(y/x) + 6k2 (x/x )(y/x )(y/x')
000000000 0

= -3k2Z

and similarly

(x/x x'x')" = - 3k2Z2
000

3k2(x/x Y Y )" =000

6k2Z(x/x y y' )" =000
3k2Z2(x/x y'y')" = (8)000 _
k

2
Z
3

(x/x'x'x' )" =000

3k2Z(x/x'y y )" =000
6k2Z2(x/x'y y')" =000
3k2Z3(x/x'y'y' )" =000

(y/x x y )" = 3k
2

000
3k2Z(y/x x y')" =

000 2
(y/x x'y )" = 6k Z

000
6k2Z2(y/x x'y')" =000
3k2Z2(y/x'x'y )" =000
3k2Z3(y/x'x'y' )" =000
_k2

(y/y Y Y )" =
000

- 3k2Z(y/y Y y')" =000 _
3k

2
Z
2

(y/y y'y')" =000
_k2Z3(y/y'y'y')" =000

The second derivatives of all other third order coefficients vanish.
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Integration of the first of eqs. (8) gives

(x/x x x ) :: - 1 k2Z2 + c
1

Z + c
2000 2

with cl' ~2 integration constants, which may be determined from the boundary

conditions. For the limits k2 + 0 and Z + 0 the third order coefficients

must vanish, hence c1 :: 0 and c2 :: O. This holds in the same manner for all

other third order coefficients and leads to

(x/x x x ) = _ 1 k2z2
(y/xoxoYo) :: 1. k2z2

000 2 2

(x/x x x') = _ 1 k2Z3 (y/x x y')' :: 1 k2z3
000 2 000 2

(x/x x'x') = _ 1 k2Z4 (y/x x'y ) :: k2z3
000 4 000

(x/xoyoyo) = 1. k2Z2 (y/x x'y') :: 1 k2Z4
2 000 2

(x/x y y' ) :: k2Z3 (y/x'x'y ) :: t- k2Z4
000 000 (9)

(x/x y'y') = ' k2Z4 (y/x'x'y' ) :: ..l. k2Z5
000 4" 000 20

(x/x'x'x! ) = __, k2Z5
(y/yoyoyo) =_1 k2Z2

000 20 2

(x/x'y y ) = 1 k2Z3 (y/yoy y') o::_lk2z3
000 2 o 0 2

(x/x'y y') = 1 k2Z4
(Y/YoY~y~) =- t- k2Z4

000 2

(x/x'y'y' ) = ..l. k2Z5 (y/y'y'y' ) =__1 k2Z5
000 20 000 20

The expansion coefficients of the angles x' and y' are gained by differentiation:

(x'/x x x ) = - k2 Z (Y'/x x y ) = 3 k2Z
000 o 000

. (x' (x x x') = _ 1. k2Z2 (y' /x x y') '" 1. k2Z2
000 2 000 0 2

(x'/x x'x') :: k2 Z3 (Y'/x x'y ) :: 3 k2Z2
000 o 000

(x'/x y y ) = 3 k2Z (y' /x x'y') = 2 k2Z3
000 o 000

(x'/x y y') = 3 k2 Z2 (y'/x'X'y ) = k2Z3
( 10)000 000 0

(x'/x y'y') = k2Z3 (y' /x'x'y') = t k2z4
000 000 0

(x' /x'x'x') = _ 1 k2Z4
(Y~/YoYoYo) = - k2Z

000 4

(x' /x'y Yd = 1. k2z2 (Y~/YoYoY~) = _ 1 k2Z2
o 0 2 2

(x'/x'y y') = 2 k2Z3 (y~/yoY~y~) :: _ k2Z3
000

324 (y' /y'y'y') = _ 1 k2Z4
(x'/x'y y') = - k Z 4000 4 o 000

All non-listed matrix elements are identically zero.
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6.) RANGE OF VALIDITY

These coefficients deduced in eqs. (9) and (10) are correct also

ln the relativistic case, if the relativistic momentum p is used in
o

eq. (2). Computations with these coefficients should give approximately

correct results only if the octopoles used are sufficientLy long (compared

to the aperture diameter), as fringing field effects are not included.

But this seems no serious disadvantage, as in most cases octopoles

serve only as correctors with relative small field strength.
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Fig.1. Orientation of octopo'les relative to the coordinate system. a) magnetic and b) electro­

static octopole.




